直线、平面平行的判定及其性质
直线、平面平行的判定与性质

[点评] 证明线面平行的基本方法之一就是根据线面平行的 判定定理,利用这个定理的关键是在要证明的平面内找一条和 已知的直线平行的直线,如果已知条件中含有比例关系,要通 过添加适当的辅助线使用平面几何中的平行线分线段成比例定 理,如果已知条件中含有中点,则要添加适当的辅助线使用三 角形中位线定理等.
(2)对
(1)由平面与平面平行的判定定理知,这两条直线
必须是相交直线;(2)两个平面平行,则两个平面无公共点, 故分别在这两个平面内的两条直线没有交点.
► α.( )
问题3
若直线a与平面α内无数条直线平行,则a∥
[答案]错
[解析] 还有另一种可能:a⊂α.
►
问题4
若直线a∥α,P∈α,则过点P且平行于a的直线 )
知识梳理
类 别
1.直线与平面平行
语言表述 图形表示 应 符号表示 用 证 明 a∩α=∅ 直 ⇒ a∥α 线 与 平 a⊄α,b⊂ 面 α,且a∥b 平 ⇒ a∥α 行
定义:一条直线与 一个平面 没有公共点 ________,则称这 条直线与这个平面 判 平行 定 判定定理:平面外 一条直线与此平 ________________ 面内的一条直线 平行,则这条直线 平行于这个平面
►
探究点3
例3
线面、面面平行的综合应用
已知:直线a,b和平面α,a⊄α,a⊥b,b⊥α,求
证:a∥α.
[思路]
分直线a,b相交和异面,异面的情况可以通过
作平行线转化为相交的情况.
[解答]
证明:(1)当直线a,b相交时,如图(1),经过a,b
作平面β,设α∩β=c.因为b⊥α,c⊂α,所以b⊥c.又a⊥b,且 a,b,c都在平面β内,根据平面几何知识a∥c,又a⊄α,c⊂ α,所以a∥α. (2)当a,b是异面直线时,如图(2),过直线b上一点(这点异 于直线b和平面α的交点)A作a′∥a,由于a⊥b,故a′⊥b,仿 照(1)可证a′∥c,根据公理4得a∥c,而a⊄α,c⊂α,所以a∥ α.
直线、平面平行的判定及其性质课件

思考6:设直线a,b为异面直线,经过
直线a可作几个平面与直线b平行?过a,
b外一点P可作几个平面与直线a,b都
平行?
a
b
p
b a a
p b
理论迁移
例1 在空间四边形ABCD中,E,F分别是 AB,AD的中点,求证:EF//平面BCD.
A E B
F D
C
例2 在长方体ABCD—A1B1C1D1中. (1)作出过直线AC且与直线BD1平行的
思考4:有一块木料如图,
E
P为面BCEF内一点,要求 过点P在平面BCEF内画一
F
P D
条直线和平面ABCD平行,
那么应如何画线?
A
C B
思考5:如图,设直线b在平面α内,直 线a在平面α外,猜想在什么条件下直线 a与平面α平行?
a
a//b
α
b
探究(二):直线与平面平行的判断定理
思考1:如果直线a与平面α内的一条直 线b平行,则直线a与平面α一定平行吗?
D′
A′
P
C′
B′ D
C
A
B
例2 已知平面外的两条平行直线中的 一条平行于这个平面,求证另一条也 平行于这个平面.
如图,已知直线a,b
和平面α ,a∥b,
a
b
a∥α , a,b都在 平面α外 .
c α
求证:b∥α .
作业: P61练习,习题2.2A组:1,2. (做在书上) P62习题2.2A组:5,6. P63习题2.2B组:1,2.
由此可得什么推论?
推论 如果一个平 面内有两条相交直 线分别平行于另一
a
b
α
个平面内的两条直
线,那么这两个平 β
直线、平面平行的判定及其性质

直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。
面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。
例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。
求证:PB ∥平面ACM 。
变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。
求证:BD 1∥平面AEC 。
变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。
A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。
直线、平面平行的判定与性质

[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.
直线与平面平行的判定与性质

直线与平面平行的判定与性质
直线与平面平行是几何中一个重要的概念,它在几何学中有着重要的地位。
直线与平面平行的判定:如果一条直线与平面都不相交,那么这条直线与平面就是平行的。
直线与平面平行的性质:1、直线与平面平行,它们之间的夹角为0度;2、直线与平面平行,它们之间的距离是一定的;3、直线与平面平行,它们的交点个数都是0。
因此,直线与平面平行是几何中一个重要的概念,它们之间的夹角为0度,距离也是一定的,交点个数也是0,这是它们之间的特点。
直线、平面平行的判定与性质

