干燥实验报告
干燥实验报告

引言概述:本文将对干燥实验进行详细的阐述与分析。
干燥是很多工业和实验室中常用的技术,它可将材料中的水分以各种方式去除,从而提高其质量和稳定性。
本次实验将采用特定的干燥方法,对不同材料的干燥效果进行评估和比较。
通过本篇报告,我们将更深入地了解干燥实验的原理、设计和结果。
正文内容:一、干燥方法选择1.理论背景和方法原理2.不同干燥方法的优缺点比较3.选择适合实验的干燥方法二、实验设计1.实验目的和过程2.实验材料和仪器设备3.实验条件和操作步骤4.实验组和对照组设计三、实验结果与分析1.干燥实验结果数据统计a.实验组材料干燥后的质量变化b.实验组材料干燥后的水分含量分析c.对照组材料的质量变化和水分含量分析2.实验结果对比与评估a.实验组与对照组的质量变化对比b.实验组与对照组的水分含量对比c.实验结果的可靠性和稳定性评估四、干燥机理探究1.干燥机理的理论解释2.实验结果与干燥机理的关联分析3.干燥机理的研究进展和应用前景展望五、实验应用与改进1.干燥技术在工业中的应用案例介绍2.干燥实验方法的改进和优化探讨3.干燥实验中可能存在的问题和解决方案总结:通过本次干燥实验,我们深入了解了不同干燥方法的原理和应用,设计了合适的实验方案,并对实验结果进行了详细的统计和分析。
通过对照组的结果对比,我们得出了实验组的干燥效果明显优于对照组的结论。
同时,我们还进一步探究了干燥机理,并介绍了干燥技术在工业中的应用案例。
我们提出了干燥实验方法的改进和优化探讨,并指出了干燥实验中可能存在的问题和解决方案。
本次实验不仅加深了对干燥实验的理论理解,同时也提供了实际操作中的参考价值和应用前景展望。
干燥实验实验报告思考题(3篇)

第1篇一、实验目的1. 了解干燥实验的基本原理和操作方法。
2. 掌握干燥设备的使用技巧。
3. 分析干燥过程中物料的性质变化。
4. 评估干燥效果,为实际生产提供参考。
二、实验内容1. 干燥实验的基本原理2. 干燥设备的选用与操作3. 干燥过程中物料性质的变化4. 干燥效果的评价三、思考题1. 请简述干燥实验的基本原理,并说明干燥过程分为哪几个阶段。
2. 在干燥实验中,如何选用合适的干燥设备?请列举几种常见的干燥设备及其适用范围。
3. 在干燥过程中,如何控制干燥温度和干燥时间?这对干燥效果有何影响?4. 请分析干燥过程中物料性质的变化,如水分、温度、粒度等,并说明这些变化对干燥效果的影响。
5. 在干燥实验中,如何评价干燥效果?请列举几种评价方法。
6. 在干燥过程中,如何防止物料发生结块、焦化等现象?请提出相应的解决措施。
7. 请分析干燥过程中能耗的影响因素,并提出降低能耗的方法。
8. 在干燥实验中,如何提高干燥效率?请从物料、设备、工艺等方面进行分析。
9. 请举例说明干燥实验在实际生产中的应用,如化工、食品、医药等行业。
10. 在干燥实验中,如何保证实验数据的准确性和可靠性?请提出相应的措施。
11. 请分析干燥实验过程中可能出现的故障及解决方法。
12. 在干燥实验中,如何保证实验操作的安全性?请提出相应的措施。
13. 请简述干燥实验在环境保护方面的作用。
14. 在干燥实验中,如何提高干燥设备的利用率?请提出相应的措施。
15. 请分析干燥实验在节能减排方面的意义。
16. 在干燥实验中,如何提高干燥设备的自动化程度?请提出相应的措施。
17. 请探讨干燥实验在提高产品质量方面的作用。
18. 在干燥实验中,如何根据物料特性选择合适的干燥工艺?19. 请分析干燥实验在提高生产效率方面的作用。
20. 在干燥实验中,如何降低干燥过程中的能耗?四、实验报告撰写要求1. 实验报告应包括实验目的、实验内容、实验过程、实验结果、分析与讨论、结论等部分。
干燥实验报告食品报告

一、实验目的1. 了解食品干燥的基本原理和过程;2. 掌握食品干燥设备的工作原理和操作方法;3. 研究不同干燥方式对食品品质的影响;4. 分析食品干燥过程中的水分变化规律。
二、实验原理食品干燥是利用热能将食品中的水分蒸发,使食品达到一定水分含量的过程。
根据干燥过程中物料水分的变化规律,食品干燥过程可分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,内部水分向表面迁移;2. 恒速干燥阶段:物料表面水分蒸发速率达到最大,内部水分继续向表面迁移;3. 降速干燥阶段:物料表面水分蒸发速率逐渐降低,内部水分迁移速率减小。
食品干燥过程中,水分变化规律可用干燥曲线表示,干燥速率曲线表示干燥速率随物料水分含量变化的关系。
