等距节点分段二次插值的误差估计
计算方法各习题及参考答案

计算⽅法各习题及参考答案第⼆章数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造⼀多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到⼆次多项式2()p x 的值:表中2()p x 的某⼀个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利⽤差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当⽤等距节点的分段⼆次插值多项式在区间[1,1]-近似函数xe 时,使⽤多少个节点能够保证误差不超过61102-?.答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔⽶特插值多项式,步长b a h n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平⽅逼近多项式,并给出平⽅误差.答案:()sin f x x =的⼆次最佳平⽅逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-,⼆次最佳平⽅逼近的平⽅误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=??.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-?取最⼩值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳⼀致逼近多项式()p x .答案:()f x 的最佳⼀致逼近多项式为323()74p x x x =++. 3.4 ⽤幂级数缩合⽅法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平⽅逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章数值积分与数值微分4.1 ⽤梯形公式、⾟浦⽣公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =?,并与精确值⽐较.答案:计算结果如下表所⽰4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量⾼,并指明所确定的求积公式具有的代数精度.(1)101()()(0)()hh f x dx A f h A f A f h --≈-++?(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++? (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-?答案:(1)具有三次代数精确度(2)具有⼆次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++?中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量⾼,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的⼆次插值多项式,⽤2()P x 导出计算积分30()hI f x dx =?的数值积分公式h I ,并⽤台劳展开法证明:453(0)()8h I I h f O h '''-=+.答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+?.4.5 给定积分10sin xI dx x =(1)运⽤复化梯形公式计算上述积分值,使其截断误差不超过31102-?.(2)取同样的求积节点,改⽤复化⾟浦⽣公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若⽤复化⾟浦⽣公式,应取多少个节点处的函数值?答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=? (3)取7个节点处的函数值.4.6 ⽤变步长的复化梯形公式和变步长的复化⾟浦⽣公式计算积分10sin xI dx x =?.要求⽤事后误差估计法时,截断误不超过31102-?和61102-?.答案:使⽤复化梯形公式时,80.946I T ≈=满⾜精度要求;使⽤复化⾟浦⽣公式时,40.946 083I s ≈=满⾜精度要求.4.7(1)利⽤埃尔⽶特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+?,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈.(2)利⽤上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--?,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,⽽ 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 ⽤龙贝格⽅法计算椭圆2214x y +=的周长,使结果具有五位有效数字.答案:49.6884l I =≈.4.9确定⾼斯型求积公式0011()()()x dx A f x A f x ≈+?的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证⾼斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+?的系数及节点分别为0001 2 2A A x x ===-=+第五章解线性⽅程组的直接法5.1 ⽤按列选主元的⾼斯-若当消去法求矩阵A 的逆矩阵,其中11121 0110A -?? ?