二叉树

合集下载

二叉树知识点总结

二叉树知识点总结

二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。

对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。

根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。

由此可知,二叉树的深度为所有叶子节点深度的最大值。

1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。

对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。

由此可知,二叉树的高度总是比深度大一。

1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。

而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。

1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。

满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。

1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。

对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。

2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。

二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。

2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。

对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。

2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。

对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。

2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。

《二叉树模型》课件

《二叉树模型》课件

二叉树的分类
01 满二叉树
如果一个二叉树的每个节点都有两个子节点,则 该二叉树称为满二叉树。
02 完全二叉树
如果一个二叉树的最后一层是满的,且除了最后 一层外,其他各层的节点数达到最大,则该二叉 树称为完全二叉树。
03 平衡二叉树
平衡二叉树是一种特殊的完全二叉树,它的左右 子树的高度差不超过1。
二叉树的应用场景
详细描述
在n叉树模型中,每个节点可以拥有任意数 量的子节点,而不仅仅是两个。这种模型在 处理具有多个分支的数据结构时非常有用, 例如决策树和知识图谱。n叉树模型在搜索 、排序和数据压缩等领域有广泛应用。
B树模型
要点一
总结词
B树模型是一种自平衡的多路搜索树,用于数据库和文件系 统的索引。
要点二
详细描述
详细描述
二叉树的插入操作包括节点的添加和位置调整两个步骤。在添加节点时,需要找到合适 的位置将其插入到二叉树中,并保持二叉树的平衡性。位置调整是为了维护二叉树的性
质,确保每个节点的左子树和右子树的高度差不超过1。
插入操作的时间复杂度
总结词
插入操作的时间复杂度取决于具体的实现方式和数据结构。
详细描述
在平衡二叉树中,插入操作的时间复杂度为O(log n),其中n为二叉树中节点的数量。而在一般的二 叉树中,插入操作的时间复杂度可能达到O(n),因为可能需要遍历整棵树才能找到合适的位置插入新 节点。因此,选择合适的二叉树数据结构和算法对于提高插入操作的效率至关重要。
05
二叉树算法的应用
堆排序算法
平衡二叉树的性质:平衡二叉树具有以下性质:1)它的左右子树的高度差不超过1;2)它的左 子树和右子树都是平衡二叉树;3)它的左子树和右子树的节点数相差不超过1。

二叉树概述

二叉树概述
可简写为k=lb(n+1)-1。例如,2.0=2,2.1=3。 若结点个数n=0,则有深度k=-1,满足k=lb(0+1)-1=-1; 若结点个数n=1,则有深度k=0,满足k=lb(1+1)-1=0; 若结点个数n=2,则有深度k=1,满足k=lb(2+1)-1
=0.xx =1; 若结点个数n=3,则有深度k=1,满足k=lb(3+1)-1=1。
二叉树概述
1.二叉树的定义
一、二叉树:是n(n≥0)个结点的有限集合。n=0的树称为空二叉树;n>0的二叉树由 一个根结点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成 。
逻辑结构: 一对二(1:2) 基本特征: ① 每个结点最多只有两棵子树(不存在度大于2的结点); ② 左子树和右子树次序不能颠倒。所以下面是两棵不同的树 注意:二叉树不是有序树
3.二叉树的性质
性质1 在一棵非空二叉树的第i层上至多有2i个结点(i≥0)。
性质2 深度为k的二叉树至多有2k+1-1个结点。 说明:深度k=-1,表示没有一个结点;深度k=0,表示只有一个根结点。
性质3 对于一棵非空的二叉树,如果叶结点个数为n0,度为2的结点数为n2, 则有 n0= n2+1。 证明:设n为二叉树的结点总数,n1为二叉树中度为1的结点个数,则有: n = n0 + n1 + n2
A
B
C
D
E
F
G
H I J K L MN O
A
B
C
D
E
F
G
H IJ
(a)满二叉树
(b)完全二叉树
问题:一个高度为h的完全二叉树最多有多少个结点?最少有多少个结点?

