X射线光电子能谱分析
X射线光电子能谱分析

X射线光电子能谱分析(X-ray photoelectron spectroscopy analysis)1887年,Heinrich Rudolf Hertz发现了光电效应。
二十年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系。
待测物受X光照射后内部电子吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。
XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。
被光子激发出来的电子称为光电子。
可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。
从而获得试样有关信息。
X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。
其主要应用:1,元素的定性分析。
可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。
2,元素的定量分析。
根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度。
3,固体表面分析。
包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等。
4,化合物的结构。
可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息。
5,分子生物学中的应用。
Ex:利用XPS鉴定维生素B12中的少量的Co。
应用举例:1.确定金属氧化物表面膜中金属原子的氧化状态;2.鉴别表面石墨或碳化物的碳;(一)X光电子能谱分析的基本原理:X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。
该过程可用下式表示:hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。
X射线光电子能谱分析方法及原理(XPS)

半导体工业
晶体缺陷分析、界面性质研究 等。
环境科学
大气污染物分析、土壤污染研 究等。
X射线光电子能谱分析的优缺点
1 优点
提供元素化学状态信息、非破坏性分析、高表面敏感性。
2 ห้องสมุดไป่ตู้点
样品需真空处理、分析深度有限、昂贵的设备和维护成本。
总结和展望
X射线光电子能谱分析是研究材料表面的有力工具。未来,随着仪器和技术的 不断进步,XPS将在更多领域发挥重要作用。
X射线光电子能谱分析方 法及原理(XPS)
X射线光电子能谱分析(XPS)是一种表面分析技术,通过测量材料的X射线光 电子能谱来研究材料的电子结构和化学组成。
X射线光电子能谱分析的基本 原理
XPS基于光电效应,探测材料与X射线相互作用所放出的光电子。通过测量光 电子能量和强度,可以推断材料表面元素的化学态。
X射线光电子能谱分析的仪器和实验设备
XPS仪器
包含X射线源、光电子能谱仪 和数据处理系统。
电子枪
产生高能电子束,用于激发材 料表面。
光电子能谱仪
测量光电子的能量和角度,用 于分析材料的电子结构。
X射线光电子能谱分析的样品准备方法
1 表面清洗
去除杂质和氧化层,以确保准确测量。
2 真空处理
在超高真空条件下进行实验,避免气体影响。
3 固定样品
使用样品架或夹具将样品固定在仪器中。
X射线光电子能谱分析的数据处理和解 析方法
峰面积计算
根据光电子峰的面积计算元素含量。
能级分析
通过分析光电子的能级分布,推断材料的化学状态。
谱峰拟合
将实验谱峰与已知标准进行拟合,确定元素的化学态和含量。
X射线光电子能谱分析的应用领域
X射线光电子能谱分析法

