工程的温度应力计算

合集下载

混凝土温度应力计算方法

混凝土温度应力计算方法

混凝土温度应力计算方法一、前言混凝土结构在施工和使用过程中,由于温度变化和变形等原因,产生的应力可能会对结构的稳定性和安全性产生影响。

因此,对混凝土温度应力的计算和控制是非常重要的。

本文旨在介绍混凝土温度应力的计算方法,包括温度应力的基本概念、计算公式、影响因素、计算过程等内容。

希望能够为混凝土结构的设计和施工提供参考。

二、温度应力的基本概念温度应力是指混凝土结构由于温度变化而产生的内部应力。

当混凝土受到温度变化的影响时,其体积会发生变化,从而引起内部应力的产生。

温度应力的大小与混凝土的热膨胀系数、温度变化量、混凝土的限制程度等因素有关。

温度应力的计算是基于温度变化量和混凝土的热膨胀系数进行的。

温度应力的计算公式如下:σ = α × ΔT × E其中,σ为温度应力,α为混凝土的热膨胀系数,ΔT为温度变化量,E为混凝土的弹性模量。

三、影响因素温度应力的大小受到多种因素的影响,主要包括以下几个方面:1. 温度变化量温度变化量是影响温度应力大小的重要因素。

温度变化量越大,温度应力就越大。

因此,在混凝土结构的设计和施工过程中,需要对温度变化量进行充分的考虑和控制。

2. 混凝土的热膨胀系数混凝土的热膨胀系数是指在单位温度变化下混凝土体积发生的变化量。

混凝土的热膨胀系数与混凝土的配合比、水胶比、骨料种类、骨料粒径、混凝土龄期等因素有关。

不同的混凝土配合比和龄期对应的热膨胀系数也不同。

3. 混凝土的限制程度混凝土的限制程度是指混凝土在受到约束时所能发生的变形程度。

混凝土的限制程度越小,混凝土受到的温度应力就会越大。

因此,在混凝土结构的设计和施工过程中,需要对混凝土的限制程度进行充分的考虑和控制。

4. 混凝土的弹性模量混凝土的弹性模量是指混凝土在受到外力作用时,单位应力下所发生的应变量。

混凝土的弹性模量与混凝土的配合比、水胶比、骨料种类、骨料粒径、混凝土龄期等因素有关。

不同的混凝土配合比和龄期对应的弹性模量也不同。

附录四 坝体混凝土温度和温度应力计算

附录四  坝体混凝土温度和温度应力计算

附录四 坝体混凝土温度和温度应力计算—、温度计算1.坝体混凝土的初期温度计算(有内热源的温度场计算) (1)计算目的:坝体混凝土的初期温度计算目的,主要是确定基础块混凝土(或靠近老混凝土块的混凝土)中的最高温度T ,以便控制基础温差,最高温度T 可按下式计算:r j T T T += (附79)式中 T j ——混凝土的浇筑温度(℃,以下均同),或称入仓温度; T r ——混凝土因水化热和其他原因产生的最高温升。

(2)混凝土的浇筑温度计算:η)(o q o j T T T T -+= (附80)式中 T o ——混凝土的拌和(即出机口)温度(忽略拌和中的热量损失或热量流入影响); T q ——混凝土浇筑时的平均气温;η——考虑混凝土在拌和、装卸、运输、转运和浇筑过程中热量损失或倒罐的系数。

在一般的现场条件下,η=0.2~0.3,当运距较长,转运手续较多以及采用人工方法浇筑时,η =0.4~0.5。

混凝土的拌和温度按下述公式计算:i i ii i o C W T C W T ∑∑=(附81)式中 W i ——每立米混凝土中各种原材料的重量,kg/m 3; C i ——混凝土各种原材料的比热,kcal/(kg ·℃); T i ——混凝土各种原材料的温度。

注:①在公式(附81)中未考虑骨料含水率的影响,当骨料含水率较大,不宜忽略时,应在公式中加以考虑。

②当在混凝土拌和中加入冰屑时,应考虑冰的潜热(80kcal/kg)和有效利用系数0.7~0.8。

③应考虑混凝土拌和时,拌和机发出的机械热,在没有实测资料情况下,可用350kcal 。

④在缺乏具体资料时,各种原材料的比热C 可按附表16采用。

附表16(3)混凝土的温升计算:混凝土入仓后的温升T r ,主要由水化热引起,此外混凝土入仓温度T j 和气温T q 的温差;浇筑块顶面(有时顶面加侧面)和冷却水管的散热以及基岩的吸热作用也对T r 有一定的影响。