= ? ?-??.答案: 1110331203321133A -?? ? ?=---5.2 ⽤矩阵的直接三⾓分解法解⽅程组1234102050101312431701037x x x x= ? ? ? ? ? ? ? ? ??答案: 42x =,32x =,21x =,11x =.5.3 ⽤平⽅根法(Cholesky 分解法)求解⽅程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -?????? ??? ?-=- ??? ? ??? ???????答案: 12x =,21x =,31x =-.5.4 ⽤追赶法求解三对⾓⽅程组123421113121112210x x x x ?????? ? ? ? ? ? ?= ? ? ? ? ? ? ? ? ?????答案:42x =,31x =-,21x =,10x =.第六章解线性代数⽅程组的迭代法6.1对⽅程1212123879897x x x x x x x -+=??-+=??--=?作简单调整,使得⽤⾼斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,⽤该⽅法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2讨论松弛因⼦ 1.25ω=时,⽤SOR ⽅法求解⽅程组121232343163420412x x x x x x x +=??+-=??-+=-? 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<.答案:⽅程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3给定线性⽅程组Ax b =,其中111221112211122A ?? ? ?=,证明⽤雅可⽐迭代法解此⽅程组发散,⽽⾼斯-赛得尔迭代法收敛.6.4设有⽅程组112233302021212x b x b x b -?????? ??? ?= ??? ? ??? ?-??????,讨论⽤雅可⽐⽅法和⾼斯-赛得尔⽅法解此⽅程组的收敛性.如果收敛,⽐较哪种⽅法收敛较快.答案:雅可⽐⽅法收敛,⾼斯-赛得尔⽅法收敛,且较快.6.5设矩阵A ⾮奇异.求证:⽅程组Ax b =的解总能通过⾼斯-赛得尔⽅法得到.6.6设()ij n nA a ?=为对称正定矩阵,对⾓阵1122(,,,)nn D diag a a a = .求证:⾼斯-赛得尔⽅法求解⽅程组1122D AD x b --=时对任意初始向量都收敛.第七章⾮线性⽅程求根例7.4对⽅程230xx e -=确定迭代函数()x ?及区间[,]a b ,使对0[,]x a b ?∈,迭代过程1(), 0,1,2,k x x k ?+== 均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x ?=,则在[1,0]-中满⾜收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟⼀解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ?=,在[0,1上满⾜收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟⼀解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原⽅程改写为23xe x =,取对数得2ln(3)()x x x ?==.满⾜收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟⼀解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6对于迭代函数2()(3)x x c x ?=+-,试讨论:(1)当c 为何值时,1()k k x x ?+=产⽣的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ?51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所⽰表7.7例7.13 设不动点迭代1()k x x ?+=的迭代函数()x ?具有⼆阶连续导数,*x 是()x ?的不动点,且*()1x ?'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y x+===-?=-?-+?⼆阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ?=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ?为迭代函数的迭代法⾄少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有⾼阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且⽜顿法收敛,证明⽜顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第⼋章矩阵特征值8.1 ⽤乘幂法求矩阵A 的按模最⼤的特征值与对应的特征向量,已知5500 5.51031A -?? ?=- ? ?-??,要求(1)()611||10k k λλ+--<,这⾥()1k λ表⽰1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 ⽤反幂法求矩阵110242012A -??=-- -的按模最⼩的特征值.