离心式通风机的构造和工作原理
离心风机的使用说明

离心风机的使用说明离心风机是一种常见的工业设备,用于进行空气或气体的输送和循环。
它的结构简单,具有高效的风量和压力特性,广泛应用于空调系统、锅炉通风、工业制冷、冶金、矿山、化工等行业。
下面是离心风机的基本使用说明。
1.基本结构和工作原理:离心风机由驱动装置、风机壳体、叶轮、进出风口、支撑架等组成。
其工作原理是通过电机带动叶轮旋转,产生离心力使空气加速,然后将加速的空气送入风机壳体,并从出风口排出。
2.安装和维护:(1)安装前需检查设备是否完好,确保各零部件处于良好状态。
(2)选择合适的安装位置,确保风机通风良好,避免与其他设备或物体相互干扰。
(3)安装前需要对电机和零部件进行定位和固定,以确保设备运转时的平稳性。
(4)定期检查和维护设备,包括清洁叶轮和风机壳体、检查驱动装置是否正常运作、检查轴承的润滑情况等。
3.使用注意事项:(1)检查电源电压是否符合设备要求,并确保接线正确无误。
(2)在启动风机之前,检查驱动装置和零部件是否运转正常。
(3)当风机工作时,应注意安全,避免将手、头发或其他物体靠近风机进出口,以免发生意外。
(4)在停机后,应等待风机完全停止后再进行维护和检查操作。
(5)使用过程中如发现噪音异常或振动过大等异常情况,应立即停机检查。
4.性能参数和使用场景:离心风机可广泛应用于各个领域(1)空调系统:用于送风和排风,保持空气流通和温度适宜。
(2)工业通风:用于工业车间、化工厂等场所的通风与废气排放。
(3)锅炉通风:用于锅炉燃烧时的燃气输送、废气排放等。
(4)工业制冷:用于冷风供给、冷却设备、冶金、矿山等领域。
(5)化工设备:用于气体输送、气体分离、气体循环等。
总的来说,离心风机是一种重要的工业设备,通过合理的安装和维护,可以确保其正常运行和高效工作。
同时,也需要注意安全使用,避免发生意外。
在选择离心风机时,需要根据具体的需求、场景和性能参数来确定最适合的设备。
离心式风机

2.4 F式传动(联轴器传动)离心风机 特点:与D式传动相比,轴承的径向载荷小。
带底座D式传动风机 单吸F式传动风机
1-调风门;2-轴封;3-进气箱;4-进风口 5-叶轮;6-机壳;7-传动组;8-联轴器
3.5直联式轴流风机 特点:结构简单,单级叶轮风机压力低,适合于介质无特殊要求 的通风场合。
后向叶片风机的效率一般在0.8~~0.9之间,前向叶片风机的效率在 0.6~~0.65之间。
同一台风机在一定的转速下,当风量和风压改变时,其效率也随之 改变,但其中必有一个最高效率点,最高效率时的风量和风压称为最佳 工况。 通风机在管道系统中工作时,它的风量与风压应尽可能等于或接近 最佳式况时的风量和风压,应注意使其实际运转效率不低于最高效率的 90 %。
二、风压 通风机的出口气流全压与进口气流全压之差称为风机的风压H,其单 位为毫米水柱。风机所产生的风压与风机的叶轮直径、转速、空气密度 及叶片形式有关,其关系可用下式表示: H=ρHv22 或: H=0.000334HD22n2
式中:
H——通风机全压,毫米水柱; ρ——空气的密度,千克· 2/米4;当大气压强在760毫米汞柱,气温为 秒 20℃,ρ=1.2千克/米2; v2——叶轮外周的圆周速度,米/秒; H——全压系数,根据实验确定,一般如下: 后向式:H=0.4—0.6; 径向式:H=0.6—0.8; 前向式:H=0.8—1.1; D2——风机叶轮的外径,米; n——风机的转速,转/分。
离心风机的结构

离心风机的结构离心风机是一种常见的风力设备,主要用于输送气体和增加气体的压力。
它的结构设计简单,但却非常有效。
下面将详细介绍离心风机的结构及工作原理。
1. 外壳:离心风机的外壳通常由金属或塑料制成,用于固定内部的零部件并保护风机免受外部环境的影响。
外壳的设计通常采用流线型,以减少气体在进出口处的阻力,提高风机的效率。
2. 叶轮:叶轮是离心风机中最重要的部件之一,它负责将气体加速并转移能量。