直线、平面平行的判定与性质考纲要求以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定.考情分析1.线面平行、面面平行的判定及性质是命题的热点.2.着重考查线线、线面、面面平行的转化及应用.题型多为选择题与解答题.教学过程基础梳理1.平面与平面的位置关系有两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:符号表示:a⊄α,b⊂α,且a∥b⇒a∥α;(3)其他判定方法:α∥β;a⊂α⇒a∥β.3.直线和平面平行的性质定理:符号表示:a∥α,a⊂β,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:符号表示:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.5.两个平面平行的性质定理(1) 即α∥β,a⊂α⇒a∥β;(2) 即α∥β,γ∩α=a,γ∩β=b⇒a∥b.6.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b;(2)a⊥α,a⊥β⇒α∥β.双基自测1.(教材习题改编)下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面2.设m,l表示直线,α表示平面,若m⊂α,则l∥α是l∥m的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(教材习题改编)若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直4.已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.5.(教材习题改编)已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号).1.平行问题的转化方向如图所示:2.应用判定和性质定理的注意事项在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.考点一、 线面平行、面面平行的基本问题[例1] (2011·福建高考) 如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.[巧练模拟]——————(课堂突破保分题,分分必保!)1.(2012·义乌模拟)已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎨⎧ m ⊥αn ⊥α⇒m ∥n ; (2)⎩⎨⎧m ⊥αm ⊥n⇒n ∥α (3)⎩⎨⎧ m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( )A .0B .1C .2D .32.(2012·金华模拟)已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2[冲关锦囊]解决有关线面平行,面面平行的判定与性质的基本问题要注意1.注意判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.2.结合题意构造或绘制图形,结合图形作出判断.3.会举反例或用反证法推断命题是否正确.考点二、直线与平面平行的判定与性质[例2] (2011·北京高考改编)如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB 的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;[巧练模拟]——————(课堂突破保分题,分分必保!)3. (2012·东北三校联考)如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1= 3.(1)求证:BC1∥平面A1CD;(2)求三棱锥D-A1B1C的体积.[冲关锦囊]证明直线与平面平行,一般有以下几种方法(1)若用定义直接判定,一般用反证法;(2)用判定定理来证明,关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言叙述证明过程;(3)应用两平面平行的一个性质,即两平面平行时,其中一个平面内的任何直线都平行于另一个平面.考点三、平面与平面平行的判定与性质[例3] (2012·宁波模拟) 如图,在三棱锥A-BOC中,AO⊥平面COB,∠OAB=∠OAC=π6,AB=AC=2,BC=2,D、E分别为AB、OB的中点.(1)求证:CO⊥平面AOB;(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F 的位置;若不存在,请说明理由.[巧练模拟]—————(课堂突破保分题,分分必保!)4.(2012·南昌模拟)已知α、β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β.②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交.④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确命题的个数是()A.1 B.2C.3 D.45.(2012·温州调研)如图,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.[冲关锦囊]判定平面与平面平行的方法:1.利用定义;2.利用面面平行的判定定理;3.利用面面平行的判定定理的推论;4.面面平行的传递性(α∥β,β∥γ⇒α∥γ);5.利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).一、选择题1.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是() A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α2.设α、β是两个平面,l 、m 是两条直线,下列命题中,可以判断α∥β的是( )A .l ⊂α,m ⊂α,且l ∥β,m ∥βB .l ⊂α,m ⊂β,且m ∥αC .l ∥α,m ∥β,且l ∥mD .l ⊥α,m ⊥β,且l ∥m3.(2012·长春模拟)a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题① ⎭⎬⎫α∥c β∥c ⇒α∥β ② ⎭⎬⎫α∥γβ∥γ⇒α∥β ③ ⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( )A .①②③B .①④C .②D .①③④4.下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④若l 与平面α平行,则l 与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A .1B .2C .3D .45.(2012·天津模拟)如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,则下列命题中正确的是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC ∥平面A ′DE ;③三棱锥A ′-FED 的体积有最大值.A .①B .①②C .①②③D .②③二、填空题6.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD上的一点,AP =a 3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.。
直线平面平行的判定及其性质

