例题及作业

合集下载

土木工程材料作业题及例题

土木工程材料作业题及例题

量。
0
'
m V0'
三者的区别在于材料体积内部含
孔隙、空隙程度不同。
19
密实度和孔隙率
D V *100% 0 *100% 1 p 材料体积内被固体物质充实的程度
V0
p V0 V *100% (1 0 ) *100%
V0
开口孔隙率:材料中能被水所饱和的孔隙体积与材料在 自然状态下的体积的百分比
材料的组成是指材料的化学成分和矿物组成。材料组成是 材料性质的基础,它对材料的性质起着决定性的作用。
• 组成 – 化学组成 – 矿物组成 – 相组成
结构 ➢ 微观结构(micro-structure) ➢ 细观结构(meso-structure) ➢ 宏观结构(macro-structure)
15
化学组成与矿物组成的关系
(3)质量吸水率:m (msw / m) 100% (30/ 260) 100% 11.5%
(4)开口孔隙率:
PK
Vk V0
23.1%
3
作业3:水泥强度为42.5,强度富余系数1.10,卵石,要配制 36.8MPa的混凝土,估算水灰比。
解:卵石:A=0.48,B=0.33 36.8= 0.48 × 42.5 × 1.10(C/W - 0.33 )
8
计算各筛的分计筛余百分数和累计筛余百分数如下表:
筛孔 分计筛余 尺寸(mm) 量(g)
4.75
5
2.36
100
1.18
150
0.60
145
0.30
80
0.15
20
分计筛余(%)
a1=5/500=1 a2=100/500=20 a3=150/500=30 a4=145/500=29 a5=80/500=16

数学实践性作业的例题

数学实践性作业的例题

数学实践性作业的例题
问题描述
在实践性作业中,通常需要学生运用数学知识解决实际问题。

以下是一些例题,供参考。

例题1:汽车行驶速度
一辆汽车在一段时间内以匀速行驶,已知该段路程长100公里,行驶时间为2小时。

请计算这辆汽车的行驶速度。

例题2:供水管道
一条供水管道长1000米,直径为10厘米。

已知水在管道内的
流速为2米/秒,请计算水在管道中的流量。

解题思路
解题思路1:汽车行驶速度
行驶速度的定义是单位时间内行驶的路程。

由题可知,汽车行驶100公里所花费的时间为2小时,因此速度等于路程除以时间。

即:
速度 = 100公里 / 2小时
解题思路2:供水管道
流量的定义是单位时间内通过一定区域的流体的体积。

由题可知,水在管道内的流速为2米/秒,管道的横截面积可以通过直径计算得到。

因此,流量等于流速乘以横截面积。

即:
流量 = 2米/秒* (π * (10厘米/2)²)
结论
结论1:汽车行驶速度
该辆汽车的行驶速度为50公里/小时。

结论2:供水管道
水在管道中的流量为314.16立方厘米/秒。

注意:以上结论仅供参考,实际情况可能存在误差。

参考资料
- 无。

信号与系统第一章习题及作业(1,2)

信号与系统第一章习题及作业(1,2)
m=0
(2)(余弦序列是否为周期信号,取决于2л/Ω0是正整 (余弦序列是否为周期信号,取决于 Ω 有理数还是无理数。) 数、有理数还是无理数。) 因此, 因此, 2л/Ω0=2л·7/8л=7/4=N/m Ω =2л·7/8л 所以基波周期为N=7; 所以基波周期为N=7; N=7
因为2л/Ω =16л 为无理数, (4) 因为 Ω0=16л,为无理数,则此信号不是周期 信号. 信号. (5) 因为周期信号在[-∞,+∞]的区间上,而本题的重 因为周期信号在[ ∞,+∞]的区间上, 的区间上 复区间是[0, +∞],则此信号为非周期信号 则此信号为非周期信号, 复区间是[0, +∞],则此信号为非周期信号,
f(n) 1 0 3 6 … n
9、判断是否为线性系统?为什么? 、判断是否为线性系统?为什么?
( 3) ( 5) (7 )
y( t ) = ln y( t 0 ) + 3t 2 f ( t ) y( t ) = y( t 0 ) + f 2 ( t ) y( t ) = sin t ⋅ f ( t )
8、一个连续时间系统的输入-输出关系为 、一个连续时间系统的输入 输出关系为
1 t+T y ( t ) = T [ f ( t ) ] = ∫ T2 f (τ )d τ T t− 2 试确定系统是否为线性的?非时变的?因果的? 试确定系统是否为线性的?非时变的?因果的?
解:积分系统是线性的,因此系统是线性系统。 积分系统是线性的,因此系统是线性系统。
sin ω 0 tε ( t )
sin ω 0 ( t − t 0 )ε ( t )tt0 Nhomakorabeat
sin ω 0 tε ( t − t 0 )