知A 的按模较⼤的特征值的近似值为15λ=,⽤5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最⼩的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设⽅阵A 的特征值都是实数,且满⾜121, ||||n n λλλλλ>≥≥> ,为求1λ⽽作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 ⽤⼆分法求三对⾓对称⽅阵1221221221A ?? ? ?= ? ? ???的最⼩特征值,使它⾄少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 ⽤平⾯旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平⾏的向量.答案:203/2/00001010/0T ??- ?=--?0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --??--= ? ?--8.6 若532644445A -??=- -,试把A 化为相似的上Hessenberg 阵,然后⽤QR ⽅法求A 的全部特征值.第九章微分⽅程初值问题的数值解法9.1 ⽤反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤??=?,要求取步长0.1h =,每步迭代误差不超过510-.答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 ⽤⼆阶中点格式和⼆阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ?=+≤=?的数值解(取步长0.2h =,运算过程中保留五位⼩数).答案:⽤⼆阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈⽤⼆阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 ⽤如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,⼩数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使⼆阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-??=?为实常数绝对稳定,试求步长h 的⼤⼩应受到的限制条件.答案:2h λ≤.9.5 ⽤如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++?=+??=++??==,求解初值问题sin(), 01(0)1x y e xy x y '?=<≤?=?时,如何选择步长h ,使上述格式关于k 的迭代收敛.答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式⼆步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能⾼,并指出其阶数.答案:系数为142,,33a b d c ====,此时⽅法的局部截断误差阶最⾼,为五阶5()O h .9.7 试⽤欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx=-≤=+=,取步长0.1h =,⼩数点后⾄少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =??=? , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=??≈=? 220.604 820z 2.090 992y =??=? , 22 (0.2)0.604 659(0.2) 2.088 216y y z z ≈=??≈=?。
《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
等距节点分段二次插值的误差估计

(x xn )
当点
x
与插值节点
{xi
}n i0
互不相同时,构造以
t
为新自变量的函数
g(t) f (t) (t) k(x)n1 (t)
g(t) 在区间[a, b] 上的 n 2 个互异零点: x 、{xi}in0
当 g(t) 充分光滑时, g (n1) (t) 在开区间(a, b) 内至少存在一个零点ξ
特别的取 =Pn span 1, x, x2 ,, xn , 即
Pn (x ) (x ) a0 a1x a2x 2 an x n , ai R , 0 i n
2019/6/9
5
4 . 存在惟一性
分析 对于多项式插值问题,插值条件(1)等价于确 定多项式的系数,使得满足如下的线性方程组
f (x)
0 m3 m2
f (m) (x)
插值余项: Rn (x) f (x) (x)
2019/6/9
7
误差估计(续1)
分析: Rn (xi ) f (xi ) (xi ) 0, i 0,1, 2, , n
Rn (x) f (x) (x) k(x)n1(x) n1(x) (x x0 )(x x1)
0ik 0 i k 1
Lk (x) Lk1(x) A (x x0 )( x x1)(x xk1)
Lk
li (
(x) x)
(
k
f (xi )li (x)
i0
(x x0 )(x x1)(x xi x0 )(xi x1)(xi
第三章 2等距节点插值和差分

§2 等距节点插值和差分摘要:在等距节点情况下,通过使用差分可减少Newton 插值公式的计算量。
本节首先介绍等距节点下的差分公式、差分与差商之间关系,根据待估值点x 的位置不同,引入表初公式、表末公式和Bessel 公式,最后说明在使用差分计算插值时需注意的两点:(1)不宜用高阶差分公式;(2)差分公式是一个不稳定的计算公式。