解析几何中的应用
在解析几何中,直线与平面的平行关系 也是非常重要的。例如,在求解一些涉 及平面解析几何的问题时,需要使用直 线与平面平行的判定定理和性质来解决
。
ቤተ መጻሕፍቲ ባይዱ
直线与平面平行的判定定理的应用:在 解析几何中,利用直线与平面平行的判 定定理,可以用来判断一个点是否在一 条直线上,或者判断两个平面是否平行
直线与平面平行的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都没有交 点。
直线与平面平行的判定定理的应用
在几何学中,这个定理经常被用来判断两条直线是否平行,或者一个平面是否平 行于另一个平面。
02
直线与平面平行的性质
直线平行于平面的性质
直线平行于平面,则 直线与平面内的任意 一条直线都平行。
直线平行于平面,则 直线与平面内的任意 一条直线都平行或异 面。
直线平行于平面,则 直线与平面内的任意 一条直线都没有公共 点。
平面平行于直线的性质
平面平行于直线,则平面与直 线的任意一条平行线都平行。
平面平行于直线,则平面与直 线的任意一条垂线都垂直。
平面平行于直线,则平面与直 线的任意一条垂线都垂直或平 行。
直线与平面平行的判定定理的应用:在空间几何中,利用直线与平面平 行的判定定理,即“如果直线与平面内的一条直线平行,则直线与该平
面平行”,可以用来判断建筑物的结构是否符合设计要求。
直线与平面平行的性质的应用:直线与平面平行的性质定理的应用,即 “如果直线与平面平行,则直线与平面的垂线互相垂直”,可以用来判 断建筑物的高度和角度是否符合设计要求。
直线平行于平面的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都平行 。
5.4直线平面平行的判定及其性质