小学数学 环形跑道问题教案 例题+练习+作业 带答案

小学数学 环形跑道问题教案 例题+练习+作业 带答案

环形跑到问题1、知识点总结(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题【例题1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?黄莺和麻雀每分钟共行66+59=125(千米),那么周长跑道里有几个125米,就需要几分钟,即500÷(66+59)=4(分钟).【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1-200=300(米/分).⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500÷(300-200)=5(分).300×5÷500=3(圈).【例题2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?第一次追上时,小亚多跑了一圈,所以需要300÷(6-4)=150秒,小亚跑了6×150=900(米)。

小胖跑了4×150=600(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,小胖跑4圈,小亚跑6圈。

【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?400÷(450-250)=2(分钟).【例题3】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?同向而跑,这实质是快追慢.起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大.接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈.背向而跑即所谓的相遇问题,数量关系为:路程和÷速度和=相遇时间.同向而行2分30秒相遇,2分30秒=150秒,两个人的速度和为:300÷150=2(米/秒),背向而跑则半分钟即30秒相遇,所以两个人的速度差为:300÷30=10(米/秒).两人的速度分别为:(10-2)÷2=4(米/秒), 10-4=6(米/秒)【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?甲乙的速度和为:400÷40=10(米/秒),甲乙的速度差为:400÷200=2(米/秒),甲的速度为:(10+2)÷2=6(米/秒),乙的速度为:(10-2)÷2=4(米/秒).【例题4】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

温度例题与作业

温度例题与作业

K t1
E
K
t
t0
t1
3.仪表指示炉温为971 ℃,工艺操作人员反映仪表示值可能偏 低,怎样判断仪表指示值是否正确?
16
4 用K分度号热电偶测量某设备的温度,测得回路中的热电势 为20 mV,已知冷端温度为25 ℃,求设备的实际温度?若用S 分度号的热电偶来测量,在相同条件下,测得的热电势应是 多少?
K
t
t0
17
热端 热电动 7、已知铜—康铜热电偶在测量某热处理炉温度 温度 势 时,冷端温度为T0=20℃,输出热电势为1.908mV。
请列式计算热处理炉温度T。
℃ mV
0
0
10 0.391
20 0.780
30 1.196
40 1.611
50 2.035
60 2.468
70 2.908
80 3.357

EAB T,0 EAB T,T0 EAB T0 ,0 39.17 EAB 20,0 39.17 0.798 39.968mV
则根据插值法得
t 960 39.968 39.703 t 967C 970 960 40.096 39.703
12
二、 计算修正法
用普通室温计算出参比端实际温度Tn,利用公式计算
T=830℃时,EAB(830,0)=34.502mV
∴T=820+(34.493-34.095)/(34.502-34.095) *(830-820)
=829.7℃
14
例:若采用镍鉻-镍硅热电偶基本接法组成测温 系统。数字式显示仪的量程为0~1000℃、精度为 1级,被测温度在显示仪表上的示值为800℃。分 析该系统的测温误差。
2

牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题 非常完整版例题讲解+课后作业

牛吃草问题例题讲解【例题1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【题意翻译】:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例题2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例题3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【例题4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【例题5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【巩固】有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?【例题6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【例题7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【例题8】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【巩固】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【例题9】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【巩固】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【例题10】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【巩固】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【例题11】三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【例题12】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题13】有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【例题14】如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【课后作业】1、牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2、仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

例题及作业复习进程

例题及作业复习进程

例题及作业例2(B)有间歇、有搭接某项目经理部拟承建一工程,该工程有Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等五个施工过程,各施工过程的流水节拍及施工段如下表所示。

规定:施工过程Ⅱ完成后相应施工段至少养护2天;施工过程Ⅳ完成后其相应施工过程要有一天准备时间。

为了尽早完工,允许施工过程Ⅰ和Ⅱ之间搭接施工一天.试计算流水步距、工期,并作施工进度表流水节拍及施工段解题步骤:(1)计算流水步距(累加斜减取大差)Ⅰ:..3...5...7 ...11 ...14 ...kⅠ.Ⅱ = 4 d Ⅱ:..1...4...9 ...12 ...13 ...kⅡ.Ⅲ= 6 d Ⅲ:..2...3...6 ...11 ...13 ...kⅢ.Ⅳ = 2 d Ⅳ:..4...6...9... 12 ...13 ...kⅣ.Ⅴ= 4 dⅤ:..3...7...9 ...10 ...12 ...2)计算工期TT=∑ki,i+1 +∑tj -∑td + Tn= (4+6+2+4)+(2+1)-1+(3+4+2+1+2)= 16+3-1+12= 30 d作如下施工进度表作业:1.相邻两个施工过程先后进入同一流水段施工的时间间隔称为()。

