专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积
高中数学《空间几何体的三视图、表面积和体积》课件

A.158 C.182
B.162 D.324
27
(2)(2019·天津卷)已知四棱锥的底面是边长为 2的正方形,侧棱长均为 5.若圆柱的一个 底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该 圆柱的体积为________. 解析 (1)由三视图可知,该柱体是一个直五棱柱,如图,棱柱 的高为6,底面可以看作由两个直角梯形组合而成,其中一个 上底为4,下底为6,高为3,另一个的上底为2,下底为6,高 为3.
6
所以 PA⊥PC,即 PA,PB,PC 两两垂直,以 PA,PB,PC 为从同一顶点出发的三条棱 补成正方体.因为 AB=2,所以该正方体的棱长为 2,所以该正方体的体对角线长为 6, 故三棱锥 P-ABC 的外接球的半径 R= 26,所以球 O 的体积 V=43πR3=43π 263= 6π, 故选 D.
答案
(1)40
1 (2)3
34
热点三 多面体与球的切、接问题
【例3】 (1)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,
BC=8,AA1=3,则V的最大值是( )
A.4π
B.92π
C.6π
D.323π
(2)(多填题)(2019·湖南师大附中调研)在《九章算术》中,将底面为矩形且有一条侧棱与
(2)因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故 该几何体为三棱锥.故选A. 答案 (1)C (2)A
文科数学2010-2019高考真题分类训练专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积

专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C −的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D −挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D −的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.B.C.3D.23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D−中,2AB BC==,1AC与平面11BB C C所成的角为30︒,则该长方体的体积为A.8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC −体积的最大值为 A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图侧视图正视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .133+ C .136π+ D .16+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .2+C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为 (材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
8.1 空间几何体的三视图、表面积和体积(讲解部分)

考点清单
考点一 简单几何体的结构特征、三视图和直观图
考向基础
1.多面体的结构特征
名称
棱柱
棱锥
棱台
结构 特征
侧棱
侧面形状
有两个面平行且全等,其余各个 有一个面(底面)是多边
面都是四边形;每相邻两个四边 形,其余各面是有一个
形的公共边都互相平行
公共顶点的三角形
有两个面平行且相似, 其余各面都是梯形
栏目索引
例2 (2018浙江新高考调研卷一(诸暨中学),3)如图所示,半径为2,圆心角 为 2π 的扇形是一个圆锥的侧面展开图,则该圆锥的体积是 ( )
3
A.16 2 π
27
解题导引
B.16 2 π
81
C. 4 π
3
D. 4 2 π
3
栏目索引
解析 圆锥的底面圆周长等于扇形的弧长 4π ,所以圆锥的底面半径为 2 ,高
柱体 锥体
台体
球
V柱体=Sh,V圆柱=πr2h
1
V锥体= 3Sh,V圆锥= 1πr2h
3
1
V台体= 3(S+
SS'
+S')h,V圆台=
1π(r2+rr'+r'2)h
3
4
V球= 3πR3(R为球半径)
注意 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已 知体积公式的几何体进行解决. (2)求与三视图有关的体积问题注意几何体和数据还原的准确性.
例1 (2019浙江高考信息优化卷(四),11)某四棱锥的三视图如图所示,在此
四棱锥的四个侧面中,直角三角形的个数为
,体积是
.
