天才的思维模式

合集下载

天才的行为的七个特征

天才的行为的七个特征

天才的行为的七个特征1.创造力:天才个体在创造新的思想、观念、理论或成果方面表现出非凡的能力。

他们常常能够突破传统的思维框架,提出新颖而有价值的想法。

通过观察、思考、实验和尝试,他们能够找到问题的独特解决方案,并产生具有深远影响的创新。

2.学习和记忆能力:天才个体对知识的吸收和应用有着超凡的能力。

他们对于学习新的事物和领域的渴望和好奇心往往比常人更强烈,并且能够迅速掌握复杂的概念和技巧。

此外,他们在知识的储存和检索方面也表现出优秀的记忆能力,能够轻松地回忆起过去学到的知识。

3.创业精神和决策能力:天才个体通常具有强烈的创业意愿和勇气。

他们愿意尝试新的事物和风险,不轻易满足于现状,而是致力于寻找更好的方法和机会。

与此同时,他们能够快速做出明智而果断的决策,不被干扰或迷失方向,并根据自己的判断和直觉行动。

4.坚持和毅力:天才个体往往具备坚韧的品质和顽强的意志力。

他们对于目标的追求和愿景的实现有着强大的动力,即使遭遇困难和挑战,也能保持积极的态度和不屈不挠的精神。

他们善于自我激励,并且对于自己的工作和项目有持续的热情和投入。

5.独立思考和判断力:天才个体往往有着独特的思维方式和独立的观点。

他们能够超越主流的观念和权威,勇于提出自己的见解。

他们对于问题和挑战的分析能力非常出色,并且能够从各个角度审视问题,做出明智的决策和判断。

6.对细节的关注和批判性思维:天才个体对于细节和完美的追求非常强烈。

他们注重细节,善于从琐碎中发现问题,并能够找到解决方案。

此外,他们对于自己和他人的工作也有着高度的批判性思维,能够准确地识别出问题所在,并提出改进的建议。

7.良好的人际交往能力:天才个体通常具备优秀的人际交往能力。

他们能够有效地与他人合作和沟通,倾听和理解他人的观点,并能够以其中一种方式影响和激励他人。

他们在团队中往往能够充当领导者的角色,并能够协调和平衡不同个体之间的利益和需求。

总之,天才的行为具有非凡的创造力、学习和记忆能力,以及创业精神和决策能力。

成为天才的13种方法

成为天才的13种方法

成为天才的13种“思维工具美国教授鲁特伯恩斯坦说,伟大的思想家使用过13种思维工具”,使用这些工具可以使人成为天才。

它们是:1、观察:通过观察磨练所有的感官,从而使思维变得非常敏锐。

2、想象:使用某些或全部感官在心里创造各种形象。

3、抽象:观看或思考某种复杂事物,去粗取精,化繁为简,把唯一本质的东西找出来。

4、模式认知:观察和研究不同的事物,找出它们在结构上或性能上的相似之处。

5、模式形成:找到或创立新方法,对事物活理出头绪,纳入规范。

6、类比:虽然两件事物迥然不同,但可以从功能上找到相同点。

7、躯体思维:使用肌肉、肠胃的感觉以及各种感情状态。

8、感情投入:将自己设想为自己所研究、绘画或写作的对象,与之合而为9、层次思维:能把情绪变成不同的层次,就象把素描改成雕塑一样。

10、模型化:能将复杂的事物简化成一个模型。

11、游戏中的创造力:能从毫无目的的游戏活动中演化出技术、知识和本能。

12、转化:使用新获得的思维技巧,形成新发明的基本构图,然后制出模型。