叶轮通常由金属制成,具有多个叶片,这些叶片的形状和角度经过精确设计,以确保气体能够顺利通过并获得最大的动能。
3. 驱动装置:离心风机的驱动装置通常包括电机和传动装置。
电机负责提供动力,传动装置则将电机的旋转运动传递给叶轮。
传动装置通常采用皮带、联轴器或直接连接的方式。
4. 进出口:离心风机的进出口是气体进出的通道,进口处的气体经过叶轮加速后,通过出口处排出。
进出口的设计也非常重要,它们的尺寸和形状需要根据具体的工作要求来确定,以确保风机能够正常运行。
5. 支撑结构:离心风机的支撑结构用于支撑整个设备,并将其固定在所需的位置。
支撑结构通常由金属或混凝土制成,具有足够的强度和稳定性,以确保风机在运行过程中不会发生倾斜或晃动。
离心风机的工作原理如下:当电机启动时,驱动装置将转动能量传递给叶轮,叶轮开始加速并将气体抛出。
由于叶轮的旋转运动产生了离心力,气体被迫沿着叶轮的外边缘加速运动,最终被排出风机。
这样就实现了气体的输送和增压。
总的来说,离心风机的结构简单而有效,通过合理设计和精密制造,能够实现高效的气体输送和增压。
在工业生产和生活中,离心风机被广泛应用于通风、空调、换气等领域,为人们创造了舒适的生活和工作环境。
离心通风机工作原理

离心通风机工作原理离心通风机是一种常见的工业通风设备,其工作原理是利用高速旋转的叶轮将空气吸入并排出。
它主要由电机、叶轮、机壳和支架等组成。
一、电机:离心通风机的电机是驱动整个设备工作的核心部件。
通常使用三相异步电动机,其特点是功率大、效率高、噪音低等。
电机通过转动叶轮产生的风力,可带动大量空气流动,并形成气流。
二、叶轮:叶轮是离心通风机中的重要部件,也是产生气流的关键。
叶轮通常由数片弯曲的叶片组成,这些叶片被固定在支架上,并与电机的转轴相连。
当电机转动时,叶轮也同时旋转。
叶轮的旋转速度越快,产生的风力就越大。
三、机壳:离心通风机的机壳是一个圆柱形的外壳,用于容纳电机和叶轮。
机壳具有良好的密封性能,可以防止空气泄漏。
在机壳上通常还设有进风口和出风口,用于引导进入和排出空气。
四、支架:支架是离心通风机的底座,用于支撑整个设备。
支架通常由金属材料制成,具有坚固的结构和一定的稳定性。
支架的设计和加工对于离心通风机的稳定运行至关重要。
离心通风机的工作过程如下:1.开启电机:当离心通风机接通电源时,电机开始工作。
电机将转动叶轮,并带动叶轮旋转。
2.吸入空气:叶轮的旋转产生了向外的离心力,此时空气被迫被吸入进风口,并进入机壳内部。
3.产生气流:进入机壳的空气被叶轮高速旋转的叶片推动,形成高速气流。
叶轮叶片的特殊设计使得气流能够被扩散、加速和压缩。
气流在离心力的作用下呈现出一种向外散开的圆锥形状。
4.排出空气:气流通过机壳的出风口排出,进入工作环境。
由于气流的速度和压力的增加,离心通风机可以有效地将空气输送到远离源点的区域。
离心通风机的优点包括:1.高效节能:离心通风机的电机采用三相异步电动机,功率大、效率高,能够提供足够的风力和风量,同时又具有较低的能耗。
2.静音工作:离心通风机的叶轮采用特殊设计和加工工艺,可以减少噪音和振动。
因此,在工作时产生的噪音和震动较小,对于要求安静的工作环境来说非常适合。
3.调节灵活:离心通风机的风量和风力可以通过调节电机的旋转速度来实现。
离心式通风机原理

离心式通风机原理离心式通风机是一种常见的通风设备,通过离心力和能量传递来产生气流。
它由一个旋转叶轮和一个外壳组成。
当离心式通风机开启时,电机会带动旋转的叶轮,空气将从进气口进入,被旋转的叶轮加速后被压入外壳内,在外壳内形成高速气流,最后通过出口排出。
离心式通风机的工作原理主要包括离心力原理和能量传递原理。
首先,离心力原理是离心式通风机的核心原理。
离心力是一种向心力,当物体在旋转中心运动时,会受到向心力的作用使其沿向心方向运动。
在离心式通风机中,旋转的叶轮产生大量的离心力,将周围的空气一同带到旋转中心,形成高速气流。
叶轮的叶片形状、叶轮的旋转速度和叶轮与外壳的间隙大小都会影响到离心力的产生。