高考微点八 空间几何体的三视图、表面积与体积

高考微点八空间几何体的三视图、表面积与体积牢记概念公式,避免卡壳空间几何体的表面积与体积公式几何体名称表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球4πR243πR31.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.长方体的对角线与共点三条棱之间的长度关系为d2=a2+b2+c2;长方体外接球半径为R时,有(2R)2=a2+b2+c2.3.棱长为a的正四面体内切球半径r=612a,外接球半径R=64a.高效微点训练,完美升级1.(2019·临沂模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.答案 A2.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(注:1丈=10尺,1尺=10寸,1斛≈1.62立方尺,圆周率取3),则圆柱底面圆周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺解析由题意,圆柱形谷仓的高h=10+3+110×⎝⎛⎭⎪⎫3+13=403(尺),体积V≈2000×1.62=3 240(立方尺).设圆柱的底面半径为R尺,由体积公式得πR2×403≈3240,得3R2×403≈3 240,解得R2≈81,故R≈9,所以底面圆周长C=2πR≈2×3×9=54(尺),即5丈4尺.答案 B3.如图是棱长为2的正方体的表面展开图,则多面体ABCDE的体积为()A.2B.2 3C.43 D.83解析多面体ABCDE为四棱锥(如图),利用割补法可得其体积V=4-43=83.答案 D4.若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比为( ) A.2∶2 B.3∶2 C.5∶2D.3∶2解析 设圆锥底面半径为r ,高为h ,则球的半径R =r2, 由条件知,13πr 2h =43π⎝ ⎛⎭⎪⎫r 23,所以h =r2.所以圆锥的侧面积S 1=πr ·h 2+r 2=πrr 24+r 2=52πr 2,球面面积S 2=4πR 2=4π×⎝ ⎛⎭⎪⎫r 22=πr 2,所以S 1∶S 2=5∶2. 答案 C5.(2019·衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是边长为2的等腰直角三角形,故几何体体积V =23-12×2×2×1=6.答案 A6.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+22C.2+22D.1+ 2解析 恢复后的原图形为一直角梯形, 所以S =12(1+2+1)×2=2+ 2. 答案 A7.如图所示,正四棱锥P -ABCD 底面的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,点P 在球面上,若V P -ABCD =163,则球O 的表面积是( )A.4πB.8πC.12πD.16π解析 由OP =OC =R ,AB =2R ,得13AB 2·OP =13×(2R )2×R =163,所以R =2. ∴S 球=4πR 2=16π. 答案 D8.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3.答案 C9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=12.∴底面圆半径r=AM=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B10.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为( )A.41B.34C.5D.3 2解析 由三视图可知该几何体为如图所示的四棱锥P -ABCD .其中P A ⊥底面ABCD ,四棱锥P -ABCD 的底面是边长为3的正方形,高P A =4. 连接AC ,易知最长的棱为PC ,且PC =P A 2+AC 2=42+32+32=34.答案 B11.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 答案712.正四棱锥的底面边长为2,侧棱长均为3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为________.解析 由题意知,正视图就是如图所示的截面PEF ,其中E ,F 分别是AD ,BC的中点,连接AO ,易得AO =2,又P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2. 答案 2+2 213.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 614.在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,侧棱P A ⊥底面ABCD ,P A =2,E 为AB 的中点,则三棱锥P -BCE 的体积为________. 解析 由题意知S △EBC =12×2×1×sin 120°=32,故V P -EBC =13×2×32=33. 答案 3315.某几何体的三视图如图所示,则该几何体的表面积为________.解析 由三视图可得该几何体为圆柱和四分之一球的组合体.圆柱的底面半径为1,高为3,球的半径为1.故该几何体的表面积为S =π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π. 答案 9π16.三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两垂直,且P A =2,PB =1,PC =3,则该三棱锥的外接球的体积是________.解析 三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长为2+1+3=6,所以球的直径是6,半径为62.球的体积为V =43×π×⎝ ⎛⎭⎪⎫623=6π.答案6π。
高中数学复习课件-复习 空间几何体的三视图、表面积及体积

[典例] (1)(2015·全国卷Ⅰ)圆柱被
一个平面截去一部分后与半球(半径为r)
组成一个几何体,该几何体三视图中的
正视图和俯视图如图所示.若该几何体
的表面积为16+20π,则r= ( )
A.1
B.2
C.4
D.8
[解析] 如图,该几何体是一个半球与一个半圆柱的组 合体,球的半径为 r,圆柱的底面半径为 r,高为 2r,则表 面积 S=12×4πr2+πr2+4r2 +πr·2r=(5π+4)r2.