A.流水节拍B.流水步距C.工艺间歇D.流水间歇2.下列()参数为工艺参数。

A.施工过程数B.施工段数C.流水步距D.流水节拍3.某施工段的工程量为200m3 ,施工队的人数为25人,日产量0.8 m3 /人,则该队在该施工段的流水节拍为()。

A. 8天B. 10天C. 12天D. 15天4、某工程由Ⅰ、Ⅱ、Ⅲ、Ⅳ等施工过程组成;现划分为六个施工段;其流水节拍如下表所示;要求施工过程Ⅱ与Ⅲ之间有技术间歇3天,试编制流水施工方案。

趋势预测法例题参考及作业

趋势预测法例题参考及作业

例题1:某公司近五年的销售额数据如下:年份 | 销售额(万元)|2018 | 5002019 | 5502020 | 6002021 | 6502022 | 700解答思路:1. 计算销售额的平均增长率:计算每年的销售额增长量,然后求出这五年销售额增长量的平均值,即为平均增长率。

2. 预测2023年的销售额:根据平均增长率,计算2023年的销售额。

作业1:某学校近五年的学生人数数据如下:年份 | 学生人数|2018 | 10002019 | 10502020 | 11002021 | 11502022 | 1200例题2:某城市近五年的房价数据如下:年份 | 房价(元/平方米)|2018 | 100002019 | 110002020 | 120002021 | 130002022 | 14000解答思路:1. 计算房价的平均增长率:计算每年的房价增长量,然后求出这五年房价增长量的平均值,即为平均增长率。

2. 预测2023年的房价:根据平均增长率,计算2023年的房价。

作业2:某地区的居民收入数据如下:年份 | 居民收入(元/人)|2018 | 200002019 | 210002020 | 220002021 | 230002022 | 24000例题3:某电商平台的月销售额数据如下:月份 | 销售额(万元)|1月 | 3002月 | 3203月 | 3404月 | 3605月 | 380解答思路:1. 计算销售额的平均增长率:计算每个月的销售额增长量,然后求出这五个月销售额增长量的平均值,即为平均增长率。

2. 预测6月的销售额:根据平均增长率,计算6月的销售额。

作业3:某超市的月销售量数据如下:月份 | 销售量(件)|1月 | 10002月 | 11003月 | 12004月 | 13005月 | 1400。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2(B)有间歇、有搭接
某项目经理部拟承建一工程,该工程有Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等五个施工过程,各施工过程的流水节拍及施工段如下表所示。

规定:施工过程Ⅱ完成后相应施工段至少养护2天;施工过程Ⅳ完成后其相应施工过程要有一天准备时间。

为了尽早完工,允许施工过程Ⅰ和Ⅱ之间搭接施工一天.试计算流水步距、工期,并作施工进度表
流水节拍及施工段
解题步骤:
(1)计算流水步距(累加斜减取大差)
Ⅰ:..3...5...7 ...11 ...14 ...
kⅠ.Ⅱ= 4 d
Ⅱ:..1...4...9 ...12 ...13 ...
kⅡ.Ⅲ= 6 d
Ⅲ:..2...3...6 ...11 ...13 ...
kⅢ.Ⅳ= 2 d Ⅳ:..4...6...9...12 ...13 ...
kⅣ.Ⅴ= 4 d
Ⅴ:..3...7...9 ...10 ...12 ...
2)计算工期T
T=∑ki,i+1 +∑tj -∑td + Tn
= (4+6+2+4)+(2+1)-1+(3+4+2+1+2)
= 16+3-1+12
= 30 d
作如下施工进度表
作业:
1.相邻两个施工过程先后进入同一流水段施工的时间间隔称为()。

A.流水节拍
B.流水步距
C.工艺间歇
D.流水间歇
2.下列()参数为工艺参数。

A.施工过程数
B.施工段数
C.流水步距
D.流水节拍
3.某施工段的工程量为200m3 ,施工队的人数为25人,日产量0.8 m3 /人,则该队在该施工段的流水节拍为()。

A. 8天
B. 10天
C. 12天
D. 15天
4、某工程由Ⅰ、Ⅱ、Ⅲ、Ⅳ等施工过程组成;现划分为六个施工段;其流水节拍如下表所
施工过程流水节拍
①②③④⑤⑥
Ⅰ234232Ⅱ322321。

相关文档
最新文档