其次,能量传递原理是离心式通风机将电能转化为动能的过程。
当电机启动时,它会通过传动装置将动力传递给叶轮,使其旋转。
叶轮在旋转过程中通过离心力将入口空气加速,并增加了气流的动能。
此时,气流在出口处的速度会增加,压力会增大。
通过能量传递原理,离心式通风机能够将电能转化为高速气流的动能,并带动气流进行通风工作。
离心式通风机的工作过程中,存在一些特殊的部件,如进气口、出口、叶轮和外壳。
进气口是气流进入离心式通风机的出入口,通常位于离心式通风机的正面。
当电机启动时,进气口会吸入周围的空气。
出口是离心式通风机的气流出口,位于离心式通风机的侧面或后面。
在离心式通风机的工作过程中,高速气流会通过出口排出,进而起到通风、降温或排除空气中有害物质的作用。
叶轮是离心式通风机的核心部件,它有多个叶片,形状通常是曲线形的。
当电机启动时,叶轮通过传动装置带动旋转,产生离心力将空气加速,并将动力传递给气流。
叶轮的形状和旋转速度会影响到离心力的大小和气流速度。
外壳是离心式通风机的容器,它包裹着叶轮,形成一个封闭的空间。
在离心式通风机的工作过程中,外壳与叶轮之间的间隙大小会影响到气流的加速程度和压力。
通常情况下,外壳会经过优化设计,以减小能量损耗和降低噪音。
离心通风机工作原理

离心通风机是一种利用离心力原理来产生气流的设备。
它的基本工作原理是:
1. 叶轮旋转:
- 离心通风机的核心部件是一个装有叶片的叶轮,当电机带动叶轮高速旋转时,叶片间的空气也跟着转动。
2. 动能转换:
- 叶片对气体施加了一个向外的离心力,使气体获得动能,并以较高的速度沿着叶轮边缘被甩出。
3. 压力上升:
- 随着气体离开叶轮,它被迫通过一个逐渐收缩的通道(称为蜗壳),在这个过程中,由于通道面积减小,气体的速度被迫降低,根据伯努利定律,其静压能(即压力)相应增加。
4. 排气:
- 最后,增压后的气体从通风机的出口排出到需要的地方,例如建筑物内或工艺流程中。
5. 吸气:
- 在叶轮外侧,由于叶轮内部和外部之间形成了压力差,新鲜空气会被吸入叶轮,继续进行能量转换过程。
离心通风机通常分为单级和多级两种类型,单级风机只有一个叶轮,而多级风机则包含多个串联的叶轮,以实现更高的压力提升。
这些风机可以用于各种工业和民用场合,如建筑物的通风、空调系统、矿井排风、化工厂废气处理等。
离心式通风机原理

离心式通风机(也称为离心风机、离心式风扇或离心式排气扇)是一种广泛应用于工业、商业和民用领域的通风、排气和空气循环设备。
离心式通风机的工作原理依赖于离心力来产生气流。
以下是离心式通风机工作原理的关键步骤:
电机驱动:离心式通风机内部带有一个电动机,用于驱动风机叶轮的旋转。
入口吸气:当离心风机运转时,空气从入口端被吸入,进入风机叶轮。
叶轮加速:离心风机的叶轮部分由多个叶片组成,形状多样,可以是前弯曲、后弯曲或径向等。
当空气流经叶轮时,叶片产生离心力(向外的力),使得气流被加速。
扩散器:在叶轮外侧,通常还设有一个扩散器。
扩散器的功能是将气流的动能转化为静压能,提高气流的压力。
出口排放:经过叶轮和扩散器处理后,高压的气流从离心式通风机的出口端排出。
离心式通风机的特点包括运行效率较高、产生的气流压力较大、可在高流量和高压力应用场景下工作等。
由于其可靠性和性能优势,离心式通风机在排烟、排尘、制冷和采暖系统等各种通风设备中得到了广泛应用。
然而,它们在较低压力和流量的应用场景中可能不是最经济的选择,此时轴流风机等其他类型风机可能更适用。
矿用通风机性能测定

• 现我国生产的离心式通风机较多,适用煤矿作主要通 风机的有: 4-72-11型、G4-73-11型、K4-73-01型等。
PPT文档演模板
矿用通风机性能测定
• 4-72系列离心式主要通风机装置图
