岩石的强度

合集下载

3岩石力学性质及强度

3岩石力学性质及强度

四、岩石变形特性参数的测定
1、弹性模量E的确定 a、线弹性类岩石――σ ~ε 曲线呈线性关系,曲线上任 一点P的弹性模量E:
E
b
σ ~ε 曲线呈非线性关系
d 初始模量 : E 初= d
切线模量(直线段):
0
a 2 a1 E 切= a 2 a1
割线模量:
际受力状态而测定岩石在围压作用下的抗压强度、
变形模量、弹性模量及泊松比。
岩石的三轴抗压强度、变形模量、弹性模量、 泊松比及剪切模量分别为:
P ( 2) 3 A
50 3 Ee ( 4 ) 50 i
Ee G 6) ( 2(1 u )
50 3 E0 50 0
2、间接拉伸试验
A 劈裂法(巴西试验法)
圆盘试件:
2P t d t
方形试件:
2P t ah
式中:P—破坏时的荷载,N;
d— 试件直径;cm;
t—试件厚度,cm; a,h—方形试件边长和厚度,cm。
不规则试件(加压方向应满足h/a≤1.5 ):
t
P V 2/3
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
围压对岩石强度的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
岩石力学的弹性变形
E K 3 1 2
弹性模量, E 泊松比, v 体积模量, K 剪切模量, G

岩体的强度特性

岩体的强度特性
沿结构面破坏: (1)、沿结构面破坏:对岩体强度有影响的 节理方位: 节理方位:β1≤β≤ β2
2CJ +2 fJ σ3 σ1m =σ3 + Байду номын сангаас1− fJctgβ) sin2β
12
岩石力学
三、单结构面强度效应
对岩体强度有影响的节理方位角: 对岩体强度有影响的节理方位角: β1≤β≤ β2 可以直接在图上量取, β1、β2可以直接在图上量取,也可以由 正弦定律推求: 正弦定律推求:
2 n c
28
岩石力学
五、岩体强度估算
Hoek曾指出, 与库伦— Hoek曾指出,m与库伦—莫尔判据中的内 曾指出 摩擦角Φ非常类似, 则相当于内聚力C 摩擦角Φ非常类似,而s则相当于内聚力C 值。如果这样,根据Hoek—Brown提供的常 如果这样,根据Hoek—Brown提供的常 Hoek 最大为25 25, 数,m最大为25,显然这时估算的岩体强度 偏低, 偏低,特别是在低围压下及较坚硬完整的 岩体条件下,估算的三轴强度明显偏低。 岩体条件下,估算的三轴强度明显偏低。 但对于受构造扰动及结构面较发育的裂隙 化岩体,Hoek(1987)认为用这一方法估算 化岩体,Hoek(1987)认为用这一方法估算 是合理的。 是合理的。
(σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β1 = + arc sin[ ] σ1 − σ 3 2 2 (σ1 + σ 3 + CJ ctgϕJ )sin ϕJ 1 β2 = + − arc sin[ ] σ1 − σ 3 2 2 2
ϕJ π
ϕJ
13
岩石力学
三、单结构面强度效应 岩石(岩块) (2)、岩石(岩块)破坏:

岩体力学第7讲 岩石强度理论

岩体力学第7讲 岩石强度理论

σ 1 = σ 3 tan 2 θ + σ c
2.8.1 库仑强度准则
σ 1
σ 1 = tan 2 θ + σ c
σ 1 − σ 3坐标系统中库仑准则的
完整强度曲线。 所示, 完整强度曲线。如图 7-6所示,极 限应力条件下剪切面上正应力 σ 和 表示为: 剪力τ 用主应力 表示为:
σ c
O
arc( tan2 θ)
L
σ 3
Φc
D
A
σ 1
O
σ 3
B
σ σ 1
图7-6
σ- σ-τ坐标下库仑准则
2.8.1 库仑强度准则
若规定最大主应力方向与剪切面(指其法线方向) 若规定最大主应力方向与剪切面(指其法线方向)间的夹角为 θ (称为岩石破 断角),则由图7 可得: ),则由图 断角),则由图7-6可得:
2θ =
故:
π
由: 有: 或:
cos 2θ = − f
2σ = σ 1 1 − f
f 2 +1
f 2 + 1 + σ 3 1 + f f 2 + 1
2σ = σ 1
f 2 +1 − f
f 2 +1 +σ3
f 2 +1 + f
f 2 +1
由于 f 2 + 1 > 0 ,故若 σ > 0
2.8.1 库仑强度准则
岩石发生破裂(或处于极限平衡) 取值的下限确定: 岩石发生破裂(或处于极限平衡)时 σ 1 取值的下限确定: 考虑到剪切面( 的条件, 值条件下, 考虑到剪切面(图 7-6 )上的正应力 σ > 0 的条件,这样在 θ 值条件下,由方 34)式得: 程(7-34)式得:

第三讲 岩石强度

第三讲 岩石强度

下图。
2P X Dl
(2-22)
6P y (2-23) Dl
•计算公式:当P值达到峰值破坏荷载Pmax时,在垂直径向的
x方向(水平方向)产生均匀拉应力σxmax即为岩石的拉应力:
2 Pmax Rt Dl
(2-25)
(3)点荷载试验法
–是上世纪发展起来的一种简便的现场试验方法。 –试件:任何形状,尺寸大致50mm,不做任何加工。 –试验:在直接带到现场的点荷载仪上,加载劈裂破坏。
在实验过程中,如何预见岩石的宏观破坏形式呢? 也就是说在试验过程中,能否通过某种方式预先知道 (预测)它的破坏结果?(声发射技术的应用)
abLeabharlann cdef
– 由上图可知,声发射技术是一门无损监(检)测技 术,被动声发射监测,可以用来监测了解材料的破 坏趋势。
• 室内实验中影响岩石抗压强度的主要因素:
– 岩石试件的形状:圆柱体形、立方块、长方块等不同 的形状影响岩石的抗压强度,立方块和长方块容易在 棱角上产生应力集中,影响岩样的强度。
1. 岩石抗压强度:是指岩石承受最大外荷载的能力。
(1)单轴抗压强度:无围压(无侧限)强度 –岩样:圆柱形(尺寸直径48~54mm、高径比=2~2.5) –计算公式:压力与受载面积的比。
Pc Rc A
(2-14)
非标准试样的抗压强度计算公式:
为非标准岩样的强度,d为岩 样的直径或边长,h为高度。
• 试验方法:直剪仪,垂向压力P作 用下的直接剪切; • 试样:一般为立方块(尺寸:棱 长50mm),有时也用长方块; • 计算方法:
P A
P
岩样
直剪仪剪切盒
(2-15) (2-16)

T A

一般岩石的抗压强度

一般岩石的抗压强度

一般岩石的抗压强度1、岩浆岩类(1) 坚硬一软弱块一层状基性喷出岩。

火山熔岩为块状,较坚硬一坚硬,干抗压强度48.CH 193.0兆帕,软化系数0.640.99,岩体稳定性较好;火山碎屑岩为似层状或层状,软弱一较坚硬,干抗压强度10.「56.0兆帕,软化系数0.4"0.54,岩体稳定性差。

力学强度的高低与岩石的节理裂隙发育和风化程度有关。

中等风化玄武岩强度为微风化一新鲜的20-50%;火山碎屑岩易受风化,中等风化的锤击易碎。

(2) 坚硬一较坚硬层状中一酸性喷出岩。

岩石干抗压强度多大于108兆帕。

流纹岩垂直和水平方向上的力学强度变化较大,在一定条件下可成为岩组中相对软弱的夹层。

使岩体稳定性变差。

(3) 坚硬块状侵入岩。

岩石以中一粗粒或斑状结构为主,块状构造,新鲜者致密坚硬,裂隙不发育,力学强度普遍较高,尤其是新鲜花岗岩,抗压强度一般大于98兆帕。

2. 变质岩类(1) 软硬相间薄一中厚层状变质砂页岩。

岩层厚薄不等,软硬相间,岩石的完整性和抗风化能力差异很大,力学强度各向异性。

片岩、千枚岩、板岩等软弱岩石,节理裂隙较发育,垂直干抗压强度12.卜113 兆帕;石英岩、变质砂岩、硅质岩等硬质岩石,较坚硬一坚硬,垂直干抗压强度43.CH260兆帕,最高达338兆帕。