13、综合:使用各种帮助思维的工具得出结果便是综合。

能用各种不同的方式对事物进行思考,诸如身体、直觉、感官、精神和智力等。

创造性思维的训练一、发散思维训练发散思维是培养创造性思维的重要途径,通过以下发散训练,有利丁培养创造性思维能力。

1. 材料扩散:以某个物品为材料,当做扩散点,让学生设想它的各种用途。

如说出回形针的用途:把纸或文件别在一起,做发火……2. 功能扩散:以某种事物的功能作为扩散点,设想出获得该功能的各种可能性。

如怎样达到照明的目的:点油灯,开电灯,点火把……3. 结构扩散:以某种事物的结构为扩散点,设想出利用该结构的各种可能性。

如尽可能多地说出含圆形结构的东西:大阳,水滴,洒杯……4. 特征扩散:以某种事物的特征为扩散点,设想出利用某种特征的各种可能性。

如利用红色可做什么:禁止通行的信号灯,红印泥,红墨水……5. 方法扩散:以人们解决问题或制造物品的某种方法为扩散点,设想出利用该种方法的各种可能性。

天才的思维是怎样的?

天才的思维是怎样的?

天才的思维是怎样的?画家达·芬奇说:“有天资的人,表面看来,他们工作得最少的时候,实际上是他们工作得最多的时候,因为他们是在构思,并把想法酝酿成熟,然后准确地表达出来。

”科学家法拉第说:“世人何尝知道,在那些通过科学研究工作者头脑产生的思想和理论当中,有多少被他自己扼杀了。

就是最有成就的科学家,他的建议、希望以及初步结论得以实现的,也只有不到十分之一。

”天才的形成,好像是难以捉摸、近乎神秘的。

爱因斯坦常说他与普通人没有什么差别,为什么他对科学贡献能如此之大,而常人却没有呢?区别在哪里?主要是因为爱因斯坦掌握了思维的规律,他的大脑充分发挥了思维作用。

正如唐甄在《潜书》中所说:“心,灵物也;不用则常存,小用之,则小成;大用之,则大成;变用之,则至神。

”所谓“变用”,就是按思维的规律去用它,掌握了规律,思维作用就会大得不得了,这句话正是“天才的思维奥秘”的点晴之笔,天才的思维是怎样的呢?认识思维规律,运用思维规律发挥大脑的创新作用。

一、掌握现代思维方式著名科学家杨振宁说:“优秀的学生并不在于有优秀的成绩,而在于具有优秀的思维方式。

所谓优秀的思维方式,就是为了追随现代社会发展的轨迹,为了迎接现代化浪潮的挑战,为了紧密结合工作方式和生活方式的现代化,将自己塑造为一个多层次的、立体式的现代人。

”在现代人的模式的层次中,模式的最低层次,是生活方式,模式的最高层次,则是思维方式。

因此,决定现代人最主要品格的,是思维方式的现代化。

所谓现代化思维方式是伴随着系统论、信息论和控制论的创立而产生的系统思维方式,和传统思维方式相比,它有三个显著特点。

1、整体性。

现代化思维方式是系统思维方式的基础和核心。

它揭示了自然界普遍存在的整体性联系,即任何一个元素的变化,都会影响其他元素,并影响整个的变化;同时,任何一元素的变化,又不是孤立的,又要依赖于所有其他的元素。

因此,它要求把客体对象作为一个有机联系的整体,放置在系统联系中来考察,认为整体的性质、功能和规律只存在于整体中各部分的相互联系和相互作用之中,各个部分的功能和特点的总和,不等于整体的功能和特征。