等距节点:1,1,2,,i i x x h i n +-==,h 称为步长2.2.1 差分概念一阶差分:()()()1i i i f x f x f x +∆=- 二阶差分:()()()21i i i f x f x f x +∆=∆-∆ … … … …k 阶差分:()()()111k k k i i i f x f x f x --+∆=∆-∆()()()()()()()()()123110231(1)(1)ki i k i k i k i k k k i i kk jk j j k k f x f x kf x f x x kf x f x k f x j ++-+-+--+-+=⎛⎫⎛⎫∆=-+-+⎪ ⎪⎝⎭⎝⎭+-+-⎛⎫=- ⎪⎝⎭∑2.2.2 差分与差商关系定理2.2.1 在等距节点的情况下 ()()1121,,,,!k k k k f x f x x x x h k +∆=.利用归纳法证明这个公式是在Newton 公式中使用差商的基础 2.2.3 差分表()()()()()()()()()()()()()()()11221233212344321234554321x f x x f x f x x f x f x f x x f x f x f x f x x f x f x f x f x f x ∆∆∆∆∆∆∆∆∆∆2.2.4 根据待估值点x 的位置不同选择不同的计算公式 给定等距节点组:{}12,,,n x x x● 表初公式:如果x 在节点中最小的那个节点附近 节点选取:1213111,,2,,.k x x x h x x h x x kh +=+=+=+x 的表示:1x x ph =+牛顿公式:()(1)(1)(1)2111112!!10.p p p p p k k k kjj P x ph f p f f f p f j --⋅⋅-+=+=+∆+∆++∆⎛⎫=∆ ⎪⎝⎭∑例2.2.1 有函数表x 0.5 0.6 0.7 0.8 f(x) 0.4794 0.5646 0.6442 0.7174 求f(0.54).解:差分表(1)(1)(2)23!0.540.5,0.1,0.4(0.54)0.47940.0852(0.0056)(0.0008)0.5142p p p p p x ph h p P p ---==+===+⨯+-+-=● 表末公式:如果x 在最大节点附近 节点选取与编号:010200(max),,2,,.k x x x h x x h x x kh ---=-=-=-x 的表示:0x x ph =-牛顿公式:()()(1)(1)(1)200122!!0()(1)1.p p p p p k kk kk kjjj j P x ph f x p f f f p f j --⋅⋅-+----=-=-∆+∆++-∆⎛⎫=-∆ ⎪⎝⎭∑● 贝塞尔(Bessel)公式:如果x 在中间节点附近 节点选取与编号:121012,,,,,,,,k k k x x x x x x x -+-+-第一种组序:01122(1),,,,,,k k x x x x x x x ----,Newton 公式1:()1121200011212k k j jj j j j p j p j P x ph f f f j j --+--==++-⎛⎫⎛⎫+=+∆+∆ ⎪ ⎪+⎝⎭⎝⎭∑∑ 第二种组序:()10211,,,,,,k k x x x x x x ---Newton 公式2:()112120110111212k k j jj j j j p j p j P x ph f f f j j --+--+==+-+-⎛⎫⎛⎫+=+∆+∆ ⎪ ⎪+⎝⎭⎝⎭∑∑ Bessel 公式:(Newton1+Newton2)/2()12101002211111/222211.22k j j j j jk j j j p j f f p P x ph f j j f f p j j -+-=---+=+-⎛⎫+-+=+∆+ ⎪+⎝⎭∆+∆+-⎛⎫ ⎪⎝⎭∑∑Bessel 公式适合计算01,01x x x p <<<<,特别是12p =.()2244011021102132821282f f f f f f P x h ---+∆+∆∆+∆+=-++ 例 2.2.2 表2.10求()f 0.525Bessel 公式的截断误差:取2n 个节点()()22(2)22(1)11111(1),2!2222n n n nf R x n n h n x x ξξ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭<< 2.2.5 差分公式的缺点1)高阶差分容易造成有效数字的丢失,见表2.10 原因?2)差分容易扩大传播误差3322321123230012323411012332422110232433201123364x y x y y x y y y x y y y y x y y y y y x y y y y y x y y y y y εεεεεεεεεεεεε------------------∆∆∆+∆+∆+∆+∆-∆-∆-∆-∆∆+∆-∆+∆∆-∆∆-。
等距节点下三次样条函数的误差估计

(5)
(x ) ‖∞
(i = 0 ,1 ,2 , 3 )
证毕 。
引理 1 设 f ( x) ∈ c [ a ,b] ,对区间 [ a ,b] 作 n 等分的均匀分划π :a = x0 < x1 < …< xn = b 。 (i ) (i ) 又 H( x) 是 f ( x) 的满足插值条件 H ( xj ) = f ( xj ) , ( i = 0 ,1 ; j = 0 ,1 , …, n) 的分段三次 Hermite (i ) (i) (4 ) 4- i 插值函数 ,则下列式子成立 ‖ f (x ) - H (x ) ‖∞ Φc ih ‖ f (x ) ‖∞ (i = 0 ,1 ,2 , 3 ) 其中c 0 =