X射线光电子能谱分析法X射线光电子能谱分析法(XPS)是一种常用的表面分析技术,它通过测量材料表面的X射线光电子能谱来研究材料的化学组成、表面形貌以及表面电子结构等信息。
XPS技术具有高表面分辨率、高化学分辨率和宽能量范围等优点,被广泛应用于材料科学、表面科学和界面科学等领域。
下面将详细介绍XPS的原理、仪器结构、测量步骤以及应用。
XPS的原理:XPS基于光电效应,即当光子与物质相互作用时,能够使物质中的电子获得足够的能量从而被抛出。
通过测量被抛出的光电子的能量以及其强度,可以得到材料表面的各种信息。
XPS谱图由两个平行的轴表示,一个是电子能量轴,用来表示光电子的能量,另一个是计数轴,用来表示光电子的强度。
XPS的仪器结构:XPS的典型仪器结构包括光源、透镜系统、分析室、光电子能谱仪、多道分析器和检测器等部分。
其中,光源产生具有特定能量和强度的X射线,透镜系统用于聚焦X射线到样品表面,分析室用于保持真空环境,并可进行样品的表面清洁和预处理,光电子能谱仪用于测量光电子能谱,多道分析器用于对光电子的能量进行分析,检测器用于测量光电子的强度。
XPS的测量步骤:1.样品表面处理:对于有机材料,样品表面可能存在有机污染物,需要通过加热或离子轰击等方法进行表面清洁。
对于无机材料,一般不需要进行表面处理。
2.真空抽取:将样品放入真空室中,并进行抽取,以保证测量时的真空环境。
3.光源和透镜系统调节:调节光源的能量和透镜系统的聚焦,使其能够产生精确的X射线束。
4.测量样品表面:将样品置于X射线束中,测量样品表面的X射线光电子能谱。
5.数据分析:对测量得到的光电子能谱进行分析,得到材料的化学组成、表面形貌以及表面电子结构等信息。
XPS的应用:1.表面化学组成分析:XPS可以确定材料表面的元素组成和化学状态,对于催化剂、薄膜材料等具有重要意义。
2.表面形貌研究:通过测量不同位置的XPS谱图,可以了解材料表面的形貌特征,如晶体结构、晶粒尺寸等。
X射线光电子能谱分析

X射线光电子能谱分析X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)是现代表面分析技术中的一种重要手段。
它通过利用X射线入射在样品表面,当X射线光子与样品表面原子相互作用时,光电子会由样品表面发射出来,在光电子能谱仪中被探测和分析。
XPS可以获得试样的化学组成、化学状态、电荷状态、表面价态等信息,是研究材料界面、表面电子结构和化学活性等问题的有效手段。
一、XPS原理XPS的工作原理基于电子的能量损失。
当单色X射线光子与样品表面发生相互作用时,光子会被表面原子中的一个或多个电子吸收,从而将其能量转移给被激发的电子,将其从价层挪到离子层。
这些被激发的电子称为光电子(photoelectrons),它们遵循能量守恒定律,其动能与入射X射线能量之差等于与样品表面接触的电子势垒(即逸出功)。
二、XPS仪器及实验流程XPS实验仪器由准直系统、透镜和光学系统、交变极化源、能量分辨系统和探测器等部分组成。
实验流程主要包括样品表面清洗、样品加载、真空抽气和光子能谱仪调试等步骤。
在实际实验中,需要对仪器进行校准,然后利用X射线束斑轨迹扫描测量样品的光电子能谱,分析得到有关样品表面化学状态和组分的信息。
三、XPS数据处理和解析对于XPS实验中得到的光电子能谱进行数据处理和解析,包括去噪、基线修正、能峰积分、峰位转换和峰型拟合等。
常见的XPS光电子峰是由不同价态原子轨道势能引起的能级分裂和化学键形成导致的电子态密度变化引起的能级位移等。
通过对峰的形状和位置进行拟合,可以得到样品中化学元素的表面分布和含量,以及化学键的结果和壳层电子转移等信息。
四、XPS应用领域XPS在材料科学、表面物理和化学等领域有广泛的应用。
在表面和界面科学中,XPS可以用于研究材料表面结构、表面吸附反应、薄膜生长和界面电子结构等。
在电化学和电子器件领域,XPS可以用于研究材料电子结构、光伏材料表面化学性质以及界面反应等。