天才少年的十大特征

天才少年的十大特征

天才少年的十大特征
1. 出类拔萃的智力:天才少年具备高智商和智力天赋,能够快速地理解和掌握新知识和技能。

2. 独立思考的能力:他们有自己独特的思考方式和创新思维,能够想到别人想不到的想法和解决问题的方法。

3. 极强的记忆力:天才少年能够记住大量的信息和知识,可以复述和运用这些信息。

4. 对知识的极度渴求:他们对学习和知识的兴趣很大,会不断地探索和研究新领域。

5. 快速学习的能力:他们能够迅速地学习新知识和技能,从而成为领域专家。

6. 优秀的沟通能力:天才少年善于表达自己的观点和想法,能够与其他人有效地交流和合作。

7. 强烈的好奇心:他们对周围的事物和现象具有强烈的好奇心和求知欲,不断地探索和发现新的问题和答案。

8. 高度的自我要求:他们对自己和他人都有很高的标准和要求,致力于不断超越自己和追求卓越。

9. 多才多艺:天才少年不仅在某一领域表现突出,还有多方面的才华和技能,如音乐、体育等方面。

10. 独立性强:他们独立思考,并愿意为自己的观点和想法坚持不懈,不随波逐流。

创意天才的思维方法

创意天才的思维方法

创意天才的思维方法嘿,你知道吗?创意天才可都有着特别的思维方法呢!这就好像他们手里有一把神奇的钥匙,能打开那扇通往无限创意世界的大门。

他们的脑子啊,就像一个超级热闹的创意集市。

各种奇思妙想在里面跑来跑去,互相碰撞出奇妙的火花。

他们不会被常规束缚住,不像咱有时候,哎呀,就死脑筋,一条道走到黑。

创意天才总是能从最普通的事物中发现不寻常。

比如说,看到一个苹果从树上掉下来,一般人可能就觉得,哦,苹果熟了呗。

可人家牛顿就能从中悟出万有引力!这差距咋就这么大呢?这就好比同样是走在路上,咱看到的是路,人家看到的是一路的风景和故事。

他们还特别善于联想。

看到天上的云,能想到棉花糖,再想到甜蜜的回忆;看到地上的落叶,能想到生命的轮回,再想到人生的起伏。

这思维就跟那脱缰的野马似的,一路狂奔,停都停不下来。

而且啊,创意天才还特别爱问问题。

“为什么天空是蓝色的?”“为什么鸟儿会飞?”“为什么人要睡觉?”这些看似幼稚的问题,往往就是他们创意的源头。

咱们有时候就是太懒了,不愿意多问几个为什么,就这么错过了好多好点子。

他们也不害怕失败。

就像爱迪生发明电灯,失败了那么多次,要是一般人早放弃了。

可人家说啥?“我没有失败,我只是找到了一万种行不通的方法。

”听听,多霸气!这就像是在黑暗中摸索,人家不害怕摔倒,反而把每次摔倒都当成是找到正确道路的机会。

咱再想想,创意天才是不是都特别有好奇心?对啥都感兴趣,都想去研究研究。

看到个新东西,就跟小孩子看到新玩具似的,兴奋得不行。

咱有时候是不是对很多东西都麻木了,觉得没啥新鲜的?还有啊,他们很会打破常规。

别人说往东走,他们可能就往西去看看,说不定那边有更美的风景呢。

这就像玩游戏,人家不按套路出牌,反而能出奇制胜。

咱要是也能学学这些创意天才的思维方法,那咱是不是也能变得更有创意呢?咱也能从日常的点点滴滴中发现那些隐藏的宝藏。

咱也能让自己的脑子变得像个热闹的创意集市,而不是一潭死水。

别再总是羡慕那些创意天才啦,咱也行动起来呀!多观察,多联想,多问问题,别怕失败,保持好奇心,打破常规。

天才的八种学习思维方法

天才的八种学习思维方法

天才的八种学习思维方法学习是每个人成长和提升的重要过程。

天才之所以能在不同领域取得卓越成就,一部分原因是他们拥有独特的学习思维方法。

下面将介绍天才的八种学习思维方法,希望能够对大家的学习有所启发。