混凝土温度应力计算方法

混凝土温度应力计算方法

混凝土温度应力计算方法混凝土浇筑后18d左右,水化热量值基本达到最大,所以计算此时温差和收缩差引起的温度应力。

1、混凝土收缩变形值计算Σy(t)=Σy0(1-e-0.01t)×M1×M2×M3×······×M10式中:Σy(t)——各龄期混凝土的收缩变形值Σy0——标准状态下混凝土最终收缩量,取值3.24×10-4 e——常数,为2.718t——从混凝土浇筑后至计算时的天数M 1、M2、M3······M10——考虑各种非标准条件的修正值,按《简明施工计算手册》表5-55取用,M1=1.0、M2=1.35、M3=1.0、M4=1.41、M5=1.0、M6=0.93,M7=0.77,M 8=1.4、M9=1.0,M10=0.9Σy(18)=3.24×10-4(1-2.718-0.01×18)×1×1.35×1×1.42×1×0.93×0.77×1.4×1×0.9=0.93×10-42、混凝土收缩当量温差计算Ty(t)=- Σy(t)/α式中:Ty(t)——各龄期混凝土收缩当量温差(℃),负号表示降温。

Σy(t)——各龄期混凝土的收缩变形值α——混凝土的线膨胀系数,取1.0×10-5Ty(t)=-0.93×10-4/1.0×10-5=-9.3℃3、混凝土的最大综合温度差△T=T2+2/3Tmax+Ty(t)-Tn式中:△T ——混凝土的最大综合温度差(℃)T2——混凝土拌合经运输至浇筑完成时的温度(℃)Tmax——混凝土最高温开值(℃)Ty(t)——各龄期混凝土收缩当量温度(℃)Tn ——混凝土浇筑后达到稳定时的气温,取55℃△T=35.95+2/3×78.3+(-9.3)-35=43.85℃4、混凝土弹性模量计算E(t)=Ee(1-e-0.09t)式中:E(t)——混凝土从浇筑后至计算时的弹性模量(N/mm2)Ee——混凝土的最终弹性模量(N/mm2),可近视取28d的弹性模量。

工程的温应力计算

工程的温应力计算

一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。

2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。

3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。

二、温差取值对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:1,施工阶段最低或最高温度(T2)选取:A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。

B,对地上结构,可以认为完全暴露在室外。

可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。

2,施工阶段基准温度(T1)选取:结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。

因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。

当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12=13.3。

因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。

只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。

探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。

温度应力计算

温度应力计算

温度应力计算第四节温度应力计算一、温度对结构的影响1 温度影响(1)年温差影响指气温随季节发生周期性变化时对结构物所引起的作用。

假定温度沿结构截面高度方向以均值变化。

则12t t t -=?12t t t -=?该温差对结构的影响表现为:对无水平约束的结构,只引起结构纵向均匀伸缩;对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力;(2)局部温差影响指日照温差或混凝土水化热等影响。

A :混凝土水化热主要在施工过程中发生的。

混凝土水化热处理不好,易导致混凝土早期裂缝。

在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。

如埋入水管散热等。

B :日照温差是在结构运营期间发生的。

日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。

桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i =该类三维温度场问题较为复杂。

在桥梁分析计算中常采用简化近似方法解决。

假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i =进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。

如只考虑竖向温度变化的一维温度场为:),(t z f T i =我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:2 温度梯度f(z,t)(1)线性温度变化梁截面变形服从平截面假定。

对静定结构,只引起结构变形,不产生温度次内力;对超静定结构,不但引起结构变形,而且产生温度次内力;(2)非线性温度变化梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产。

生约束温度应力,称为温度自应力σ0s对静定结构,只产生截面的温度自应力;对超静定结构,不但产生截面的温度自应力,而且产生温度次应力;二、基本结构上温度自应力计算1 计算简图23 ε和χ的计算三、连续梁温度次内力及温度次应力计算采用结构力学中的力法求解。

温度应力计算

温度应力计算

温度应力计算B.6.1自约束拉应力的计算可按下式计算:式中:σz(t)——龄期为t时,因混凝土浇筑体里表温差产生自约束拉应力的累计值(MPa);△T1i(t)——龄期为t时,在第i计算区段混凝土浇筑体里表温差的增量(℃)。

E i(t)——第i计算区段,龄期为t时,混凝土的弹性模量(MPa);α——混凝土的线膨胀系数;H i(t,τ)——龄期为τ时,在第i计算区段产生的约束应力,延续至t时的松弛系数,可按表B.6.1取值。