X射线光电子能谱

光电子 (e-)
X射线 (h)
与电子所在壳层的平均半径r,入射光子的频率和受激原子的原子序数Z有关。 一般来说,在入射光子的能量一定的情况下: 1、同一原子中半径越小的壳层,光电效应截面越大;电子结合能与入射光子的 能量越接近,光电效应截面越大。 2、不同原子中同一壳层的电子,原子序数越大,光电效应截面越大。
h A A*, e
光电子 (e-)
X射线 (h)
在某些情况下,还会引起俄歇电子的发 射。(为什么?)俄歇电子发射对于材 料的结构分析很有用处。
X射线光电子能谱分析的基本原理
1、光电效应(光致发射或者光电离):
当光子与材料相互作用时,从原子中各 个能级发射出的光电子的数目是不同的, 有一定的几率。光电效应的几率用光电 截面表示,定义为某能级的电子对入 射光子的有效能量转移面积,或者一定 能量的光子从某个能级激发出一个光电 子的几率。
Eb h Ek
对于固体材料,电子的结合能定义为把电子从所在的能级转移到费米能级(0K 时固体能带中充满电子的最高能级)所需要的能量。另外,固体中电子从费米能 级跃迁到自由电子能级(真空能级)所需要的能量成为逸出功,即功函数。所以, 入射光子的能量h分为三部分:电子结合能Eb,逸出功Ws,自由电子的动能Ek。 所以:
另外,原子中的电子既有轨道运动又有自旋运动。它们之间存在着耦合(电磁相
互)作用,使得能级发生分裂。对于 >0的内壳层,这种分裂可以用内量子数j来
表示。其数值为:
j
l ms
l
1 2
所以:对于 =0,j=1/2。对于 >0,则j= +½或者 -½。也就是说,除了s能 级不发生分裂外,其他能级均分裂为两个能级:在XPS谱图中出现双峰。
X射线光电子能谱分析

8.2.2 振动精细结构
对于同一电子能级, 对于同一电子能级,分子还可能有许多不同的 振动能级, 振动能级,因此实际测得的紫外光电子能谱图既 有结合能峰,又有振动精细结构。 有结合能峰,又有振动精细结构。
Ek = hv − I
光 电 子 动 能 入 射 光 子 能 量 绝 热 电 离 能
(a) n
§8.4
俄歇电子能谱(AES) 俄歇电子能谱(AES)
•1925年法国的物理学家俄歇(P.Auger)在用X射线研究光 1925年法国的物理学家俄歇( 1925年法国的物理学家俄歇 )在用X 电效应时就已发现俄歇电子,并对现象给予了正确的解释。 电效应时就已发现俄歇电子,并对现象给予了正确的解释。 •1968年L.A.Harris采用微分电子线路,使俄歇电子能谱开始 1968年 采用微分电子线路, 1968 采用微分电子线路 进入实用阶段。 进入实用阶段。 •1969年,Palmberg、Bohn和Tracey引进了筒镜能量分析器, 1969年 Palmberg、Bohn和Tracey引进了筒镜能量分析器 引进了筒镜能量分析器, 1969 提高了灵敏度和分析速度,使俄歇电子能谱被广泛应用。 提高了灵敏度和分析速度,使俄歇电子能谱被广泛应用。
hv = Ek + Eb +φ
0k时固体能带中充 0k时固体能带中充 满电子的最高能级
功函数
为防止样品上正电荷积累, 为防止样品上正电荷积累,固体样品必须保持 和谱仪的良好电接触,两者费米能级一致。 和谱仪的良好电接触,两者费米能级一致。 实际测到的电子动能为: 实际测到的电子动能为:
' Ek = Ek −(φsp −φs )
俄歇电子能谱的基本机理是:入射电子束或X 俄歇电子能谱的基本机理是:入射电子束或X射 线使原子内层能级电子电离, 线使原子内层能级电子电离,外层电子产生无辐 射俄歇跃迁,发射俄歇电子, 射俄歇跃迁,发射俄歇电子,用电子能谱仪在真 空中对它们进行探测。 空中对它们进行探测。
X射线光电子能谱分析法

X射线光电子能谱分析法X射线光电子能谱分析法(X-ray photoelectron spectroscopy,XPS)是一种非常重要的表面分析技术,广泛应用于材料科学、化学、表面物理、生物技术和环境科学等领域。