三、实验材料与设备1. 实验材料:新鲜水果(如苹果、香蕉等)、食品干燥设备(如隧道式干燥机、流化床干燥机等);2. 实验设备:电子天平、温度计、湿度计、干燥曲线记录仪、干燥速率记录仪等。
四、实验方法1. 准备实验材料:将新鲜水果洗净、去皮、切片,备用;2. 设置干燥参数:根据实验要求,设置干燥温度、干燥时间和干燥方式;3. 干燥实验:将水果放入干燥设备中,进行干燥实验;4. 数据采集:记录干燥过程中物料水分、温度、湿度等数据;5. 数据分析:绘制干燥曲线和干燥速率曲线,分析不同干燥方式对食品品质的影响。
五、实验结果与分析1. 干燥曲线:实验结果表明,水果在干燥过程中水分含量随时间逐渐降低,干燥曲线呈非线性关系。
在恒速干燥阶段,水分含量降低速率较快;在降速干燥阶段,水分含量降低速率逐渐减慢。
2. 干燥速率曲线:实验结果表明,干燥速率随物料水分含量降低而逐渐减小,干燥速率曲线呈非线性关系。
在恒速干燥阶段,干燥速率达到最大值;在降速干燥阶段,干燥速率逐渐降低。
3. 食品品质变化:实验结果表明,不同干燥方式对食品品质的影响不同。
隧道式干燥机干燥的水果在色泽、口感和营养成分方面保持较好;流化床干燥机干燥的水果在色泽和口感方面较好,但营养成分损失较大。
【精品】干燥实验报告

【精品】干燥实验报告摘要本实验旨在研究干燥过程中物料各参数会受到怎样的影响。
干燥实验采用平板干燥箱进行,样品代表性物料为木颗粒,其在一定温度、湿度和风速条件下被干燥123小时+/-1小时,总共分成四组,每组由三个样本组成,分别测量每组样品的温度,湿度,干重,湿重,容重,干基水分率,测出的实验证明:干燥造成物料基本试验指标有显著变化,样品室温及湿度越高,物料含水率越高,反之,物料含水率越低;室内空气风速越大,物料越容易被风力风干,最后由数据统计发现每组样品间的含水率变化最大差异在第2组中最近,表明室温与湿度对样品含水率的影响最大。
1 测试仪器(1)平板干燥箱TKTB-01,内部容积约500L,尺寸800mm*1000mm*1050mm,采用能量温度控制器TK-C01进行温度控制,其最大控制温度为80℃。
(2)空气风速计,室内空气测量空气温度、湿度、空气风速。
(3)可称重型分析秤END-227A,测定商品干重、湿重、容重。
(4)8W实验平台,可连续测定样品特性参数。
(5)紫外(UV)-可见光分光光度计,可测定样品中水分成分浓度。
2 实验方法2.1 样品标准样品采集取样方案,样品总量20kg,每份试样按照1kg,设置4份样品,每份样品3份,总计共有12份试样,在室温25℃常温下包装贮存,12份样品均匀分拣为4组,每组3份,每组分别进行实验。
2.2 实验设置温度为25℃,湿度为50%,空气风速为0.5m·s-1。
(1)各组样品在该实验室环境(温度:25℃;湿度:50%;阴湿度)中,放置三 by 个小时后进行测量并记录:干重、湿重、容重、干基水分率。
(2)各组样品将被放置到平板干燥箱中,干燥时间大约123小时,每小时记录一次温度和湿度。
2.4 数据处理(1)测量出的实验数据记录录入公式,计算各组样品干基水分率:干基水分率=(湿重-干重)/(干重)(2)实验结果分析,计算各组之间的差异。
3 结果分析3.1 各组的温度、湿度曲线各组温度、湿度曲线如下图1所示,可以看到干燥过程总体特点:温度和湿度越到晚干燥时间越持续,温度和湿度越高。
热风干燥实验报告

一、实验目的1. 了解热风干燥的基本原理和过程;2. 掌握热风干燥设备的使用方法;3. 研究热风干燥过程中物料干燥速率的变化规律;4. 分析影响热风干燥效果的因素。
二、实验原理热风干燥是一种利用热空气作为干燥介质,将物料中的水分蒸发出去的干燥方法。
热风干燥过程中,物料表面水分蒸发速率受物料性质、热风温度、风速、湿度等因素的影响。
三、实验设备与材料1. 实验设备:热风干燥箱、电子天平、温度计、湿度计、风速计、干燥器、干燥箱、干燥物料等;2. 实验材料:玉米、小麦、大豆等。
四、实验步骤1. 准备实验材料:将玉米、小麦、大豆等干燥物料分别称取100g,置于干燥器中,预热至室温;2. 设置热风干燥箱:将热风干燥箱预热至设定温度,调节风速和湿度;3. 放置物料:将预热后的物料均匀地放入热风干燥箱中,开启干燥箱,记录开始干燥时间;4. 测量干燥速率:每隔一定时间,取出物料,称量其质量,计算干燥速率;5. 分析干燥过程:观察干燥过程中物料的变化,记录实验数据;6. 比较不同物料干燥效果:分别对玉米、小麦、大豆等物料进行干燥实验,比较其干燥效果;7. 分析影响干燥效果的因素:改变热风温度、风速、湿度等参数,观察干燥效果的变化。