令y′=0,解得h=2 3 ,易知当h=2 3 时,y取最大值,
正六棱柱的体积最大.
答案:D
THANKS!
>>谢谢观看
正棱柱的体积取最大值时,其高的值为
()
A.3 3
B. 3
C.2 6
D.2 3
解析:设正六棱柱的底面边长为a,高为h,则可得a2+
h2 4
=9,即a2=9-
h2 4
,那么正六棱柱的体积V=
6×
43a2 ×h
=32 39-h42h=323-h43+9h,令y=-h43+9h, 则y′=-34h2+9,
16 2
∴V新工件= V原工件 2
272π=98π.故选A.
3
[答案] A
变式:某几何体的三视图(单位:cm)如图所示,其中侧视 图是一个边长为 2 的正三角形,则这个几何体的体积是 () A.2 cm3
B. 3 cm3
C.3 3 cm3 D.3 cm3
答案:B [解析] 该几何体的直观图如图,其体积 V=1×1× 32
(2)柱体、锥体、台体的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); ②V 锥体=13Sh(S 为底面面积,h 为高); ③V 台=13(S+ SS′+S′)h(不要求记忆); (3)球的表面积和体积公式: ①S 球表=4πR2(R 为球的半径);
高中数学 空间几何体的三视图、表面积和体积

例1 (2014江西,5,5分)一几何体的直观图如图,下列给出的四个俯视图中正确的是
(
)
解析 由几何体的直观图知,该几何体最上面的棱横放且在中间的位置上,因此排除A、C、D, 经验证B符合题意,故选B. 答案 B
1-1 (2015贵州七校联考,4)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是 虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形) ( )
二、空间几何体的三视图
1.在画几何体的三视图时,重叠的线只画一条,能看见的线用实线表示,被挡住的线用虚线表示. 2.在画几何体三视图时务必遵循“长对正、高平齐、宽相等”原则,必须确定观看几何体的三 个对应方向,同一物体放的位置不同,所画的三视图就可能不同. 【温馨提示】 根据几何体的三视图确定直观图的一般方法: (1)三视图为三个三角形,对应三棱锥; (2)三视图为两个三角形,一个四边形,对应四棱锥; (3)三视图为两个三角形,一个带圆心的圆,对应圆锥;
(4)三视图为一个三角形,两个四边形,对应三棱柱; (5)三视图为两个四边形,一个圆,对应圆柱. 三、水平放置的平面图形的直观图的斜二测画法 1.用斜二测画法画水平放置的平面图形的直观图时,要注意原图与直观图中的“三变和三不 变”:
坐标轴的夹角改变; “三变” 与y轴平行的线段的长度减半; 图形改变.
§8.1
空间几何体的三视图、表面积和体积
知识清单
一、空间几何体的结构特征
1.多面体的结构特征
名称 结构 特征 棱柱 棱锥 棱台
①有两个面平行且全等,其余各个 有一个面(底面)是多边 有两个面平行且相似, 面都是四边形;②每相邻两个四边 形,其余各面是有一个 其余各面都是梯形
§8.1 空间几何体的三视图、表面积和体积
答案 C
10
考向三 空间几何体的直观图
例3 如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'
=6,O'C'=2,则原图形OABC的面积为
.
11
解析 由题意知原图形OABC是平行四边形,且OA=BC=6,设平行四边
形OABC的高为OE,则OE× 1 × 2 =O'C', 22
考向基础 1.柱体、锥体、台体、球体的体积
名称 柱体 锥体 台体
球体
体积
V=Sh
1
V= 3 Sh
1
① V= 3 (S+S'+ SS' )h
4
② V= 3 πR3
18
2.柱体、锥体、台体的体积公式之间的关系
3.关于空间几何体体积的常用结论 (1)相同的几何体的体积相同; (2)一个组合体的体积等于它的各部分体积之和; (3)等底面面积且等高的两个同类几何体的体积③ 相等 .