1.多元思考:天才往往具有开放的思维,能够将不同的视角和思维模式进行整合和应用。

他们能够从多种学科和领域汲取知识,将它们融会贯通,形成独特的思考方式。

这种多元思考的能力有助于天才发现问题的不同方面,解决问题时会有更多的创新思路。

2.深度思考:天才可以长时间地专注于一个问题或一个领域,并以深入的思考方式来探索其内涵。

他们会反复思考问题的本质,通过分析和梳理,深入发掘问题的内部逻辑和规律,进而形成独到的观点和见解。

5.反思思考:天才重视学习的反思过程。

他们会对自己的学习和思考进行反思,总结经验和教训,并对自己的学习方法进行调整和优化。

这种反思思考的能力有助于天才不断提高自己的学习效果,并取得更好的成果。

6.实践思考:天才注重将学习和实践相结合。

他们会将学到的知识和理论应用于实际问题的解决中,通过实践检验和验证自己的思考和理论。

这种实践思考的能力有助于天才将理论与实践相结合,形成实际有效的解决方案。

7.创造性思考:天才具有独特的创造性思维能力。

他们能够从不同的角度和思维模式出发,产生新的想法和观点。

他们会尝试不同的方法和途径,寻找解决问题的新思路和创新方案。

8.持续学习思维:天才是终身学习者,他们具有持续学习的思维方式。

他们不仅关注学习过程中的知识获取,更注重学习后的知识应用和转化。

他们会不断地学习和探索新的领域和知识,以保持学习的动力和持续进步。

通过这八种学习思维方法的运用,可以帮助我们提升学习的效果和质量,培养自己的创新能力和解决问题的能力。

当然,这些方法并不是一成不变的,大家可以根据自己的特点和情况进行调整和优化。

希望大家能够在学习中发挥天才的潜力,取得更好的成果。

天才的数学技巧

天才的数学技巧

天才的数学技巧
天才的数学技巧可以包括以下几个方面:
1. 快速计算能力:天才数学家往往具备快速而准确地进行基本数学计算的能力。

他们可以通过巧妙的心算技巧,迅速得出结果。

2. 抽象思维:天才数学家具备深层次的抽象思维能力,能够将具体的问题抽象化,从而找到解决问题的通用方法。

3. 創造力:天才数学家能够以独特的方式思考和解决数学问题。

他们有时会发现一种全新的方法或观点,从而推动数学的发展。

4. 非线性思维:天才数学家能够运用非线性的思维方式来解决问题。

他们会思考问题的多个方面,并同时考虑它们之间的关系,这有助于找到更加深入和全面的解决方案。

5. 直观感知:天才数学家常常拥有强大的直观感知能力,能够通过几何图像或符号之间的关系来解决问题。

他们可以在脑海中形象地构建数学模型,从而帮助他们理解和解决复杂的数学问题。

6. 协同学习能力:天才数学家通常擅长与其他数学家合作并进行互动学习。

他们会与其他人分享和交流想法,从中受益,并找到共同进步的机会。

虽然以上技巧对于一些天才数学家来说是常见的,但需要注意的是,数学天赋不仅仅取决于技巧,更重要的是对数学的热爱和持续的学习。

凯库勒的思维方式

凯库勒的思维方式

凯库勒的思维方式凯库勒的思维方式凯库勒的思维方式是在事物之间建立联系,并展开联想。

把不同对象放在一起比较的能力是天才突出体现的一种特殊思想风格。

达?芬奇在铃声与石头入水时发出的声音之间建立了联系,使他得出了声音以波的形式传播的结论。

德国化学家弗里德里希·凯库勒梦到一条蛇咬住自己的尾巴,从而凭知觉理解了苯分子的环状结构。

塞缪尔·莫尔斯在设法制造出强大的足以越过大洲、大洋的电报信号上一筹莫展时,由更换马匹的驿站联想到了电报信号的中继站,从而找到了每隔一段距离就把电报信号放大的解决办法。