1.并联通风无效 当通风网路风阻特性曲线为R1时,它与合成特性曲线Ⅲ的交点A恰好就 是通风机Ⅰ的特性曲线与同一网路风阻特性曲线的交点,此时并联通风的 总风量就等于通风机Ⅰ单独工作时的风量,通风机Ⅱ通过的风量为零,不 起作用, 2.当通风网路风阻特性曲线为R2时,它与合成特性曲线Ⅲ的交点B(位于 A点右下侧) 即为并联通风的工作点。从图中可看出,通风机并联工作时的 总风量Q并总大于任一台通风机单独对该网路工作时的风量Q通I或Q通Ⅱ, 并且风阻R值越小,两台通风机单独对该网路工作的风量之和与并联总风量 的差值越小,这就是说通风机并联工作时,其工作点在A点的右下侧,并联 通风才有效,而且风阻值越小,其效果越好。 3. 当通风网路风阻特性曲线为R3时,它与合成特性曲线Ⅲ交于O点(在A 点左侧)。此时并联通风的总风量将小于通风机I单独对该网路工作时的风量, 通风机Ⅱ出现负风量(-Q通Ⅱ′),这就是说通风机Ⅱ并不帮助通风机I对矿 井网路通风,而成为通风机I的进风通路,这种并联工作是不允许的。
8矿用通风机性能测定
PPT文档演模板
2024/8/28
矿用通风机性能测定
• 一、矿井主要通风机及其附属装置
•矿用通风机的分类
•按照其服务范围和所起的作用分
•主
•辅
•局
要
助
部
通
通
通
风
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章通风机通风机作为空气动力机械,在通风除尘与气力输送系统中,都用来输送空气和粉尘或物料。
因而,合理地选择风机,对通风除尘与气力输送的效果有着很大的影响。
通风系统常见的风机有离心式通风机和轴流式通风两种,而在通风除尘和气力输送系统中大都有采用离心式通风机,另外,随着制粉技术的发展,配粉技术的广泛应用,作为正压输送的动力来源-罗茨鼓风机也受到重视。
因此,本章重点介绍离心式通风机,同时介绍罗茨鼓风机。
2.1 离心式通风机的构造和工作原理离心式通风机的构造如下图。
它的主要部件是机壳、叶轮、机轴、吸气口、排气口。
此外还有轴承、底座等部件。
通风机的轴通过联轴器或皮带轮与电动机轴相连。
当电动机转动时,风机的叶轮随着转动。
叶轮在旋转时产生离心力将空气从叶轮中甩出,空气从叶轮中甩出后聚集在机壳中,由于速度慢,压力高,空气便从通风机出口排出流入管道。
当叶轮中的空气被排出后,就形成了负压,吸气口外面的空气在大气压作用下又被压入叶轮中。
因此,叶轮不断旋转,空气也就在通风机的作用下,在管道中不断流动。
图2-1通风机的各部件中,叶轮是最关键性的部件,特别是叶轮上叶片的形式很多,但基本上可分为前向式、径向式和后向式三种。
如下图。
图2-2这三种不同形式的叶片是以叶片出口角β来区分的,所谓叶片出口角就是叶片的出口方向〔出口端的切向方向〕和叶轮的圆周方向〔在叶片出口端的圆周切线方向〕之间的夹角〔β〕。
这三种叶片形式各有特点。
后向式叶片的弯曲度较小,而且符合气体在离心力作用下的运动方向,空气与叶片之间的撞击很小。
因此能量损失和噪音较小,效率较高。
但后向式叶片只能使空气以较低的流速从叶轮甩出,空气所获得的动压较低。
前向式叶片与后向式不同,它的形状与空气在离心力作用下的运动方向完全相反,空气与叶片之间撞击剧烈。
因此能量损失和噪音都较大,故效率就低,但前向式叶片能使空气以较高的流速从叶轮中甩出,从而使空气在风机出口处获得较大的静压。
径向式叶轮的特点介入后向式和前向式之间。
机壳一般呈螺旋形,它的作用是吸集从叶轮中甩出的空气,并通过气流断面的渐扩作用,将空气的动压力转化为静压。
离心式通风机所产生的压力一般小于1500毫米水柱。
压力小于100毫米水柱的称为低压风机,一般用于空气调节系统。
压力小于300毫米水柱的称为中压风机,一般用于通风除尘系统。
压力大于300毫米水柱的称为高压风机,一般用于气力输送系统。
2.2 离心式通风机的性能参数与性能曲线2.2.1 离心通风机的主要性能参数离心式通风机有一定的参数表示它的性能和规格,为了合理地选择与使用风机,就必须分析了解这些参数以及其相互间的关系。
表示风机性能的主要参数有:1.风量通风机每单位时间内所排送的空气体积,称为风量Q,又称送风量或流量,其单位为米3/秒或米3/时,工程上常用单位是米3/时。