五、实验结果与分析1. 干燥速率曲线:以干燥时间为横坐标,干燥速率为纵坐标,绘制干燥速率曲线。
结果表明,干燥速率随着干燥时间的推移逐渐降低,呈现下降趋势。
2. 不同物料干燥效果:对玉米、小麦、大豆等物料进行干燥实验,结果表明,玉米干燥速率最快,小麦次之,大豆最慢。
3. 影响干燥效果的因素:(1)热风温度:提高热风温度,干燥速率增加,但过高的温度会导致物料烧焦;(2)风速:增加风速,干燥速率增加,但风速过大可能导致物料表面水分蒸发过快,内部水分迁移不充分;(3)湿度:降低湿度,干燥速率增加,但过低的湿度可能导致物料表面水分蒸发过快,内部水分迁移不充分。
六、实验结论1. 热风干燥是一种有效的干燥方法,适用于多种物料的干燥;2. 干燥速率受物料性质、热风温度、风速、湿度等因素的影响;3. 通过调整热风温度、风速、湿度等参数,可以优化干燥效果;4. 在实际生产中,应根据物料性质和干燥要求,选择合适的干燥设备和技术参数。
干燥实验报告

一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。
实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。
二、实验目的1. 了解流化床干燥器的基本流程及操作方法。
2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。
3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。
4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。
三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。
在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。
干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。
2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。
物料在干燥器内受到热风的作用,床层产生流动,形成流化床。
物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。
四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。
2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。
五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。
2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。
3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。
4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。
六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。
干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。
在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。
干燥仿真实验报告(3篇)

第1篇一、实验目的1. 了解干燥过程的基本原理和影响因素。
2. 掌握干燥仿真实验的操作方法。
3. 通过仿真实验,分析干燥过程中物料水分的变化规律,优化干燥工艺。
二、实验原理干燥过程是指将物料中的水分蒸发,使物料达到所需干燥程度的过程。
干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等。
本实验采用干燥仿真软件,模拟干燥过程,分析物料水分的变化规律。
三、实验仪器与材料1. 电脑一台;2. 干燥仿真软件一套;3. 物料样品;4. 温度计;5. 时间记录器。
四、实验步骤1. 打开干燥仿真软件,选择合适的干燥介质、干燥温度和干燥时间;2. 将物料样品放入干燥器,设定干燥器的初始状态;3. 启动仿真实验,观察物料水分的变化过程;4. 记录实验数据,包括干燥时间、物料水分、干燥温度等;5. 分析实验数据,优化干燥工艺。