二叉树概念

二叉树概念
自左向右连续给结点编号1, 2, …, n-1,n,然后按此结点编号将 树中各结点顺序地存放于一个一维数组中, 并简称编号为i的结
点为结点i (1 i n)。则有以下关系:

若i = 1, 则 i 无双亲 若i > 1, 则 i 的双亲为i /2 若2*i <= n, 则 i 的左子女为2*i;否则,i无左子女,必定是 页结点,二叉树中i> n/2 的结点必定是页结点 若2*i+1 <= n, 则 i 的右子女为2*i+1,否则,i无右子女
层序遍历二叉树算法的框架是 • 若二叉树为空,则空操作; • 否则,根结点入队,并作为当 前结点。如队列不空,循环: 将当前结点的左右孩子入队; 做出队操作,队首元素作为当 前结点; • 最后,出队序列就是层序遍历 序列 遍历结果
表达式语法树
-+/a*efb- cd
例5-1:在二叉树中查找具有给定值的结点
}
//中序遍历*t的右子树
}
前序遍历算法
PREORDER(bitree *t) { if (t) { printf(“\t%c\n”,t->data); //访问结点*t PREORDER(t->lchild); //前序遍历*t的左子树
PREORDER(t->rchild• • • • • 结点(node) 结点的度(degree) 分支(branch)结点 叶(leaf)结点 子女(child)结点 双亲(parent)结点
结点的子树个数 度不为0的结点 度为0的结点 某结点子树的根结点 某个结点是其子树之根的 双亲
• 兄弟(sibling)结点 • 祖先(ancestor)结点
证明: 1、结点总数为度为0的结点加上度为1的结点再加上度 为2的结点: n = n0 + n1 + n2 2、另一方面,二叉树中一度结点有一个孩子,二 度结 点有二个孩子,根结点不是任何结点的孩子,因此, 结点总数为: n = n1 + 2n2 + 1 3、两式相减,得到: n0 = n2 + 1

基本二叉树知识讲解

基本二叉树知识讲解

基本二叉树知识讲解一、有关二叉树的学习性质1:二叉树上叶子结点数等于度为2的结点数加1。

性质2:二叉树的第i层上至多有2的i次方减1个结点(i>=1)。

性质3:深度为h的二叉树至多有2的h次方减1个结点。

满二叉树:在一棵二叉树中,当第i层的结点树为2的i次方减1个时,称此层的结点数是满的。

当一棵二叉树中的每一层都满时,称此树为满二叉树。

特性:除叶子结点以外的其他的结点的度皆为2,且叶子结点在同一层上。

深度为h的满二叉树中的结点数为2的h次方减1。

性质4:设含有n个结点的完全二叉树的深度为k,则k=(int)(log2n)+1,即深度k等于log2n的整数部分再加1。

二叉树的存储结构1:顺序存储结构二叉树的顺序存储结构类型定义如下:#define TREEMINSIZE 10typedef struct{BTreeDT(数据类型) *base;int spacesize;BTreeDT nullvalue;}SeqTree;2:链式存储结构(一般的二叉树主要采用链式存储结构通常有二叉链表和三叉链表两种形式)1>二叉链表存储结构二叉链表中的每个结点由data,lchild和rchild三个域组成,定义如下:typedef struct bkbtnode{BTreeDT data;struct bkbtnode *lchild;struct bkbtnode *rchild;}BTNode,*BKBTree;在二叉链表中,查找某结点的孩子很容易实现,但查找某结点的双亲不方便。

一棵喊有n个结点的二叉树采用二叉链表存储时,将有2n-(n-1)=n+1个指针域是空的。

2>三叉链表存储结构typedef struct tkbtnode{BTreeDT data;struct tkbtnode *lchild;struct tkbtnode *rchild;struct tkbtnode *parent;}TKBTNode,*TKBTree;其中,parent域存放该结点双亲的指针。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

《二叉树的概念》课件

过程中进行一些特定的操作。
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。

二叉树的几种基本形态

二叉树的几种基本形态二叉树是一种重要的数据结构,在计算机科学和数据结构领域有着广泛的应用。

它由节点和边组成,每个节点最多有两个子节点。

根据节点和边的组合方式,我们可以将二叉树分为几种基本形态。

一、满二叉树满二叉树是指一个二叉树的每个节点都有两个子节点,除了叶子节点。

叶子节点是指没有子节点的节点。

满二叉树是一种特殊的完全二叉树,它的深度为h,节点个数为2^h - 1。

满二叉树具有以下特点:1. 每个节点都有两个子节点,除了叶子节点;2. 所有叶子节点都在同一层;3. 每个非叶子节点都有两个子节点;4. 节点个数为2^h - 1,其中h为深度。