8
考向二 空间几何体的三视图 例2 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1中,E为棱BB1的 中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何 体的左视图为 ( )
9
解析 过点A,E,C1的截面为AEC1F(其中F为DD1的中点),如图,则剩余几 何体的左视图为选项C中的图形.故选C.
28
例2 (2018天津,11,5分)如图,已知正方体ABCD-A1B1C1D1的棱长为1,则
四棱锥A1-BB1D1D的体积为
.
解题导引
29
解析 四棱锥的底面BB1D1D为矩形,其面积为1× 2 = 2 ,
8.1 空间几何体的三视图、表面积和体积(讲解部分) 高考数学(课标版,理科)复习课件
的半球体,其中圆柱的高等于半球的半径r,所以该几何体的体积V=πr2×r- 1
2
× 4 πr3=1 πr3=9 π,∴r3=27 ,又知r>0,∴r=3 ,∴该几何体的表面积S=πr2+2πr×r
338
8
2
+ 1 ×4πr2=5πr2=5π×9 =45 π,故选C.
2
44
答案 (1)D (2)C
方法2 与球有关的切、接问题的求解方法
2.求空间几何体体积的方法 (1)求简单几何体的体积,若所给的几何体为柱体、锥体、台体或球,则可 以直接利用公式求解. (2)求组合体的体积,若所给的几何体是组合体,则不能直接利用公式求解, 常用转换法、分割法、补形法等进行求解. (3)三棱锥的体积常用等体积法求解. (4)求以三视图为背景的几何体的体积,应根据三视图得到几何体的直观 图,然后根据条件求解.
积的 2 .
4
考向突破 考向一 由空间几何体的直观图识别三视图 例1 (2018课标Ⅲ,3,5分)中国古建筑借助榫卯将木构件连接起来.构件的 凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若 如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼 的木构件的俯视图可以是( )
台体
球
V柱体=Sh,V圆柱=πr2h
1
V锥体= 3Sh,V圆锥= 1πr2h
3
1
V台体= 3(S+
SS'
+S')h,V圆台=
1π(r2+rr'+r'2)h
3
4
V球= 3πR3(R为球的半径)
注意 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已 知体积公式的几何体进行解决. (2)求与三视图有关的体积问题注意几何体和数据还原的准确性.
空间几何体三视图、表面积及体积
面积,h为高);
4 3 (7)球的表面积和体积公式:S=4πR ,V= πR (R为球的半径). 3
2
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧(左)视图放在 正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽 度一样,即“长对正、高平齐、宽相等”.
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
小题 速解
类型一
三视图与直观图的辨识和画法
[ 例1]
某几何体的正视图和侧视图均如图所示,则该几何体的俯视图 )
不可能是(
(基本法) 从正视图和侧视图想像直观图,再检验答案. 若下部分是圆柱,上部分可以是圆柱或者棱柱,A、B、C适合题意, 若是D答案,其正视图应为(如右图)中间有虚线.
2 1 3 到的,根据三视图可知其表面积为6 2 - ×1×1 +2× ×( 2 4
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
2.(1)设长方体的相邻的三条棱长为a、b、c则对角线长为 a2+b2+c2 (2)棱长为a的正方体的体对角线长等于外接球的直径,即 3a=2R. (3)若球面上四点P、A、B、C构成的线段PA、PB、PC两两垂直,且PA =a,PB=b,PC=c,则4R2=a2+b2+c2,把有关元素“补形”成为 一个球内接长方体(或其他图).