本文将对X射线光电子能谱分析法进行详细介绍,包括基本原理、仪器分析系统和应用领域。
一、基本原理X射线光电子能谱分析法是利用X射线照射固体表面,使其产生光电子信号,并通过测量光电子的动能和数量,来确定样品表面的化学成分及其状态。
其主要基于光电效应(photoelectric effect)和X射线物理过程。
光电效应是指当光子入射到固体物质表面的时候,会将表面电子激发到导带或导带以上的能级上,并逃离固体形成受激电子。
这些逃逸的电子称为光电子,其动能与入射光子的能量有关。
X射线物理过程主要包括光子的透射、散射和与原子内电子的相互作用等。
当X射线入射到固体表面时,会发生漫反射和荧光特性,造成信号的背景噪声。
同时,X射线的能量足够高,可以与样品的内层电子发生作用,如光电子相对能谱(Photoelectron RELative Energies)和化学平移分量(Chemical Shift)等。
二、仪器分析系统X射线光电子能谱分析系统包括光源、样品室、分析仪和检测器等。
光源常用的是具有较窄X射线能谱线宽的准单色X射线源,如AlKα线或MgKα线。
样品室的真空度一般要达到10^-8Pa左右,以避免空气对样品的干扰。
分析仪是用于测量光电子动能和数量的关键部件,常见的配备有放大器、电子能谱仪和角度分辨收集器等。
放大器将来自检测器的信号放大,并进行滤波处理以滤除高频噪声。
电子能谱仪是用于测量光电子动能的装置,一般包括一个径向入射、自由运动的光电子束和一个动能分析系统。
角度分辨收集器则用于测量光电子的角度分布。
检测器用于测量光电子的数量,常见的有多种类型的二极管(如能量分辨二极管和多道分析器)和面向瞬态X射线源的时间分辨仪器。
X射线光电子能谱分析

X射线光电子能谱分析X射线光电子能谱分析(X-ray photoelectron spectroscopy,简称XPS)是一种用来表征材料表面元素化学状态和电子能级分布的表征技术。
它利用X射线照射材料表面,测量和分析材料表面光电子的能谱,通过分析能谱图可以得到有关材料的化学组成、表面化学键的种类和键长、元素的电子与核心电子之间的相互作用等信息。
本文将对X射线光电子能谱分析技术的原理、仪器设备及应用领域进行详细介绍。
X射线光电子能谱分析的原理可以用以下几个步骤来概括:首先,用X射线照射材料表面,激发材料表面的原子和分子。
然后,从激发的原子和分子中发射出光电子。
这些光电子的能量与产生它们的原子或分子的能级差有关。
最后,测量和分析这些光电子的能谱,从而得到材料表面的化学组成和电子能级分布信息。
为了进行X射线光电子能谱分析,需要使用专门的仪器设备,包括X射线源、能量分辨光电子能谱仪和电子能谱仪。
X射线源通常使用非常亮的单晶或多晶X射线管。
光电子能谱仪用来测量光电子的能谱,并将所获得的信号转化为能谱图。
电子能谱仪则用来检测、放大和记录电子能谱图。
X射线光电子能谱分析可以在多个领域应用,具有广泛的研究意义和实际应用价值。
在材料科学领域,它可以用来表征材料表面的成分和化学状态,研究材料的性质和行为;在表面科学领域,它可以研究表面的形貌和变化,探索表面的特性和反应;在催化剂和材料化学领域,它可以分析催化剂的表面状态和反应过程;在电子器件和光学器件领域,它可以研究界面和界面化学反应的机理等。
总结起来,X射线光电子能谱分析是一种非常重要的表征技术,可以提供关于材料表面的成分、化学状态和电子能级分布等信息。
通过XPS技术,可以探索材料的性质、表面的形貌以及材料的化学反应机理等,对于材料科学、表面科学、催化剂和电子光学器件等领域的研究和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
副量子数L表示原子轨道的形状。L=0时 (称s轨道),其原子轨道呈球形分布 (图4-5);l=1时(称p轨道),其原子 轨道呈哑铃形分布(图4-6)