天才的思维方式 1.多角度看待问题,以发现别人从未想到(或还没有公开发表过)的新论点天才往往善于发现某个他人没有采取过的新角度。

当达?芬奇发现自己看待某个问题的第一种角度太偏于通常方式时,他就会不停地从一个角度转向另一个角度。

爱因斯坦的相对论就是不同视角之间的关系的一种解释,弗洛伊德的精神分析法旨在找到与传统方法不符的细节,以便发现一个全新的视角。

2.思想形象化、具体化文艺复兴时期,人类的创造性得到了迅速发展,这种发展与图画和图表对大量知识的记录和传播密切有关。

伽利略用图表形象地体现自己的思想,从而在科学上取得了革命性的突破。

爱因斯坦的思想是非常直观的,他运用直观和空间方式思考,而不是沿着纯数字或文字的推理方式思考。

当爱因斯坦遇到一个难题时,他总是使用尽可能多的不同方法来展示问题,包括使用多种图表。

他坚信在他的思考过程中,一万句话或数字所起的作用远不如一张图表给他的启发能形象地说明问题。

3.亲自动手天才们最大的特点是高生产率。

爱迪生一生拥有1093项发明创造。

为了保证工作效率,他给自己以及助手们规定新点子配额,以此来保证创造力,他的个人定额是每l0天一项小发明,每半年一项大发明。

加州戴维斯州立大学的校长凯斯·辛姆敦通过研究历史上的2036名科学家发现:最受人尊敬的科学家们不仅有非常伟大的创新,同时也有许多“不佳”的想法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德赫罗特还让参加试验的棋手在短时间内审视棋局,然后凭[wiki]记忆[/wiki]重建棋局。

在这样的试验条件下,任何棋手的实力都会暴露无遗。

就算用长达30秒钟的时间去回忆棋局,新手能记起的细节也是支离破碎的。

而象棋大师,即使只瞟上几眼,也能轻松重建棋局。

这种差别源于一种特殊记忆,也就是对棋局的特异性记忆。

特殊记忆是训练的结果,因为在一般性的记忆测试中,大师的表现并不比其他人好。

同样的现象还能从桥牌牌手(多场牌局后,仍记得出过的牌)、计算机程序设计师(能重组大量的计算机编码)和音乐家(能记住大段大段的乐章)身上看到。

在特殊领域,对主题事务的记忆能力,是衡量专业技术水平的重要标准。

一个不常见的案例也能证明,知识结构才是专家们战无不胜的法宝。

一个叫D.H(姓名不全)的业余棋手,经过9年的训练,终于在1987年成为了加拿大一流的象棋大师。

美国佛罗里达州立大学的心理学教授尼尔·蔡内斯(Neil Charness)指出,尽管这个棋手的实力已经今非昔比,但是他对棋局的分析范围并不比从前广泛,反而是日益精深的棋局知识和相关策略帮助他连连告捷。

非凡能力来自何方在上世纪60年代,美国卡耐基-梅隆大学的心理学家赫伯特·西蒙(Herbert Simon,1978年诺贝尔奖得主)和威廉·蔡斯(William Chase),试图通过研究专家的记忆局限性来更好地洞察专家的记忆能力。