知识回扣 小题速解
解题绝招
空间几何体的三视图、表面积及体积
2022年高考数学总复习:空间几何体的三视图、表面积及体积1.柱体、锥体、台体、球的表面积与体积(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.Y易错警示i cuo jing shi1.未注意三视图中实、虚线的区别在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.2.不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.3.台体可以看成是由锥体截得的,此时截面一定与底面平行.4.空间几何放置的方式不同时,对三视图可能会有影响.1.(2018·全国卷Ⅲ,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析]选A.由直观图可知选A.2.(文)(2018·全国卷Ⅰ,5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) A.122π B.12πC.82π D.10π[解析]截面面积为8,所以高h=22,底面半径r=2,所以该圆柱表面积S=π·(2)2·2+2π·2·22=12π.(理)(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )A.217 B.25C.3 D.2[解析]选B.将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路径为M,N连线的距离,所以MN=42+22=2 5.3.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( C )A .2B .4C .6D .8[解析] 选C . 由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面面积S =(1+2)×22=3,高h =2,所以V =Sh =6.4.(2018·北京卷,5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .4[解析] 选C .将四棱锥三视图转化为直观图,如图,侧面共有4个三角形,即△P AB ,△PBC ,△PCD ,△P AD , 由已知,PD ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PD ⊥AD ,同理PD ⊥CD ,PD ⊥AB , 所以△PCD ,△P AD 是直角三角形.因为AB ⊥AD ,PD ⊥AB ,PD ,AD ⊂平面P AD ,PD ∩AD =D , 所以AB ⊥平面P AD ,又P A ⊂平面P AD , 所以AB ⊥P A ,△P AB 是直角三角形. 因为AB =1,CD =2,AD =2,PD =2,所以P A =PD 2+AD 2=22,PC =PD 2+CD 2=22, PB =P A 2+AB 2=3,在梯形ABCD 中,易知BC =5,△PBC 三条边长为22,3,5,△PBC 不是直角三角形. 综上,侧面中直角三角形个数为3.5.(文)(2018·全国卷Ⅰ,10)在长方体ABCD A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( C )A .8B .6 2C .8 2D .83[解析]选C .如图,连接AC 1和BC 1,因为AB ⊥平面BB 1C 1C ,AC 1与平面BB 1C 1C 所成角为30°,所以∠AC 1B =30°, 所以AB BC 1=tan30°,BC 1=23,所以CC 1=22,所以V =2×2×22=8 2.(理)(2018·全国卷Ⅲ,10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .543[解析] 设△ABC 的边长为a ,则S △ABC =12a 2sin C =34a 2=93,解得a =6,如图所示,当点D 在底面上的射影为三角形ABC 的中心H 时,三棱锥D ABC 的体积最大,设球心为O ,则在直角三角形AHO 中,AH =23×32×6=23,OA =R =4,则OH=OA 2-AH 2=16-12=2,所以DH =2+4=6,所以三棱锥D ABC 的体积最大值为V =13S △ABC ×DH =13×93×6=18 3. 6.(文)(2018·天津卷,11)如图,已知正方体ABCD A 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为13.[解析] 连接A 1C 1,交B 1D 1于O 1点,依题意得A 1O 1⊥平面BB 1D 1D ,即A 1O 1为四棱锥A 1BB 1D 1D 的高,且A 1O 1=22,而四棱锥A 1BB 1D 1D 的底面为矩形,其面积为2,所以四棱锥A 1BB 1D 1D 的体积V =13Sh =13×2×22=13.(理)(2018·天津卷,11)已知正方体ABCD A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH 的体积为112.[解析] 依题意得:该四棱锥M EFGH 为正四棱锥,其高为正方体棱长的一半,即为12,正方形EFGH 的边长为22,其面积为12,所以四棱锥M EFGH 的体积V M EFGH =13Sh =13×12×12=112. 7.(2018·全国卷Ⅱ,16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为402π.[解析] 如图:设SA =SB =l ,底面圆半径为r ,因为SA 与圆锥底面所成角为45°,所以l =2r ,在△SAB 中,AB 2=SA 2+SB 2-2SA ·SB ·cos ∠ASB =12r 2,AB =22r ,AB 边上的高为(2r )2-⎝⎛⎭⎫24r 2=304r ,△SAB 的面积为515, 所以12·22r ·304r =515,解得r =210,所以该圆锥的侧面积为πrl =π2r 2=402π.8.(2017·全国卷Ⅰ,16)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.[解析] 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33,即r 33=9, ∴r =3,∴S 球表=4πr 2=36π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八 立体几何初步第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国Ⅲ理16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________.2.(2019江苏9)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .3.(2019天津理1125若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .4.(2019全国Ⅰ理12)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .68πB .6πC .6πD 6π 5.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162 C.182D.326.(2019北京11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示。