( xj) = f ′ ( xj ) ( j = 0 ,1 , …,n) 的分段三次 Hermite 插值函数 ,则有下列式子成立 的满足插值条件 H ′ (i ) (i ) (5) ‖H (x ) - s (x ) ‖∞ Φci′ h5 - i ‖ f (x ) ‖∞ (i = 0 ,1 ,2 ,3)
又
( x) - s′ ( x) = [ f′ ( xj ) - mj ] [ ( x - xj + 1 ) + 2 ( x - xj ) ( x - xj + 1 ) ] h H ′
-2
( xj + 1 ) - mj + 1 ] [ ( x - xj ) 2 + 2 ( x - xj + 1 ) ( x - x j ) ] h - 2 + [ f′
江苏 无锡 214063)
摘 要 : 样条插值函数的余项估计是样条函数逼近的基本问题之一 ,假设函数 f ( x) 是足够光滑的 ,即 满足对 f ( x) 的高阶导数的要求 , 对 f ( x) 的余项 R ( x) 利用泰勒展开式及积分表达式 , 分析其特性 , 运 用一些变换技巧 , 而得到余项 R ( x) 的估计式 , 并给出了误差限 , 同时还可以对余项的导数 R
差分与等距节点插值法

xn −1 ≤ x ≤ xn
对分段二次及分段三次插值都没有相应的插值公式 若 xn − 2 ≤ x ≤ xn − 1 对分段三次插值也没有相应的插值公式 此时应改用Newton基本后插公式,此处只列出公式 (4) Newton − k阶基本后插公式,起点为xn − m
N k (x) = f n − m + ∑ f [ xn − m , xn − m −1 , ⋯ , xn − m −i ]∏ ( x − xn − m − j )
处的函数值为在等距节点四阶差分三阶差分二阶差分一阶差分是等距节点如果节点newton插值公式为如果假设th则插值公式化为其余项化为10如果假设th可得newton向后插值公式2newton向后差分插值公式12五newton插值公式的使用由于高次插值多项式的runge现象newton插值公式一般也采用分段低次插值newton分段二次插值13余项为余项为阶基本后插公式起点从23两种情况可知若对分段三次插值也没有相应的插值公式此时应改用newton基本后插公式此处只列出公式分段二次newton向前差分插值16次插值多项式则使用在误差范围内很接近分段二次newton向后差分插值依此类推请同学们写出分段三次向前和向后newton公式及余项在实际应用中究竟使用几次插值多项式呢
−1<t <0
k = n, n − 1
依此类推,请同学们写出分段三次 向前和向后Newton公式及余项 在实际应用中,究竟使用几次插值多项式呢? 如果m + 1阶差
商(差分)很接近(在误差范围内), 则使用m次插值多项式
16
Newton插值法的优点是计算较简单,尤其是增加节点时, 计算只要增加一项,这是Lagrange插值无法比的.
(k ) 1
数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
数值分析答案

x0
x1
y
f(x0)
f(x1)
y’
f’(x0)
建立差商表:
自变量
函数值
一阶差商
二阶差商
x0
f(x0)
x0
f(x0)
f’(x0)
x1
f(x1)
则由newton插值公式可得:
整理得:
其中R(x)由以下计算得到:
构造辅助函数:
有 , , 三个零点, 有 , , 三个零点,则 至少有一个零点,记作 。
则
。
(2)S”(0)=0,S”(4)=24
解:用三转角算法计算:
(1) , ,
, ,
, ,
列方程组:
则三次样条插值函数为:
=x3-8, 。
=x3-8, 。
=x3-8, 。
=x3-8, 。
(2)
列方程组:
则三次样条插值函数为:
=x3-8, 。
=x3-8, 。
=x3-8, 。
=x3-8, 。
用三弯矩算法计算:
具体计算如下:
解得最小二乘解:x1=26/11,x2=15/11
(2)
简化为:
两边同乘以系数矩阵的转置矩阵,就得到所需要的法方程组:
具体计算如下:
解得最小二乘解:x=1450/487=2.9774,y=597/487=1.2259
第四章数值积分与数值微分
4-1用四节点复化梯形公式计算积分
(1) ,(2)
误差
则用二次插值的步长应:
2-6对区间[a,b]作步长为h的剖分,且 ,证明:在任意相邻两节点间做线性插值,其误差限为 。
证明:区间上的误差限:
误差限:
2-7设 ,计算差商 , 及 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pn (x ) (x ) a0 a1x a2x 2 an x n , ai R , 0 i n
2019/6/9
5
4 . 存在惟一性
分析 对于多项式插值问题,插值条件(1)等价于确 定多项式的系数,使得满足如下的线性方程组
1
1
1
x0 x1
xn
x02 x12
xn2
x0n x1n
x
n n
a0
a1
a2
an
f f f
f
(x0 )
(
x1
)
(x
2
)
(xn )
• 定理1(存在惟一性) 满足插值条件(1)的不超过n次的 插值多项式是存在惟一的.
(x
i0
xi
)
.
进而当 f (n1) (x) 在区间 (a, b) 有上界 M n1 时, 有
Rn (x)
M n 1 (n 1)!
n 1 (x )
.
2019/6/9
9
Remark
Remark1
插值误差与节点
x n i i 0
和点
x
之间的距离有关
,
节点距离 x 越近,插值误差一般情况下越小.
(1)
则称 (x)
为
f
(x)
在
中关于节点xi
n i0
的一个插值函数。
f (x) ——被插值函数; [a, b] ——插值区间;
xi
n i0
——插值节点;
式(1)——插值条件.