五、实验结果与分析1. 干燥过程中,物料水分随干燥时间的延长而逐渐降低,符合干燥过程的基本规律;2. 在相同干燥条件下,物料水分的降低速度与干燥温度、干燥介质等因素有关;3. 仿真实验结果表明,提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度;4. 通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。
六、实验结论1. 干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等;2. 通过干燥仿真实验,可以分析物料水分的变化规律,优化干燥工艺;3. 提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度,提高干燥效率。
七、实验注意事项1. 在进行干燥仿真实验时,应选择合适的干燥介质、干燥温度和干燥时间;2. 实验过程中,应注意观察物料水分的变化,及时调整干燥参数;3. 实验数据应准确记录,为优化干燥工艺提供依据。
八、实验总结本实验通过干燥仿真软件,模拟干燥过程,分析了物料水分的变化规律。
实验结果表明,干燥过程中,物料水分的变化受多种因素影响,通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。
干燥实验的实验报告

干燥实验的实验报告干燥实验的实验报告一、引言干燥是指将物体中的水分去除的过程,广泛应用于工业生产和实验室研究中。
干燥实验旨在探究不同物质在不同条件下的干燥速度和效果,为实际应用提供参考依据。
本实验选取了几种常见的物质进行干燥实验,并对实验结果进行分析和总结。
二、实验材料和方法1. 实验材料:- 湿度计:用于测量环境湿度;- 水分含量测试仪:用于测量物质的水分含量;- 不同物质样品:如食盐、洗发水、纸张等。
2. 实验方法:1) 设定实验环境:将实验室温度控制在25℃,湿度控制在50%;2) 选取不同物质样品,记录其初始重量和水分含量;3) 将样品放置在干燥箱中,设定不同的温度和时间;4) 定期取出样品,使用水分含量测试仪测量其水分含量;5) 记录实验数据,分析干燥速度和效果。
三、实验结果与分析1. 食盐干燥实验:食盐是一种易溶于水的物质,我们将其放置在干燥箱中,设定温度为60℃,时间为2小时。
实验结果显示,食盐的水分含量从初始的10%降低到了2%。
说明在较高温度下,食盐的干燥速度较快,且效果较好。
2. 洗发水干燥实验:洗发水是一种含有大量水分的液体,我们将其放置在干燥箱中,设定温度为40℃,时间为4小时。
实验结果显示,洗发水的水分含量从初始的80%降低到了20%。
说明在较低温度下,洗发水的干燥速度较慢,但仍然能够达到一定的干燥效果。
3. 纸张干燥实验:纸张是一种吸水性较强的材料,我们将其放置在干燥箱中,设定温度为50℃,时间为3小时。
实验结果显示,纸张的水分含量从初始的30%降低到了10%。
说明纸张在中等温度下,能够较快地干燥,并且干燥效果较好。
四、实验总结通过本次干燥实验,我们得出了以下结论:1. 温度对干燥速度和效果有重要影响:较高温度能够加快干燥速度,但过高的温度可能导致物质的质量损失;2. 不同物质的干燥速度和效果存在差异:易溶于水的物质干燥速度较快,吸水性较强的材料干燥速度较慢;3. 干燥时间的长短也会影响干燥效果:适当延长干燥时间可以提高干燥效果,但过长的时间可能造成能源浪费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理实验实验题目:——流化床干燥实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:2012.05.23一、实验题目:流化床干燥实验二、实验时间:2012.05.23三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:本实验利用流化床干燥器间歇干燥泡水小麦进行干燥曲线,干燥速率曲线测定。
使用电子托盘天平测量干湿状态下物料重量,使用电烤箱干燥物料1小时,视为自由水含量为零的绝干物料。
六、实验目的及任务1.了解流化床干燥器的基本流程及操作方式。
2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3.测定物料含水量及床层温度随时间变化的关系曲线。