风机所产生的风量与风机叶轮直径、转速、叶片形式等有关,其三者之间的相互关系要用下式表示:(m3/s) (2-1)(m3/h) (2-2)式中:Q——通风机的风量;D2——通风机叶轮的外径,米;V2——叶轮外周的圆周速度,米/秒n——通风机的转速,转/分;——流量系数,与风机型号有关。
常用离心式风机的流量系数见表2-1:表:2-1No 代号4-72 C4-73 4-79 Y4-56 6-23 6-30 9-19 9-261 0.146 0.154 0.170 0.108 0.024 0.044 0.030 0.080 0.454 0.462 0.484 0.266 0.614 0.634 0.814 0.8742 0.164 0.174 0.190 0.121 0.029 0.049 0.037 0.090 0.445 0.462 0.473 0.264 0.600 0.626 0.834 0.8573 0.182 0.191 0.210 0.137 0.033 0.054 0.044 0.100 0.436 0.444 0.467 0.260 0.582 0.617 0.828 0.8324 0.199 0.209 0.230 0.151 0.034 0.063 0.051 0.110 0.418 0.425 0.450 0.260 0.573 0.590 0.803 0.7995 0.216 0.228 0.250 0.166 0.039 0.068 0.058 0.120 0.392 0.406 0.433 0.251 0.537 0.573 0.772 0.7616 0.234 0.246 0.270 0.182 0.044 0.073 0.065 0.130 0.365 0.370 0.421 0.243 0.490 0.550 0.732 0.7147 0.252 0.263 0.300 0.194 0.049 0.078 0.073 0.140 0.338 0.314 0.359 0.227 0.433 0.525 0.692 0.66780.269 0.282 0.330 0.209 0.054 0.083 0.080 0.1500.303 0.277 0.290 0.208 0.366 0.496 0.652 0.620风机的风量一般用实验方法测得。
风量的大小与通风机的尺寸和转速成正比。
在管道系统中,风量可以通过闸门或改变通风机的转速来调节。
但通风机最大的转数不可超过性能选用表上规定的最高转数。
以叶轮外周的圆周速度表示,压力在300-1500毫米水柱的风机,v2≤100米/秒,压力在300毫米水柱以下的风机v2≤70米/秒。
2.风压通风机的出口气流全压与进口气流全压之差称为风机的风压H,其单位为毫米水柱。
风机所产生的风压与风机的叶轮直径、转速、空气密度及叶片形式有关,其关系可用下式表示:(mmH2O) (2-3)(mmH2O) (2-4)式中:H——通风机全压,毫米水柱;ρ——空气的密度,千克/米3;通常取标准空气密度ρ=1.2千克/米3;v2——叶轮外周的圆周速度,米/秒;——全压系数,根据实验确定,一般如下:后向式:H=0.4—0.6;径向式:H=0.6—0.8;前向式:H=0.8—1.1;D2—风机叶轮的外径,米;n—风机的转速,转/分。
风机的风压与转速的平方成正比,适当提高转速就能增大风压。
在管道系统中,风压也可用调节闸门来改变。
3.功率通风机在一定的风压下输送一定数量的空气时,需要消耗一定的能量,这个能量是由带动它的电机提供的。
单位时间内所消耗的能量称为功率N,功率的单位用千瓦来表示。
通风机的有效功率〔N y 千瓦〕即:(2-5)式中:Q——通风机输送的风量,米3/秒;H——通风机产生的风压,毫米水柱;102——千瓦与千克·米/秒之间的换算关系系数,1千瓦=102千克米/秒。
实际上,消耗在通风机轴上的功率〔轴功率〕要大于有效功率,这是因为通风机在运转过程中轴承内部有磨擦损失和空气在通风机中流动也有能量损失的缘故。