5.4 直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α,l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b文字语言图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b考点一 直线与平面平行的判定与性质(题点多变型考点——多角探明)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行是高考热点,多出现在解答题中.常见的命题角度有:(1)证明直线与平面平行;(2)线面平行性质定理的应用. 例1.已知平面α∥平面β,直线a ⊂α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直.其中真命题的序号是________.变式1-1.在正方体ABCD -A 1B 1C 1D 1中,点E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.变式1-2.如果直线a ∥平面α,那么直线a 与平面α内的( ) A .一条直线不相交 B .两条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交变式1-3.(2015·北京高考)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件角度一:证明直线与平面平行例2.(2016·全国丙卷)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.角度二:线面平行性质定理的应用例3.(2017·瑞安期中)已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.变式3-1.如图,四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.考点二平面与平面平行的判定与性质(重点保分型考点——师生共研)例4.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.《5.4 直线、平面平行的判定及其性质》1.若两条直线都与一个平面平行,则这两条直线的位置关系是()A.平行B.相交C.异面D.以上都有可能2.(2017·合肥模拟)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在平面内D.不能确定3.(2017·绍兴期中考试)已知两个不重合的平面α,β,给定以下条件:①α内任意不共线的三点到β的距离都相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β;其中可以判定α∥β的是()A.①B.②C.①③D.③4.在空间中,已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1 C.2 D.35.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l26.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④7.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确命题的个数是()A.1 B.2 C.3 D.48.在三棱锥S -ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为()A.452B.4532C .45D .45 3 9.如图,α∥β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.10.如图所示,在四面体ABCD 中,点M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.11.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).12.正方体ABCD -A 1B 1C 1D 1的棱长为1 cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________cm 2;其周长为________cm.13.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC=4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.14.(2016·嘉兴一模)如图所示,在几何体P -ABCD 中,四边形ABCD 为矩形,平面ABCD ⊥平面P AB ,且平面P AB 为正三角形,若AB =2,AD =1,E ,F 分别为AC ,BP 中点.(1)求证EF ∥平面PCD ;(2)求直线BP 与平面P AC 所成角的正弦值.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H .14.(2016·嘉兴一模)如图所示,在几何体P-ABCD中,四边形ABCD为矩形,平面ABCD ⊥平面PAB,且平面PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证EF∥平面PCD;(2)求直线BP与平面PAC所成角的正弦值.解:(1)证明:连接DB,与AC交于点E,在△DPB中,∵E,F分别是DB,PB中点,∴EF∥DP.又∵DP⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD,(2)取AP中点H,连接HC,HB.过B作BO⊥HC,垂足为O,连接OP.∵平面ABCD⊥平面APB,且平面ABCD∩平面APB=AB,又BC⊥AB,∴BC⊥平面APB,∴BC⊥AP.又∵AB=BP,∴BH⊥AP,且BC∩BH=B,∴AP⊥平面CHB,∴AP⊥BO.又AP∩HC=H,∴BO⊥平面PAC,∴∠BPO就是直线BP与平面PAC所成角.由已知得,BO=32,BP=2,∴sin∠BPO=34,即直线BP与平面PAC所成角的正弦值为3 4.15.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,∴HD 1∥MC 1.又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O ,则OE 綊12DC ,又D 1G 綊12DC ,∴OE 綊D 1G ,∴四边形OEGD 1是平行四边形, ∴GE ∥D 1O .又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D , ∴EG ∥平面BB 1D 1D . (3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言
图形表示 符号表示
平面外一___条__直__线__与__此__ 判定 平面内的一条直线
定理 平行,则该直线平行于
此平面
a⊄α ,b⊂ α ,a∥ b⇒a∥α
基础诊断
考点突破
课堂总结
一条直线和一个平面平 性质 行,则过这条直线的任 定理 一平面与此平面的_交__线_
基础诊断
考点突破
课堂总结
规律方法 (1)判断与平行关系相关命题的真假,必须熟悉 线、面平行关系的各个定义、定理,无论是单项选择还是 含选择项的填空题,都可以从中先选出最熟悉最容易判断 的选项先确定或排除,再逐步判断其余选项. (2)①结合题意构造或绘制图形,结合图形作出判断. ②特别注意定理所要求的条件是否完备,图形是否有特殊 情况,通过举反例否定结论或用反证法推断命题是否正确.
基础诊断
考点突破
课堂总结
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)若一条直线和平面内一条直线平行,那么这条直线和 这个平面平行.( ) (2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直 线有无数条.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么 这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条 直线平行或异面.( )
基础诊断
考研)设m,n是两条不同的直线,α,β,γ是 三个不同的平面,给出下列四个命题: ①若m⊂α,n∥α,则m∥n; ②若α∥β,β∥γ,m⊥α,则m⊥γ; ③若α∩β=n,m∥n,m∥α,则m∥β; ④若m∥α,n∥β,m∥n,则α∥β. 其中是真命题的是________(填上正确命题的序号). 解析 ①m∥n或m,n异面,故①错误;易知②正确;③m∥β 或m⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ②
基础诊断
考点突破
课堂总结
2.下列命题中,正确的是( ) A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面 B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行 C.若直线a,b和平面α满足a∥α,b∥α,那么a∥b D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α 解析 根据线面平行的判定与性质定理知,选D. 答案 D
基础诊断
考点突破
课堂总结
5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件: ①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ; ④a⊥α,b⊥β,a∥b. 其中能推出α∥β的条件是________(填上所有正确的序号). 解析 在条件①或条件③中,α∥β或α与β相交. 由α∥γ,β∥γ⇒α∥β,条件②满足. 在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足. 答案 ②④
基础诊断
考点突破
课堂总结
考点一 线面、面面平行的相关命题的真假判断
【例1】 (2015·安徽卷)已知m,n是两条不同直线,α,β是两个 不同平面,则下列命题正确的是( D ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 解析 A项,α,β可能相交,故错误;B项,直线m,n的位 置关系不确定,可能相交、平行或异面,故错误;C项,若 m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n 垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以 原命题正确,故D项正确.
基础诊断
考点突破
课堂总结
解析 (1)若一条直线和平面内的一条直线平行,那么这条 直线和这个平面平行或在平面内,故(1)错误. (2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故 (2)错误. (3)如果一个平面内的两条直线平行于另一个平面,则这两 个平面平行或相交,故(3)错误. 答案 (1)× (2)× (3)× (4)√
• 第4讲 直线、平面平行的判定及其性质
基础诊断
考点突破
课堂总结
最新考纲 1.以立体几何的定义、公理和定理为出发点, 认识和理解空间中线面平行的有关性质与判定定理;2.能 运用公理、定理和已获得的结论证明一些有关空间图形的 平行关系的简单命题.
基础诊断
考点突破
课堂总结
1.直线与平面平行
知识梳理
(1)直线与平面平行的定义
基础诊断
考点突破
课堂总结
3.(2015·北 京 卷 ) 设 α , β 是 两 个 不 同 的 平 面 , m 是 直 线 且
m⊂α.“m∥β”是“α∥β”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析 当m∥β时,可能α∥β,也可能α与β相交.
当α∥β时,由m⊂α可知,m∥β.
个平面相交,那么它们的_交__线_ 平行
图形表示
符号表示 a⊂α,b⊂α, a∩b=P, a∥β, b∥β⇒α∥β α∥β, a⊂α⇒a∥β α∥β,α∩γ =a,β∩γ= b⇒a∥b
基础诊断
考点突破
课堂总结
3.与垂直相关的平行的判定 (1)a⊥α,b⊥α⇒_a__∥__b__. (2)a⊥α,a⊥β⇒_α_∥___β__.
∴“m∥β”是“α∥β”的必要不充分条件.
答案 B
基础诊断
考点突破
课堂总结
4.(必修2P56练习2改编)如图,正方体ABCD- A1B1C1D1中,E为DD1的中点,则BD1与平面 AEC的位置关系为________.
解析 连接BD,设BD∩AC=O,连接EO,在△BDD1中, O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位 线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以 BD1∥平面ACE. 答案 平行
与该直线平行
a∥α,a⊂β, α∩β= b⇒a∥b
2.平面与平面平行 (1)平面与平面平行的定义 没有公共点的两个平面叫做平行平面.
基础诊断
考点突破
课堂总结
(2)判定定理与性质定理 文字语言
一个平面内的两条_相__交__直__线__与 判定
另一个平面平行,则这两个平 定理
面平行
两个平面平行,则其中一个平 性质 面内的直线_平__行__于另一个平面 定理 如果两个平行平面同时和第三