(三)磁量子数m 磁量子数m决定原子轨道在空间的伸展方向。当副量子数l给定 时,m的取值为从-l到+l之间的一切整数(包括0在内),共有 2L+1个取值,原子轨道在空间有2l+1个伸展方向。 (四)自旋量子数ms 原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动 。电子的自旋运动用自旋量子数ms表示。ms 有两个值+1/2和1/2。只有两个方向,即顺/逆时针方向。通常用“↑”和“↓”表 示
§7.1 电子能谱的基本原理
基本原理就是光电效应。 在高于某特定频率的电磁波照射下,物质内部的电 子会被光子激发出来即光生电。
自由原子的光电效应能量关系
hv Ek Eb
对孤立原子或分子, Eb 就是把
电子从所在轨道移到真空需的 能量,是以真空能级为能量零 点的。
对固体样品,必须考虑晶体势场和表面势场对光电子 的束缚作用,通常选取费米(Fermi)能级为参考点。
光电子或俄歇电 倍增器 子流 10-13 ~ 10-9 A
10-4 ~ 1A
通道电子倍增器是 一种采用连续倍增电极 表面(管状通道内壁涂 一层高阻抗材料的薄膜) 静电器件。内壁具有二 次发射性能。电子进入 器件后在通道内连续倍 增,增益可达 109 。
多通道检测器是由多 个微型单通道电子倍 增器组合在一起而制 成的一种大面积检测 器,也称位敏检测器 (PSD)或多阵列检 测器。
F.电子的振激与振离谱线
(一)振离谱线。振离是一种多重电离过程。原 子的一个内层电子电离而发射,导致一个外层 电子电离。光电子能量被原子吸收,在图谱主 光电子峰附近出现连续谱线。
(二)振激谱线。过程与振离相似,所不同的是 价壳层电子跃迁到更高级束缚态。结果在谱图 主光电子峰的低动能端分离的伴峰。判断顺磁 反磁、键的共价性、几何构型等化学性质。
能量分析器
电子能量分析器其作用是探测样品发射出来的不同 能量电子的相对强度。它必须在高真空条件下工作 即压力要低于10-3帕,以便尽量减少电子与分析器 中残余气体分子碰撞的几率。
半球形电子能量分析器
半球形分析器示意图
筒镜形电子能量分析器
筒镜分析器示意图
检测器
检测器通常为单通道电子倍增器和多通道倍增器
真空系统
电子能谱仪的真空系统有两个基本功能。
1、使样品室和分析器 保持一定的真空度, 以便使样品发射出来 的电子的平均自由程 相对于谱仪的内部尺 寸足够大,减少电子 在运动过程中同残留 气体分子发生碰撞而 损失信号强度。
2、降低活性残余气体的 分压。因在记录谱图所必 需的时间内,残留气体会 吸附到样品表面上,甚至 有可能和样品发生化学反 应,从而影响电子从样品 表面上发射并产生外来干 扰谱线。
样品处理
电子能谱仪原则上可以分析固体、气体和液体样品。
气体
气 化
液体
冷 冻
固体
采用差分抽气的方法把气体 引进样品室直接进行测定
校正或消除样 品的荷电效应
块状:直接夹在或粘在 样品托上在样品托上; 粉末:可以粘在双面胶 带上或压入铟箔(或金 属网)内,也可以压成 片再固定在样品托上。
电中和法、 内标法和 外标法
另外,能级由于自旋-轨道偶合发生分裂,用内量子数j来表征。 j=|l+ms |
电子能谱中用主量子数n,角量子数l,内量子数j三个量子数来 表征。如3d5/2,三层,角量子数为2(d层),内量子数2+1/2=5/2 ,通常省略1/2。
原子结构
原子能级划分
§7.2 X射线光电子能谱(XPS)
由于各种原子轨道中电子的结合能是一定的,因此
EY(Z+Δ):Y电子电离所需的能量。
Φ-功函数
俄歇过程和俄歇电子能量
WXY跃迁产生的俄歇 电子的动能可近似地 用经验公式估算,即
:EWXY EW (Z) EX (Z)
EY (Z )
原子序数
功
函
实验值在
1 2
和
ቤተ መጻሕፍቲ ባይዱ
3 之间
4
数
俄歇电子
WXY俄歇过程示意图
§7.5 电子能谱仪简介