如果网格纸上小正方形的边长为1,那么该几何体的体积为________.2010-2018年一、选择题1.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图1221A.1 B.2 C.3 D.42.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.172B.52C.3 D.23.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.(2018全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为3D ABC-体积的最大值为A.3B.183C.3D.35.(2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA为底面矩形的一边,则这样的阳马的个数是()A 1AA .4B .8C .12D .166.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A .90πB .63πC .42πD .36π9.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .34πC .2πD .4π 10.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图11311 A .12π+ B .32π+ C . 312π+ D . 332π+ 11.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .32B .23C .22D .212.(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233+π B .1233+π C .1236+π D .216+π 13.(2016全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π14.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18365+B .54185+C .90D .8116.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cmB .312cmC .3323cmD .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+B .23π+C .123π+D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81B .71C .61D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .13+B .23+C .122+D .2221.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A.89πB.169πC.34(21)π-D.312(21)π-22.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=A.1 B.2 C.4 D.823.(2014新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .6C .42D .424.(2014新课标Ⅱ)如图,网格纸上正方形小格的边长 为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C .1027D .1325.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为A .213+B .183+C .21D .1826.(2014福建)某空间几何体的正视图是三角形,则该几何体不可能是A .圆柱B .圆锥C .四面体D .三棱柱27.(2014浙江)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是俯视图侧视图正视图A.902cm B.1292cm C.1322cm D.1382cm28.(2014新课标Ⅱ)正三棱柱111ABC A B C-的底面边长为2D为BC中点,则三棱锥11A B DC-的体积为A.3 B.32C.1 D.229.(2014福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A.2πB.πC.2 D.130.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为俯视图左视图主视图A.82π-B.8π-C.82π-D.84π-31.(2014陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为A.4πB.3πC.2πD.π32.(2014江西)一几何体的直观图如右图,下列给出的四个俯视图中正确的是主(正)视左(侧)视俯视ABCD33.(2013新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 34.(2013江西)一几何体的三视图如右所示,则该几何体的体积为俯视图侧视图正视图53121262A .200+9πB .200+18πC .140+9πD .140+18π 35.(2012广东)某几何体的三视图如图所示,它的体积为A .12πB .45πC .57πD .81π36.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为俯视图A .8π3 B .3π C .10π3D .6π 37.(2011新课标)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A38.(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为侧视图A.48 B.C.D.8039.(2011辽宁)如图,四棱锥S—ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是B CAS DA.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角40.(2010安徽)一个几何体的三视图如图,该几何体的表面积为A.280 B.292 C.360 D.372 41.(2010浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是侧视图A.3523cm3B.3203cm3 C.2243cm3D.1603cm3二、填空题42.(2018天津)已知正方体1111ABCD A B C D-的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH-的体积为.1ACA43.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.44.(2017新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F为圆O上的点,DBC∆,ECA∆,FAB∆分别是以BC,CA,AB为底边的等腰三角形。
沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC∆,ECA∆,FAB∆,使得D、E、F重合,得到三棱锥。
当ABC∆的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______。
ODFECBA45.(2017天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .46.(2017山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .俯视图侧视图(左视图)正视图(主视图)211111147.(2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。