4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数KH及降速阶段的比例系数KX。
七、实验基本原理1、流化曲线在实验中可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(下图)。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本不动,压降与流速成正比,斜率约为1。
当气速逐渐增加(进入BC段),床层开始膨胀,压降与气速关系不再成比例。
当气速逐渐增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速增加床层高度逐渐增加,但床层压降基本保持不变。
当气速增大到某一值(D点),床层压降减小,颗粒逐渐被气体带走,此时便进入气流输送阶段。
D点处流速即为带出速度u。
在流化状态下降低气速,压降与气速关系将沿图中DC线返回至C点。
若气速继续降低,曲线沿CA’变化。
C点处流速被称为起始流化速度u。
mf2、干燥特性曲线将湿物料置于一定干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可见物料含水量(X)与时间(t)的关系曲线及物料温度(θ)与时间(t)的关系曲线(如下图左)。
物料含水量与时间关系曲线的斜率即为干燥速率(u)。
将干燥速率对物料含水量作图,及干燥速率曲线(如下图右)。
干燥过程分为以下三个阶段:(1)物料预热阶段(AB 段):开始干燥时有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。
(2)恒速干燥阶段(BC 段):由于物料表面存在自由水分,物料表面温度等于空气湿球温度,传入热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。
(3)降速干燥阶段(CDE 段):物料含水量减少到某一临界含水量(Xo ),由于物料内部水分扩散慢于物料表面蒸发,不足以维持物料表面湿润,而形成干区,干燥速率开始降低,物料速度逐渐上升,物料含水量越小,干燥速率越慢,直至达到平衡含水量(X*)而终止。
干燥速率为单位时间在单位面积上汽化的水分量,用微分式表示为:式中u ——干燥速率,kg 水/(m 2.s );A ——干燥表面积,m 2; dτ——相应的干燥时间,s ; dW ——汽化的水分量,kg 。
图中的横坐标X 为对应于某干燥速率下的物料平均含水量。
21++=i iX X X式中X ——某一干燥速率下湿物料的平均含水量;X i 、X i+1——Δτ时间间隔内开始和终了时的含水量,kg 水/kg 绝干物料。
cicisi i G G G X -=式中 G si ——第i 时刻取出的湿物料的质量,kg ;G ci ——第i 时刻取出的物料的绝干质量,kg 。
干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。
本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。
八、实验装置流化床干燥实验装置如下图:1-风机;2-湿球温度水桶;3-湿球温度计;4-干球温度计;5-空气加热器; 6-空气流量调节阀;7-放净口;8-取样口;9-不锈钢筒体;10-玻璃筒体;11-气固分离段;12-加料口;13-旋风分离器;14-孔板流量计。
本装置主要包括三部分:流化床干燥设备、调节仪表和控制系统。
本装置的所有设备,除床身筒体一部分采用高温硬质玻璃外,其余均采用不锈钢制造,因此耐用、美观,图1为本装置的流程图。
床身筒体部分由不锈钢段(内径100mm,高100mm)和高温硬质玻璃段(内径100mm,高400mm)组成,顶部有气固分离段(内径150mm,高250mm)。
不锈钢段筒体上设有物料取样器、温度计等,分别用于取样、放净和测温。
床身顶部气固分离段设有加料、测压,分别用于物料加料和测压。
空气加热装置由加热器和控制器组成,加热器为不锈钢盘管式加热器,加热管外壁设有1mm铠装热电偶,它与人工智能仪表、固态继电器等,实现空气介质的温度控制。
同时,计算机可实现对仪表的控制。
空气加热装置底部设有空气介质的干球温度和湿球温度接口,以测定空气的干、湿球温度。
本装置空气流量采用孔板流量计计量,其流量Vs可以通过本实验装置的旋风分离器,可以除去干燥物料的粉尘。