轴功率N与有交效功率N Y之间的关系如下:(2-6)式中:η——通风机效率,%。
N——轴功率,千瓦当通风机的转速一定时,它的轴功率随着风量的改变而改变,一般离心式通风机的轴功率随着风量的增加而增加。
4.效率通风机的有效功率与轴功率之比为通风机的效率η,即:(2-7)通风机的有效功率反映了通风机工作的经济性。
后向叶片风机的效率一般在0.8~~0.9之间,前向叶片风机的效率在0.6~~0.65之间。
同一台风机在一定的转速下,当风量和风压改变时,其效率也随之改变,但其中必有一个最高效率点,最高效率时的风量和风压称为最正确工况。
通风机在管道系统中工作时,它的风量与风压应尽可能等于或接近最正确式况时的风量和风压,应注意使其实际运转效率不低于最高效率的90 %。
5.转速通风机的转速n可用转速表直接测量,其数值用每分钟多少转〔转/分〕来表示。
小型风机的转速一般较高,往往与电动机直接相连。
大型风机的转速较低,一般用皮带传动与电动机相连,改变皮带轮的直径即可调节风机的转速,其关系如下:〔2-8〕式中:n1、n2——风机;电动机的转速d1、d2——风机和电动机的皮带轮的直径。
从上述可见,如要改变风机的转速,只要改变通风机或电动机中任意一个皮带轮的直径即可。
当改变风机转速时,风机的特性参数;特性曲线也随之改变,亦即,风机在每一转速下都有其相应的特性曲线。
当转速改变时,风机的特性参数Q,H,N的变化可按下式计算:(2-9)以上可见,如果通风机的转速由n改变为nˊ时,风机的风量变化与的一次方成正比,功率变化与的三次方成正比。
所以在增加风机转速时,必须重新计算所需功率,注意原来配备的电机是否会过载。
必须指出,上述通风机的几个性能参数不是固定不变的,它们之间都有一定的内在联系。
当通风机在管网中工作时,这些参数又受到网路特性的影响,所以要选择使用好一台通风机,不但要熟悉通风机的性能,还要了解网路特性以及它们之间的关系。
图2-32.2.2通风机的性能曲线通风机的性能曲线一般有H—Q曲线,N—Q曲线,η—Q曲线三种,这三种曲线常画在同一图上,统称为风机的特性曲线。
根据特性曲线,已知Q米3/时,H毫米水柱,N千瓦,η〔%〕中的任何一值即可求得其它各值。
图2-4通风机都根据实验预先作出其特性曲线,以供选择通风机时参考。
图2-5但是,有的风机样本中风机中不列出特性曲线,而只列出选择风机的数字表格,性能表中每一种转速按流量、风压等分为八个性能点。
见表2-2表2-2转表中所列出各性能点的最高效率,均在风机最高效率的0.8-0.9范围内。
2.3离心式通风机的选择正确和合理地选择通风机,是保证通风与气力输送系统正常而又经济运转的一个十分重要的步骤,选择的通风机不但要满足管道系统在工作时所必须的风量和风压,而且要使通风风在这样的风量与压力下工作,效率为最高或在它的经济使用范围之内。
目前,通风与气力输送所常用的一些通风机在国内都有生产,可直接从国家产品样本中找到,为了用户选择方便,样本上载有各种型式风机的性能曲线和选择曲线,并对不同型式和机号的风机用一定的符号和参数进行了编制。
因此在进行风机选择前,必须熟悉产品样本。
现将有关这方面的知识介绍如下:2.3.1离心式通风机型号的编制方法离心式通风机的完全标志包括:名称、型号〔由全压系数、比转数、进风口形式、设计顺序号四个数组成〕,机号、传动方式、旋转方向和出风口位置。
一般书写顺序举例如下:例:某排尘离心式通风机全压系数为0.4,比转数为73,单面吸入,第一次设计,叶轮外径600毫米,用三角皮带传动,悬臂支承,皮带轮在轴承外侧,从皮带轮方向正视轩轮为顺时针方向旋转,出风口位置向上。
按规定其完全标志为:排尘〔或C〕离心式通风机4—73-1 1 No6 C右90°排尘〔或C〕——用途;离心式通风机——名称;4——全压系数;73——比转数;1——进口型;1——设计序号;No——机号;C——传动方式;右——旋转方向;90°——出口位置名称:按其作用原理称为离心式通风机。