风化岩石干抗压强仅40- 90兆帕。

(2) 坚硬块状混合岩类。

岩石呈块状,完整性好,坚硬,干抗压强度5卜196兆帕,强风化者为22兆帕(3) 软弱碎裂状构造岩。

岩石破碎,透水性强,压碎花岗岩垂直饱和抗压强度为73兆帕,部分小于20兆帕。

3. 碎屑岩类(1) 软弱一较坚硬,中一厚层状红色砂泥岩。

岩石呈不等厚互层状。

力学强度因岩性不同而异。

砂岩,砾岩等岩石较坚硬,干抗压强度多大于50兆帕,风化岩干抗压强度一般小于50兆帕。

泥岩、粘土岩等垂直干抗压强度为11." 17.0兆帕。

(2) 软硬相间薄一中层状砂页岩。

页岩常夹砂岩或与砂岩互层产出。

火山岩岩石强度

火山岩岩石强度

火山岩岩石强度
火山岩的强度因其具体类型、成分、结构和形成过程等因素而异,但总体上可以提供一些一般性的信息:
抗压强度:火山岩的抗压强度通常在30至200兆帕(MPa)之间,具体取决于岩石的类型和成分。

例如,玄武岩通常具有较高的抗压强度,而安山岩则相对较低。

抗拉强度:火山岩的抗拉强度一般较低,通常在2至10 MPa 之间。

这是因为火山岩在形成过程中往往受到拉伸和剪切等力学作用,导致其结构相对疏松,抗拉性能较弱。

抗剪强度:火山岩的抗剪强度也较抗拉强度略高,通常在4至20 MPa之间。

这取决于岩石的成分和结构,以及其受力方向等因素。

需要注意的是,火山岩的强度受到其结构、风化程度、孔隙度等因素的影响。

例如,含有大量气孔和裂缝的火山岩其强度会降低,而经过长期风化和侵蚀的火山岩可能会更加脆弱。

因此,在工程设计和施工中,需要根据具体情况对火山岩的强度进行评估,并采取相应的措施来确保结构的稳定和安全。

1。

岩石抗拉强度公式

岩石抗拉强度公式

岩石抗拉强度公式岩石的抗拉强度是指岩石在受到拉力作用时所能承受的最大应力值,是岩石力学性质的一个重要参数之一、了解岩石抗拉强度的公式与计算方法对工程建设、矿山开采、地质灾害评价等方面有着重要意义。

一、经验公式经验公式是通过大量试验数据的统计分析得出的,其简单易行、计算速度快等特点常被工程师和研究人员采用。

以下是一些经常用于计算岩石抗拉强度的经验公式:1. 斯坦福经验公式(Stanford empirical formula):σt=C+μ×σc式中σt:岩石抗拉强度,单位为MPa;C:常数,可根据实验数据确定;μ:岩石单轴抗压强度与抗拉强度的比值;σc:岩石单轴抗压强度,单位为MPa。

2. 马克斯韦尔经验公式(Maxwell empirical formula):σt=C+β/σc式中σt:岩石抗拉强度,单位为MPa;C:常数,可根据实验数据确定;β:常数,可根据实验数据确定。

以上经验公式都是简化的近似公式,其精度并不高,仅适用于一些特定的岩石类型。

对于一些复杂的工程问题或对精度要求较高的研究,通常需要采用物理力学公式。

二、物理力学公式物理力学公式是基于岩石力学理论与试验数据的分析,更为精确。

其中应力理论主要包括弹性力学理论和破裂力学理论。

1.弹性力学公式根据弹性理论,通过应力应变关系可以计算岩石的抗拉强度。

岩石的弹性理论根据材料的不同有多种模型可用,包括线弹性模型、非线弹性模型和粘弹性模型等。

2.破裂力学公式破裂力学理论研究岩石在破裂前后的变形与力学性质。

著名的破裂力学理论有线弹性断裂力学(LEFM)和弹塑性断裂力学(EPFM)等。

物理力学公式适用范围广,适用于不同岩石种类和复杂力学条件下的计算。

但是,物理力学公式的计算一般较复杂,需要调用较多参数和复杂算法。

需要注意的是,以上公式所得的结果仅仅是预测值,并不能完全反映实际情况。

很多因素会影响岩石的抗拉强度,如岩石组成、结构及裂隙发育情况等。

第四章 岩石的强度

第四章 岩石的强度

第四章岩石的强度岩石强度是岩石的一种重要的力学特性。

是指岩石抵抗载荷(外力)而不受屈服或破裂的能力,是岩石承受外力的极限应力值。

岩石受力后会发生变形,一旦应力达到岩石的极限应力值,岩石就会发生破坏。

在岩石强度应力值之前,存在屈服点(应变明显增大,而应力不再需要明显增大时的应力),超过屈服点和达到极限强度(岩石破裂要达到的最大应力值)前,一般仍有一些抵抗应变而恢复原形的能力,但达到极限强度后岩石破裂,就完全失去恢复能力。