按照德赫罗特的研究思路,他们请各个级别的棋手重建曾被人动过的棋局。

不过这盘棋局不是大师对弈后的残局,而是一盘乱摆的棋局。

在重建这盘随机棋局时,棋手间的差距并不明显。

因此,象棋运动中的特异性记忆不只取决于象棋这项运动,还取决于棋局的类型。

这些实验验证了早期的研究结果,有力地证明了能力的非通用性,不同的领域需要不同的能力。

早在一个世纪前,美国心理学家爱德华·桑代克(Edward Thorndike)就首先提出了上述理论。

当时他指出,拉丁语说得好不等于英语水平高,几何证明也不能教会人们在日常生活中运用逻辑思维。

象棋大师要处理的信息,数量极其庞大,似乎已经超越了人类记忆的极限。

为了解释他们这种超凡的能力,西蒙引入了模块理论。

1956年,美国普林斯顿大学的心理学家乔治·米勒(George Miller)曾发表过一篇著名的论文——《非凡的数字7±2》。

米勒在论文中指出,人的记忆有一定的限度,每次只能处理5~9条信息。

西蒙强调说,通过把不同层次的信息构建成一个一个模块,大师就能突破记忆的极限。

通过这种方法,他们会去捕捉5~9个模块,而不是5~9个具体细节。

以“Mary had a little lamb”(玛丽有一只小羊羔)这句诗为例。

诗里的信息模块数取决于读者对诗歌与英语的熟悉程度。

对于以英语为母语的人,这句诗是一个非常大的模块——著名诗歌的一部分;对于懂英语却不懂诗歌的人,这就是一句话——一个完整的模块;对于记得单词却不明白含义的人,这句话是5个模块(单词);而对于认得字母,却不认识单词的人,这句诗就是18个模块(字母)!在象棋新手和象棋大师之间就能清楚地看到这种差别。

假如有一个摆着20个棋子的棋局放在面前,新手和大师会怎么处理其中的信息呢?新手满眼都是棋格,而棋子又有多种摆法,因此他获取的信息模块远多于20个。

那么大师呢?他会将棋局整体化,然后把整个棋局分割成5~6个模块,这样记起来不就轻松多了!根据获取一个新的记忆模块所花掉的时间,以及普通棋手成长为大师级选手所需要的时间,西蒙估算出了象棋大师的大脑中存储的信息模块数:5万~10万个!就像我们听几个字就能背出一首古诗一样,象棋大师只要看一眼棋局,就能从记忆中提取出相应的信息模块。