电子能谱仪主要由激发源、电子能量分析器、 探测电子的监测器和真空系统等几个部分组成。
XPS 可用来测定固体表面的化学成分。
化学位移鉴定化学状态
Ni-P合金的Ni 2p3/2 XPS谱
较
高
氧
金属态的镍Ni
化
态
的
镍
Ni3+
a 清洁表面; b 1barO2、403K氧化1小时
7.3 XPS谱图中谱线
XPS光电子线及伴线 A.光电子线:在图谱中明显而尖锐的谱峰。强度最大,峰
宽最小,对称性最好。称为主峰-元素定性分析主要依 据。
XPS 是用X射线光子激发原子的内层电子发生电 离,产生光电子,这些内层能级的结合能对特定 的元素具有特定的值,因此通过测定电子的结合 能和谱峰强度,可鉴定除H和He(因为它们没有 内层能级)之外的全部元素以及元素的定量分析。
得出某个元素所占有原子分数,对照灵敏度因子数据表。
D.多重分裂:原子电离后空位与自旋电子发生偶合,得 到不同终态,相应每一个终态,在图谱上将有一条谱 线。
配位体相同时,多重分裂与未成对电子数正相关。多重 分裂谱线能量差与配位体离子电负性相关,可以用于 判断价态。
E.能量损失谱线:光电子穿过样品表面时, 同原子间发生非弹性碰撞、损失能量后 在图谱上出现的伴峰。
(1)真空加热; (2)氩离子刻蚀。
§7.6 应用举例
电子能谱目前主要应用于催化、金属腐蚀、粘合、 电极过程和半导体材料与器件等这样一些极有应用 价值的领域,探索固体表面的组成、形貌、结构、 化学状态、电子结构和表面键合等信息。随着时间 的推移,电子能谱的应用范围和程度将会越来越广 泛,越来越深入。
核外电子的运动状态
电子在原子中的运动状态,可n,L,m,ms四个量子数来描述。 (一)主量子数n 主量子数n决定电子层数的。对单电子原子来说,n值愈大,电子 的能量愈高。
(二)角量子数(副量子数) 物理意义是表示原子轨道的形状。另一个物理意义是表示同一电 子层中具有不同状态的亚层。 当主量子数n给定时,L可取值为0,1,2,3…(n-1)。在每一 个主量子数n中,有n个副量子数,其最大值为n-1。按光谱学上的 习惯l用s,p,d,f等符号表示。
Eb
0k时固体能带中充 满电子的最高能级
hv Ek Eb 功函数
为防止样品上正电荷积累,固体样品必须保持和谱仪的良 好电接触,两者费米能级一致。样品与仪器触电电位差。
实际测到的电子动能为:
Ek' Ek (sp s ) hv Eb sp
Eb hv Ek' sp
仪器功函数
hv Ek Eb 功函数
第七章 电子能谱
X-射线光电子能谱仪,是一种表面分析技术, 主要用来表征材料表面元素及其化学状态。 基本原理:使用X-射线与样品表面相互作用, 利用光电效应,激发样品表面发射光电子, 利用能量分析器,测量光电子动能, 根据BE.bE=hhvv-KE.k' E-Ws.p F进而得到激发电子的结合能。
我们就是为了得到样品的结合能!
B.俄歇线:俄歇电子形成的谱线。 俄歇谱线的表示:LMM俄歇电子是L层电子被激发,M
层电子填充到L层,释放的能量又使另一个M层电子激 发所形成的俄歇电子。
C.X射线卫星线:X射线并非单色,阳极材料原子产生荧光 X线射激线发效的应光,电这子些形射成线X统射称线K卫α星1,2X峰射。线表的现卫图星谱线,。在卫主星光 电子线的低结合能或高结合能端较小的卫星峰。
G.鬼线:难以解释的光电子线。来源 阳极靶材杂质元素,窗口材料等。
§7.4 俄歇电子能谱(AES)
俄歇电子能谱的基本机理是:入射电子束或X射线使原子内层能级 电子电离,外层电子产生无辐射俄歇跃迁,发射俄歇电子,用电子 能谱仪在真空中对它们进行探测。
能量公式 对于原子序数为Z的原子,俄歇电子的能量可以用下面经验公式计算: EWXY(Z)=EW(Z)-EX(Z)-EY(Z+ Δ)-Φ 式中, EWXY(Z):原子序数为Z的原子,W空穴被X电子填充得到 的俄歇电子Y的能量。 EW(Z)-EX(Z):X电子填充W空穴时释放的能量。