表B.6.1 混凝土的松弛系数注:τ为龄期,H(t,τ)为在龄期为τ时产生的约束应力,延续至t时的松弛系数。

B.6.2混凝土浇筑体里表温差的增量可按下式计算:式中:j——为第i计算区段步长(d)。

B.6.3在施工准备阶段,最大自约束应力可按下式计算:式中:σzmax——最大自约束应力(MPa);△T1max——混凝土浇筑后可能出现的最大里表温差(℃);E(t)——与最大里表温差△T1max相对应龄期t时,混凝土的弹性模量(MPa);H(t,τ)——在龄期为τ时产生的约束应力,延续至t时(d)的松弛系数。

B.6.4外约束拉应力可按下式计算:式中:σx(t)——龄期为t时,因综合降温差,在外约束条件下产生的拉应力(M Pa);△T2i(t)——龄期为t时,在第i计算区段内,混凝土浇筑体综合降温差的增量(℃)。

μ——混凝土的泊松比,取0.15;R i(t)——龄期为t时,在第i计算区段,外约束的约束系数。

L——混凝土浇筑体的长度(mm);H——混凝土浇筑体的厚度,该厚度为块体实际厚度与保温层换算混凝土虚拟厚度之和(mm);C x——外约束介质的水平变形刚度(N/mm3),可按表B.6.4取值。

表B.6.4 不同外约束介质的水平变形刚度取值(10-2N/mm3)。

第十五章工程结构温度应力计算方法

第十五章工程结构温度应力计算方法
15.1
第十五章 工程结构温度应力计算方法
本章内容
•砖混结构温度应力实用计算方法 •钢筋混凝土结构温度应力理论计算方法 •结 语
•思考题与习题
15.2
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
一. 砖混结构温度应力计算中存在的问题
因砖混结构构件组合的复杂性,加上材质不匀、力学性能和热工系数差 异,在温度作用下,热胀冷缩所产生的实际应力变化很大,故要寻求能 完全反映实际的理论计算方法,目前还有很多困难。在国外,有美国的 R.E.Copeland及以色列的S.Rosen-Haupt、A.Kofman、I.Rosenthaul的 方法;在国内,有1963年裂缝学术会议中所采用的方法和王铁梦所倡导 的略算法。这些计算方法均有较广泛的代表性,为砖混结构温度应力的 研究工作打下了基础。但近几十年来研究进展不大。在实际工程应用中, 还存在一些需要继续探讨的问题。 (1) 上述解法,都是采用差分法,按实体墙板来分析的,与留有大量门 窗洞口的实际墙体相比,应力值出入很大,因为洞口存在应力集中问题。 如图15.1所示,一块两端受有均匀拉应力σ0的墙板,在不开洞的情况下, 任何断面上的应力可认为是均匀分布的。如果在墙板面开一直径为d的 小圆孔,根据吉尔西方法求解离圆心距离为的任一点上的正应力,如图 2 4 15.1(a)所示,其值为 1 d 3 d r = o (2+ 2 + 4 ) 4 r 16 r 2
15.8
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
顶板 y T1 墙板 T2 Q3 Q2 T3 Q2 Q2 Q2 (c) 底板 Q1 Q1 Q3 Q1 Q11 Q1 (b) 顶板 底板 Q2 Q2 Q1 Q1
δ

混凝土面层温度应力计算公式

混凝土面层温度应力计算公式

混凝土面层温度应力计算公式引言:混凝土是一种常用的建筑材料,具有良好的耐久性和承载能力。

然而,在使用过程中,混凝土受到温度变化的影响,可能会产生应力。

因此,了解混凝土面层温度应力的计算公式是非常重要的,可以帮助我们评估混凝土结构的安全性和稳定性。

一、混凝土面层温度应力的原因和影响因素混凝土面层的温度应力主要是由于温度变化引起的材料膨胀或收缩不均匀导致的。

温度的变化会导致混凝土发生体积变化,从而产生内部应力。

以下是影响混凝土面层温度应力的主要因素:1. 温度变化幅度:温度变化幅度越大,混凝土面层的温度应力就越大。

2. 混凝土材料的热膨胀系数:不同的混凝土材料具有不同的热膨胀系数,热膨胀系数越大,温度应力越大。

3. 混凝土的约束条件:混凝土的约束程度越大,温度应力越大。

4. 混凝土的几何形状和结构:不同的混凝土结构和几何形状对温度应力的分布和大小有影响。

二、混凝土面层温度应力的计算公式混凝土面层温度应力的计算公式可以通过考虑混凝土的热膨胀和约束情况来推导得出。

一种常用的计算公式是线膨胀系数法,其计算公式如下:ΔL = α × L × ΔT其中,ΔL为混凝土面层的长度变化,α为混凝土的线膨胀系数,L 为混凝土的初始长度,ΔT为温度变化。