通常所讲的岩石强度,一般是指岩石样件的测量强度,它仅代表岩体内岩块的强度,不能代表整个岩体的强度。

但在涉及岩石强度的工程问题中,一般是针对岩体的强度,而岩体往往包含一些软弱的结构面。

几组软弱结构面可以将岩体分割成各种形状和大小不同的岩块。

因此,岩体的强度取决于这些岩块强度和结构面的强度,岩块内微结构面的作用将直接反映到岩石的力学性质上。

岩石受力方式的不同,表现出的强度特性不尽相同。

如在张力、压力和剪切力的作用下,同种岩石会呈现出不同的强度特性。

因此岩石具有抗张、抗压和抗剪切强度等之分。

岩石受力条件的不同,可表现出变形、破裂、蠕变等现象,这些现象有着一定的规律性。

岩石的强度是衡量岩石基本力学性质的重要指标,是建立岩石破坏判据的重要指标,还可估计其他力学参数。

岩石的这些力学特性广泛用于建筑行业、水利水电工程、地质灾害研究与预防、断裂构造研究等方面。

4.1影响岩石强度的主要因素1)岩石成分和结构组成岩石的矿物种类及含量、矿物颗粒大小、固结程度、胶结物种类、矿物形态与分布等均影响到岩石的各种强度。

固结程度高、硅质胶结、细粒、交错结构的强度大。

2)岩石中不连续面和间断面岩石中微裂缝、微小断裂、节理层理等的发育程度和分布情况直接影响到岩石的强度,这些不连续或间断面会降低岩石在不同方向上的强度。

3)岩石孔隙度及流体性状岩石的孔隙度以及其中所含流体种类、饱和度、渗透率等因素以较复杂的关系影响着岩石强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.影响因素
(1)岩石本身性质方面的因素,如矿物组成、结构 构造、密度、风化程度,层理结构(Rc∥<Rc⊥)等
(2)试验条件
①试件的几何形状及尺寸大小;(形态和尺寸效应) ②端面条件;(端部效应)(试件端面与压力机板间
的摩擦作用,如端面粗糙和不平行Rc ↓)
③加荷速率;(v↑,Rc↑) ④湿度和温度;随温度升高,岩石的脆性降低,塑性增强,岩石强度随
5. 库伦-莫尔强度理论(coulomb 1773-mohrs 1900)
之降低。水侵入岩石时,将顺着裂隙进入并湿润试件中的矿物颗粒,由于水分子的 进入,改变了岩石的物理状态,削弱了颗粒间的连结力,降低了岩石的强度。
3.岩石抗压强度与弹性模量的关系
E=350Rc 近似直线,也就是说,岩石刚度越大(E越大,变
形越小),则强度越大Rc。
第二节 单轴抗拉强度(Uniaxial tensil
σ1=f(σ2、σ3)或 f(σ1,σ2、σ3)=0 ε1=f(ε2、ε3)或 f(ε1,ε2、ε3)=0
一. 岩石的破坏特性 岩石的破坏形式比较复杂,根据破坏时的应力类型,分为三 种类型: (脆性破坏)--(过渡型)--(塑性/延性破坏) (拉破坏) (剪切破坏) (流动) -------三种破坏机制 (多数岩石) (岩石常见)(一般条件下大部分岩石并不呈现 )
第一节 岩石的单轴抗压强度
(uniaxial compressive strength) 1.Rc的确定
(1)抗压试验:Rc=Pc/A (MPa)
Pc—荷载(破坏时)(N) A—横断面积(mm2) 标准岩石试件通常为圆柱状或长方柱状。 圆柱状: 直径D=5cm或7cm,h=(2~3)D 方柱状:断面S=5×5cm2,h=(2~3)S 断面S=7×7cm2,h=(2~3)S (2)点荷载试验→间接求取Rc Rc=(22.8~ 23.7)Is(50) 式中Is(50)为直径50mm标准试件的点荷载强度。
一. Rt测定方法: 1.直接拉伸法:
strength)
岩石试件在单轴拉力作用下抵抗破坏的极限能力。
缺点:试件制备困难;不易与拉力机固定,而且在试件固定处附近往
往有应力集中现象,同时在试件两端面有弯曲力矩。这个方法用的不多。
2.间接法:
劈裂法:试件的形状圆柱体和立方体。试验时沿着圆柱体的直径方
向施加集中荷载,这可以在试件上下承压板接触处各放一根钢丝实现。 优点是简便易行,不需特殊设备,只要有普通压力机就可,故在生产实 践中广泛应用。 1.承压板 2. 试件 3.钢丝 劈裂试验加载示意图
第三节 岩石的抗剪强度(Shear strength)
岩石抵抗剪切破坏的能力,它是岩石力学中需要研究的
最重要特性之一,往往比抗压和抗拉更有意义。在实际 中,岩石剪切破坏的情况较多,如岩质边坡失稳,洞室
围岩破坏,重力坝坝基滑动破坏等。
岩石的抗剪强度指标为Φ和C。 一. 剪切试验类型
按剪切试验方法不同,可分为三种(剪切强度)类型
点荷载强度指数与岩石抗拉强度之间的关系如下:
Rt 0.96I
要求15个试件,最终按其平均值求得其强度指数并推算出 岩石的抗拉强度。
该方法操作简单,成本低廉,实用性很强。
二.与抗压强度的关系 Rt远小于抗压强度,约为1/10-1/4(0.1-0.25倍), 个别者甚至小于0.02倍。 脆性度(nb):岩块的抗压强度与抗拉强度的比值 即 。一般10~20,最大可达50。
1.抗剪断强度(预设剪切面) τ=σtgφ+C τ=T/S σ=P/S P、T为试件剪断时的最大垂直压力和水平剪力; S 为剪切面面积 2.抗切强度(在剪切面上不加法向荷载的情况下剪切) τ=C 3. 抗剪强度(摩擦强度)(先存剪切面) τ=σtgφ 实际上是结构面的剪切强度问题。
二. 抗剪强度的测定方法