2019/6/9
3
2 . 几何意义、内插法、外插法
M~
max{x
i
}n i 0
m~
min{
x
i
}n i 0
2019/6/9
内插
x [m~, M~ ]
外插 x [a, b] but x [m~, M~ ]
4
3. 多项式插值问题
对于不同的函数族Φ的选择,得到不同的插值 问题
当Φ为一些三角函数的多项式集合时:三角插值; 当Φ为一些有理分式集合时:有理插值; 当Φ为一些多项式集合时:多项式插值
ji
j 0,1,2,, n
li (x)
(x x0 )( x x1 )(x (xi x0 )( xi x1 )(xi
xi1 )( x xi1 )(x xi1 )( xi xi1 )(xi
xn ) xn )
n1 (x)
(x
xi
)
g g
(n (n
1) 1)
(t)
( )
f( 0
n1)
(t
)
(n
1)!
k
(
x)
k
(
x)
f (n1) ( )
(n 1)!
2019/6/9
8
误差估计(续2)
定理 2 (误差估计) 设 f (n) (x) 在 [a, b] 上连续, f (n1) (x) 在
(a, b) 内存在. (x) 是满足插值条件(1)的不超过 n 次的插值
多项式. 则对任意 x [a, b] , 存在 (x) (a, b) , 使得
Rn (x)
f (x) (x)
f (n1) ( )
(n 1)!
n 1
(
x)
n
成立,
式中 n1
(x)
内容提要
Lagrange插值法 Newton插值法 等距节点插值公式 带导数的插值问题
2019/6/9
11
1. Lagrange 方法
1.1 辅助问题
构造不超过n 次的插值多项式 li (x) , 使之满足插值条件
li (x j ) i j 01
j i ,
Remark2 若被插值函数 f (x) 本身就是不超过n 次的多项 式, 则有 f (x) (x) .
Remark3 可以通过求解线性方程组得到插值多项式.
2019/6/9
10
二、插值多项式的构造方法
由于插值多项式的存在惟一性,无论是 用何种方法构造出的插值多项式,它们 均恒等,进而截断误差也都相同。
当 x 为某一插值节点时, 对函数 k(x) 无约束;
(x xn )
当点
x
பைடு நூலகம்与插值节点
{xi
}n i0
互不相同时,构造以
t
为新自变量的函数
g(t) f (t) (t) k(x)n1 (t)
g(t) 在区间[a, b] 上的 n 2 个互异零点: x 、{xi}in0
当 g(t) 充分光滑时, g (n1) (t) 在开区间(a, b) 内至少存在一个零点ξ
2019/6/9
2
一、插值问题
1. 定义
已 知 定 义 于 [a, b] 上 的 函 数 f (x) 在n 1 个 互 异 节 点
x n i i0
[a,
b] 处的函数值f
(xi )
n i0
.
若函数族 中的函数(x) 满足条件
(xi ) f (xi ), i 0,1,, n
第五章 函数插值
问题提出
1 函数表达式过于复杂不便于计算, 而又需要计算许多点 处的函数值
2 仅有采样值, 而又需要知道非采样点处的函数值
……
上述问题的一种解决思路:建立复杂函数或者未知函数的 一个便于计算的近似表达式.
2019/6/9
1
内容提要
插值问题 插值多项式的构造方法 分段插值法
2019/6/9
6
5. 误差估计
引理 已知函数f(x)在[a,b]上具有m-1阶连续导函数,且在 (a,b)上存在m阶导数。 若它在该区间上有m+1个零点, 则它的m阶导函数在(a,b)内至少存在一个零点。
f (x) x0 x1 x2 xm1 xm
f (x) 0 1 m2 m1
f (x)
0 m3 m2
f (m) (x)
插值余项: Rn (x) f (x) (x)
2019/6/9
7
误差估计(续1)
分析: Rn (xi ) f (xi ) (xi ) 0, i 0,1, 2, , n
Rn (x) f (x) (x) k(x)n1(x) n1(x) (x x0 )(x x1)
' n 1
(
xi
)
2019/6/9
12
1.1 辅助问题
l0
(x)