本实验引入了计算机在线数据采集和控制技术,加快了数据的记录和处理速度。
九、操作要点1、流化床实验①加入固体物料至玻璃段底部。
②调节空气流量,测定不同空气流量下床层压降。
2、干燥实验(1)实验开始前①将电子天平开启,并处于待用状态。
②将快速水分测定仪开启,并处于待用状态。
③准备一定量的被干燥物料(以绿豆为例),取0.5kg左右放入热水(60~70℃)中泡20~30min,取出,并用干毛巾吸干表面水分,待用。
④湿球温度计水筒中补水,但液面不得超过预警值。
(2)床身预热阶段启动风机及加热器,将空气控制在某一流量下(孔板流量计压差为一定值,3kpa 左右),控制加热器表面温度(80~100℃)或空气温度(50~70℃)稳定,打开进料口,将待干燥物料徐徐倒入,关闭进料口。
(3)测定干燥速率曲线①取样,用取样管取样,每隔2~3min一次,取出的样品放入小器皿中,并记上编号和取样时间,待分析用。
共做8~10组数据,做完后,关闭加热器和风机电源。
②记录数据,在每次取样的同时,要记录床层温度、空气干球、湿球温度、流量和床层压降等。
3、结果分析(1)快速水分测定仪分析法将每次取出的样品在电子天平上称量9~10g,利用快速水分测定仪进行分析。
(2)烘箱分析法将每次取出的样品在电子天平上称量9~10g,放入烘箱内烘干,烘箱温度设定为120度,1h后取出,在电子天平上称取其质量,此质量即可视为样品的绝干物料质量。
4、注意事项①取样时,取样管推拉要快,管槽口要用布覆盖,以免物料喷出。
②湿球温度计补水筒液面不得超过警示值。
③电子天平和快速水分测定仪要按说明操作。
十、实验原始数据表一:表二:十一、实验数据处理1、干燥实验:(1)、处理过程:(2)、图形处理结果:流化床干燥曲线:干燥速率曲线:(1)、实验处理过程:(2)、图形处理结果:十二、实验结果分析:1. 流化曲线和理论符合的很好,当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。
当气速逐渐增加,床层开始膨胀,孔隙率增大,压降与气速的关系将不再成正比。
当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,如曲线的后半段,成一条水平直线。
由于鼓风机可以通入的最高气速有限,不能达到带出速度,无法达到压降随气速下降的气力输送段曲线。
2.观察干燥曲线可以看出前半段因为小麦表面富水过剩,导致颗粒在床底聚集粘黏在一起,表现出压降很大,可以推断出颗粒间空隙较少,而孔板压降变化不大,说明气体流量变化不大,说明颗粒间局部气速很大,导致干燥速率高于后半段。
后半段干燥速率曲线呈直线状,可知处于恒速干燥阶段。
3.观察干燥速率曲线,与理论曲线比较,可以发现处于恒速干燥阶段。
没有到降速干燥阶段。
最后时刻含水率仍然不是很低,干燥不是十分彻底。
十三、思考题1、本实验所得的流化床压降与气速曲线有何特征?答:当气速较小时,操作过程处于固定床阶段,床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比。
当气速继续增大,进入流化阶段,固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本上保持不变,如曲线的后半段,成一条水平直线2、本装置在加热器入口处安装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求得干燥器内空气的平均湿度H?答:有入口干、湿球温度可以求得进口空气湿度H1由于干燥器内物料存在非结合水,且气液接触充分,故出口空气可以看成饱和空气,绝热增湿过程为恒焓过程,再由恒焓条件与出口空气φ=100%即可求得出口空气湿度H2,从而求得干燥器内空气平均湿度H=0.5*(H1+H2)3、 为什么同一湿度的空气,温度较高有利于干燥操作的进行?答:因为温度较高时,水的饱和蒸汽压大,而空气的绝度湿度没有变化,即水的分压没有发生变化,由S C P P =φ,所以空气的相对湿度增加,从而有利于干燥的进行。
4、 流化床操作中,存在腾涌和沟流两种不正常现象,如何利用床层压降对其进行判断?怎样避免他们的发生?答:腾涌时,床层压降不平稳,压力表不断摆动;沟流是床层压降稳定,只是数值比正常情况下低。
沟流是由于流体分布板设计或安装上存在问题,应从设计上避免出现沟流,腾涌是由于流化床内径较小而床高于床比径比较大时,气体在上升过程中易聚集继而增大,当气体占据整个床体截面时发生腾涌,故在设计流化床时高径比不宜过大。