满二叉树的应用非常广泛,例如在堆排序中,堆通常就是满二叉树。

二、完全二叉树完全二叉树是指除了最后一层节点可能不满外,其他层节点都是满的二叉树。

在最后一层,所有的节点都集中在左边。

完全二叉树具有以下特点:1. 最后一层的节点都集中在左边;2. 其他层节点都是满的;3. 如果一个节点有右子节点,则一定有左子节点;4. 节点个数最少为2^(h-1),最多为2^h - 1,其中h为深度。

完全二叉树的应用也非常广泛,例如在二叉堆中,堆通常就是完全二叉树。

三、二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中所有节点的值都小于根节点的值,右子树中所有节点的值都大于根节点的值。

同样的规则也适用于每个子树。

二叉搜索树具有以下特点:1. 左子树中所有节点的值都小于根节点的值;2. 右子树中所有节点的值都大于根节点的值;3. 每个子树都符合上述规则;4. 不存在相同节点。

二叉搜索树的应用也非常广泛,例如在数据库中,索引通常就是基于二叉搜索树实现的。

四、平衡二叉树平衡二叉树也称为AVL树,它是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。

这种平衡可以保证二叉树的查找、插入、删除等操作的时间复杂度都是O(log n)。

平衡二叉树具有以下特点:1. 左子树和右子树的高度差不超过1;2. 每个子树都符合上述规则;3. 它是一种特殊的二叉搜索树。

二叉树

平衡树——特点:所有结点左右子树深度差≤1排序树——特点:所有结点―左小右大字典树——由字符串构成的二叉排序树判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重)带权树——特点:路径带权值(例如长度)最优树——是带权路径长度最短的树,又称Huffman树,用途之一是通信中的压缩编码。

1.1 二叉排序树:或是一棵空树;或者是具有如下性质的非空二叉树:(1)若左子树不为空,左子树的所有结点的值均小于根的值;(2)若右子树不为空,右子树的所有结点均大于根的值;(3)它的左右子树也分别为二叉排序树。

例:二叉排序树如图9.7:二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。

中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。

每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。

搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.2.2 二叉排序树b中查找在二叉排序树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。

[cpp]view plaincopyprint?1.Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){2. //在根指针T所指二叉排序樹中递归地查找其关键字等于key的数据元素,若查找成功,3. //则指针p指向该数据元素节点,并返回TRUE,否则指针P指向查找路径上访问的4. //最好一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL5. if(!T){ p=f; return FALSE;} //查找不成功6. else if EQ(key, T->data.key) {P=T; return TRUE;} //查找成功7. else if LT(key,T->data.key)8. return SearchBST(T->lchild, key, T, p); //在左子树继续查找9. else return SearchBST(T->rchild, key, T, p); //在右子树继续查找10.}2.3 在二叉排序树插入结点的算法向一个二叉排序树b中插入一个结点s的算法,过程为:1. 若b是空树,则将s所指结点作为根结点插入,否则:2. 若s->data等于b的根结点的数据域之值,则返回,否则:3. 若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:4. 把s所指结点插入到右子树中。