温度应力可以通过以下公式计算:σ = E × ΔL / L其中,σ为混凝土面层的温度应力,E为混凝土的弹性模量,ΔL为混凝土面层的长度变化,L为混凝土的初始长度。

三、混凝土面层温度应力的计算实例为了更好地理解混凝土面层温度应力的计算过程,我们来看一个简单的实例。

假设一个混凝土面层的初始长度为10m,温度变化为50℃,混凝土的线膨胀系数为12×10^-6/℃,弹性模量为30 GPa。

根据线膨胀系数法计算混凝土面层的长度变化:ΔL = α × L × ΔT= 12×10^-6/℃ × 10m × 50℃= 0.006m然后,根据温度应力的计算公式计算混凝土面层的温度应力:σ = E × ΔL / L= 30 GPa × 0.006m / 10m= 18 MPa因此,根据以上计算,该混凝土面层在温度变化为50℃时,将产生18 MPa的温度应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程的温度应力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
一、温差效应理论
1,局部温差不对整体结构产生影响,只考虑整体温差。

2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。

3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。

二、温差取值
对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:
1,施工阶段最低或最高温度(T2)选取:
A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影
响,一般不需要计算)。

B,对地上结构,可以认为完全暴露在室外。

可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。

2,施工阶段基准温度(T1)选取:
结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。

因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。

当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=
(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12
=13.3。

因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。

表1 2000年~2009年青岛月平均气温
只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。

探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。

三、混凝土长期收缩的影响
根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。

混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。

由于竖向构件
的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----⨯≈⋅⋅⋅-⨯=ε 其中M M 为各种修正系数,各修正系数的取值和对应的影响因素见下表:
表8.3.1 计算混凝土收缩的修正系数
时间无限长即整个龄期混凝土的收缩徐变应变为
401.041024.3)1(1024.3)(-∞--⨯=-⨯=∞e y ε
这样,任意时间t (天数)时混凝土剩余未完成的收缩应变为:
混凝土收缩的应变量可等同于混凝土在一定负温差下产生的收缩应变量,混凝
土温差应变为T y ∆⋅=αε,其中α为混凝土线膨胀系数,α =1×10-5
/℃
因此混凝土剩余未完成的收缩应变当量负温差为 t y e T 01.04.32/-⨯==∆αε。

(1)假设结构后浇带在施工2个月后浇注,则结构剩余未完成的收缩应变当量负温差为8.174.32/6001.060=⨯==∆⨯-e T y αε℃;
(1)假设结构后浇带在施工6个月后浇注,则结构剩余未完成的收缩应变当量负温差为4.54.32/18001.0180=⨯==∆⨯-e T y αε℃;
计算时的总温差为季节温差与收缩当量温差相叠加,如果结构后浇带在施工6个月后封闭,则降温温差为24+5.4=29.4℃;升温温差18-5.4=12.6℃。

四、计算操作
采用PMSAP 软件对整体模型进行温差和收缩效应分析,楼板采用弹性膜模拟,分层对整个平面内的节点施加相应的温差作用进行计算。

楼板应力不考虑
梁及其翼缘对其的分担作用
【1)为考虑砼的徐变应力松弛,砼构件的温度内力可以乘以折减系数0.3,钢构件不折减;2)温度效应的组合贡献:可以取组合值系数0.7乘以分项系数1.2=0.84;3)为考虑砼构件裂缝引起的刚度退化,砼构件的刚度(即混凝土弹性模量)可以乘以折减系数0.85,钢构件不折减。


从计算结果中可以读出楼板最大主拉应力值σMPa (局部应力引起的裂缝对整个结构的影响不大,可不考虑),也可读出相应楼板温度配筋面积。

则需要配置双层双向温度筋的单层每延米钢筋面积:
As=
钢筋抗拉强度标准值楼板厚度

混凝土抗拉强度标准值(楼板应力
x2x1000
x
-
,如C30混凝土
(ftk=2.02MPa),三级钢(fyk=400MPa),楼板厚度150mm,楼板温度应力4.62MPa(拉力),则楼板单侧每米钢筋面积
As=
00
4x250x1000
1x
.01
2-
62
.4)

=489mm2,即需要另外附加的楼板温度钢筋为双层10@150(524 mm2)可满足要求。

至于温度效应引起的压力,混凝土自身抗压强度基本可以抵消,不再另行计算。

相关文档
最新文档