但是模块理论还有缺陷。

对一些记忆现象,例如当大师们精力分散时,他们的表现并没有受到明显影响,模块理论就无法给出合理的解释。

佛罗里达州立大学的K·安德斯·埃里克森(K. Anders Ericsson)与蔡内斯认为,可能还存在另外一种机制,使得专家可以把长时记忆当作暂存区使用。

埃里克森说:“训练有素的棋手在不看棋盘的情况下,能以几乎正常的水平下棋,要用模块理论来解释这样的事例,几乎不可能。

因为你必须先了解棋局,然后才能在记忆中把它翻出来。

”这一处理过程需要改变已有的信息模块,就像倒背“Mary had a little lamb”,虽然可以做到,但是很难,而且还会错误不断。

然而在下盲棋的时候,象棋大师仍然可以精准快速地下棋,让对手无所适从。

埃里克森还引证了内科医生的学习过程。

医生们先把信息变为长时记忆,当需要使用这些信息来诊断疾病时,再把它从记忆中提取出来。

埃里克森还列举了一个最普通、最常见的例子——阅读。

1995年,他在研究中发现,越是熟练的读者越不容易受到干扰。

就算阅读被打断,熟练的读者也能在几秒钟的时间内恢复原有的阅读速度。

研究人员用长时工作记忆来解释这一现象。

这一说法似乎自相矛盾,因为长时记忆与工作记忆是两个相互对立的概念。

不过在2001年,德国康斯坦茨大学进行的大脑成像研究却为这一说法提供了依据。

研究结果表明,较之新手,专业棋手的长时记忆显然更容易激活。

上世纪90年代末期,西蒙曾提出过一种竞争理论。

英国伦敦布鲁内尔大学的费尔南德· 戈贝特(Fernand Gobet)对它推崇备至。

竞争理论实际上是模块理论的延伸,它引入了“模板”的概念,也就是一种极其典型并包含了大约12只棋子的大型布局。

模板拥有许多插口,大师可以插入卒或者相这样的变量。

再以诗句“Mary had a little lamb”为例,如果某个词的韵律与诗句中的词等同,那么就可以用这个词来替换诗中的词。

例如,用“Larry”替代“Mary”,用“pool”来替代“school”等等。

任何知道原始模块的人,都能在瞬间插入另一个词。

天才是怎样“炼”成的要想在大脑中建立复杂的知识结构,就得不断努力。

西蒙提出了“十年规则”,他认为要掌握任何技艺,十年的艰辛历程是无法避免的。

即便是数学天才高斯,音乐奇才莫扎特,象棋神童菲舍尔,也得去拼搏、去奋斗,也许他们所付出的努力是常人难以想象的。

近年来,象棋天才似乎不断涌现,但这都归因于计算机的强大功能。

计算机能让孩子们研究海量的大师级比赛,频繁地与大师级程序对抗,于是在较短的时间内,他们就能积累丰富的实战经验。

1958年,15岁的菲舍尔获得了象棋大师的称号,当时这一消息震惊了全世界。

而目前的记录保持者、乌克兰的谢尔盖·卡尔亚金(Sergey Karjakin)获得大师称号时,仅有12岁零7个月!埃里克森认为,光是练习远远不够,还需要全身心投入,不断挑战极限、超越自我。

就像业余爱好者,他们可能会用大量的时间来练习下棋、打高尔夫球、演奏乐器,却始终达不到专业水平;然而一个经过正规训练的学生,却能在较短的时间内超过他们。

这是一个很有趣的现象,说明练习和比赛对棋手的帮助似乎不如踏踏实实地学习。

训练和比赛的主要价值在于,新手可以从中发现自己的缺陷,从而在以后逐渐弥补。

在学习初期,新手往往兴趣浓厚,钻研劲儿十足。

他们刚开始学习打高尔夫球或者开车时,技术的进步速度可用“神速”二字来形容。

但是技术一旦攀升到一定的阶段,例如跟上了高尔夫球友的节奏,或者考取了驾照,大多数人就松懈了。

于是,他们变得懒散,技术也被荒废。

相反,训练专家总是让人不停地思考,因此参与学习的人就会自觉自律地去钻研、不断提高技术,从而缩小与高手之间的差距。

人类在进步,衡量专业水平的技术标准也在不断提高。

现在的高中生能在4分钟内跑完一英里(约合1.6公里);学音乐的学生敢于演奏曾经只有名家才敢尝试的曲子。

如果说上述比较还不能让人信服,那么我们再来看看象棋上的证据。

英国人约翰· 纳恩(John Nunn)既是数学家,又是象棋大师。

他利用计算机,比较了1911年和1993年举行的两届国际象棋锦标赛。

结果发现,现代棋手出错的几率要小很多,换言之,他们比前辈们下得更准确。

纳恩还研究了1911年的一个棋手下过的所有棋局。

在当时,这个棋手算是一个中等级别的选手。

按照今天的标准,他的等级分不会多于2100点,离大师级标准还有一大段距离。

与普通棋手相比,百年前的大师仍然实力强劲,不过与今天的大师相比,可能就有一定的差距。

在卡帕布兰卡的那个时代,计算机、象棋数据库都还没有出现,他们只能靠自己解决一切问题,正如巴赫、莫扎特和贝多芬。

如果说今天的大师在技术上已经超越了曾经名满天下的先辈们,然而在创造力方面他们却难以望其项背。

今天,刚毕业的物理学博士掌握的物理知识,恐怕连牛顿也要自叹弗如,但是在这些博士中,有谁能像当年的牛顿一样发现万有引力定律?说到这里,很多怀疑论者的耐心可能会荡然无存。

他们肯定会说,要步入卡耐基殿堂,除了练习、练习、再练习之外,还要付出更多的东西。

虽然相信天资的重要性,尤其是专家和他们的学生对此深信不疑,然而奇怪的是,没有任何证据来支持这一观点。

2002年,戈贝特曾做过一项研究。

研究中,他用图形记忆测验衡量各级别棋手的视觉空间智能。

结果发现,棋艺的高低与视觉空间智能的强弱根本没有联系。

还有研究人员发现,职业裁判预见赛马结果的能力与他们的数学能力也没有什么关系。

相关文档
最新文档