二 叉 树


下图是1.2中所示的完全二叉树的顺序存储示意图。
例如,bt[3]
3=/12, 即在bt[1]中,其左
孩子在bt[2i]=bt[6]中,右孩子在bt[2i+1]=bt[7]中。
目录
二 叉 树
2)一般二叉树的顺序存储 一般的二叉树采取的办法是按完全二叉树的形式补齐 二叉树所缺少的结点,对补齐后的二叉树进行编号,将二 叉树的原有结点按编号存储到一维数组中。 下图给出了一棵一般二叉树改造后的完全二叉树形态 和其顺序存储状态示意图。
目录
二 叉 树
2021年1月30日星期六
性质3 对于一棵非空的二叉树,如果叶子结点数 为n0,度数为2的结点数为n2,则有n0=n2+1。
性质4 具有n个结点的完全二叉树的深度k log2n +1。
性质5 对于具有n个结点的完全二叉树,如果按照 」 从上到下和从左到右的顺序对二叉树中的所有结点从1
则ki无左孩子结点,即ki是叶子结点。因此完全二叉
树中编号i> n / 2 的结点必定是叶子结点。 (3)若2i+1≤n,则ki的右孩子结点编号是2i+1;
否则ki无右孩子结点。
目录
二 叉 树
2021年1月30日星期六
可用一维数组bt[]存放一棵完全二叉树,将标号 为i的结点的数据元素存放在分量bt[i]中,bt[0]不 用或用来存储结点数目。
typedef struct BiTNode { // 结点结构
ElemType data;
2021年1月30日星期六
目录
二 叉 树
二叉树、树及有序树是有区别的,二叉树不是树的特 例,主要差别在于二叉树的子树有左右之分。
在有序树中,虽然一个结点的孩子之间是有左右次序 的,但若该结点只有一个孩子时,就无须区分其左右次序。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一种方法,就是利用递归的方法,按层进行打印,我们把根节点当做第0层,之后层次依次增加,如果我们想打印第二层怎么办呢,利用递归的代码如下:
1.int print_at_level(Tree T, int level) {
2.if (!T || level < 0)
3.return 0;
4.if (0 == level) {
5.cout << T->data << " ";
6.return 1;
7.}
8.return print_at_level(T->lchild, level - 1) + pri
nt_at_level(T->rchild, level - 1);
9.}
第二种方法:我们可以设置两个队列,想象一下队列的特点,就是先进先出,首先把第0层保存在一个队列中,然后按节点访问,并把已经访问节点的左右孩子节点放在第二个队列中,当第一个队列中的所有节点都访问完成之后,交换两个节点
1.void print_by_level_2(Tree T) {
2.deque<tree_node_t*> q_first, q_second;
3.q_first.push_back(T);
4.while(!q_first.empty()) {
5.while (!q_first.empty()) {
6.tree_node_t *temp = q_first.front();
7.q_first.pop_front();
8.cout << temp->data << " ";
9.if (temp->lchild)
10. q_second.push_back(temp->lchild
);
11. if (temp->rchild)
12. q_second.push_back(temp->rchild
);
13. }
14. cout << endl;
15. q_first.swap(q_second);
16. }
17.}
第三种方法就是设置双指针,一个指向访问当层开始的节点,一个指向访问当层结束节点的下一个位置:
这是第一层访问的情况,当访问第0层之后的结构如下,把第0层的所有子节点加入之后:
访问完第1层之后:
完整代码如下:
ing namespace std;
2.
3.typedef struct tree_node_s {
4.char data;
5.struct tree_node_s *lchild;
6.struct tree_node_s *rchild;
7.}tree_node_t, *Tree;
8.
9.void create_tree(Tree *T) {
10. char c = getchar();
11. if (c == '#') {
12. *T = NULL;
13. } else {
14. *T = (tree_node_t*)malloc(sizeof(tree_node_t)
);
15. (*T)->data = c;
16. create_tree(&(*T)->lchild);
17. create_tree(&(*T)->rchild);
18. }
19.}
20.
21.void print_tree(Tree T) {
22. if (T) {
23. cout << T->data << " ";
24. print_tree(T->lchild);
25. print_tree(T->rchild);
26. }
27.}
28.int print_at_level(Tree T, int level) {
29. if (!T || level < 0)
30. return 0;
31. if (0 == level) {
32. cout << T->data << " ";
33. return 1;
34. }
35. return print_at_level(T->lchild, level - 1) + pri
nt_at_level(T->rchild, level - 1);
36.}
37.
38.void print_by_level_1(Tree T) {
39. int i = 0;
40. for (i = 0; ; i++) {
41. if (!print_at_level(T, i))
42. break;
43. }
44. cout << endl;
45.}
46.
47.void print_by_level_2(Tree T) {
48. deque<tree_node_t*> q_first, q_second;
49. q_first.push_back(T);
50. while(!q_first.empty()) {
51. while (!q_first.empty()) {
52. tree_node_t *temp = q_first.front();
53. q_first.pop_front();
54. cout << temp->data << " ";
55. if (temp->lchild)
56. q_second.push_back(temp->lchild
);
57. if (temp->rchild)
58. q_second.push_back(temp->rchild
);
59. }
60. cout << endl;
61. q_first.swap(q_second);
62. }
63.}
64.
65.void print_by_level_3(Tree T) {
66. vector<tree_node_t*> vec;
67. vec.push_back(T);
68. int cur = 0;
69. int end = 1;
70. while (cur < vec.size()) {
71. end = vec.size();
72. while (cur < end) {
73. cout << vec[cur]->data << " ";
74. if (vec[cur]->lchild)
75. vec.push_back(vec[cur]->lchild)
;
76. if (vec[cur]->rchild)
77. vec.push_back(vec[cur]->rchild)
;
78. cur++;
79. }
80. cout << endl;
81. }
82.}
83.
84.int main(int argc, char *argv[]) {
85. Tree T = NULL;
86. create_tree(&T);
87. print_tree(T);
88. cout << endl;
89. print_by_level_3(T);
90. cin.get();
91. cin.get();
92. return 0;
93.}。

相关文档
最新文档