岩石的强度(Strength of rock):指岩块抵抗外力破
坏的能力。它包括抗压强度、抗拉强度和抗剪强度。
岩石的强度特性指标多在实验室内进行测定。试验所选 用的试件必须是完整岩块,而不应包含节理、裂隙。因为在一个小试ຫໍສະໝຸດ 中的节理裂隙是随机的,不具有代表性。
由于地质上的不均一性,试验结果往往表现出较大的离 散度,为了使实验结果更好地进行数据统计处理,对同 一岩石要求有一定数量的试件。
三. 直接剪切试验的优缺点 优点:简单方便,不需要特殊设备。 缺点:所用试件的尺寸较小,不易反映岩石中的裂隙等 结构面的情况。 受剪面积上的应力分布不均匀。
第四节 岩石的强度理论(破坏判据/强度准则)
(Strength & Failure Criterion) 岩石的强度理论是判断岩石试件或岩石工程在什么样应力或 应变条件下破坏。研究岩石在复杂应力状态下的破坏原因, 规律及强度条件的理论就称强度理论。 岩石的破坏与诸因素有关,但目前岩石的强度理论大多只考 虑应力的影响,其它因素影响研究并不深入。
点荷载试验:
①试件:可利用现场取得的任何形状的岩块,可以是5cm的 钻孔岩芯,也可以是开挖后掉落下的不规则岩块,不作任 何岩样加工直接进行试验。 ②加载与强度换算:施加点荷载,点荷载强度指数I可按下 式求得: I P / D 2 (MPa)
式中:P-试件破坏的极限荷载;D-荷载与施加点之间的 距离。
σ1
σ3
σ3
σ1
单向拉伸 脆性破坏
单向压缩 脆性破坏
X状共轭斜面 剪切破坏
单斜面剪 切破坏
延性破坏
岩石的破坏形式
二. 岩石强度理论
1.最大正应力理论 4.八面体剪应力理论 2.最大正应变理论 3.最大剪应力理论
( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 2 R
现场实验(直接剪切试验) 室内试验(用直接剪切仪直剪和楔形剪切斜剪、用三轴压 缩仪的三轴压缩试验等)。
N / F Pcos f sin / F Q / F Psin f cos / F
楔形剪切仪
σ,τ-剪切面上的正应力和剪应力;F-剪切面面积; α-试验模具的夹角; P-压力机施加的总压力;f-圆柱形滚子与上下盘压板的摩擦系数。
相关文档
最新文档