存储论-随机性存储模型1

合集下载

存储论

存储论

允许缺货模型
本模型是允许缺货,并把缺货损失定量化来加以研究。 本模型是允许缺货,并把缺货损失定量化来加以研究。 由于允许缺货,所以企业可以在存储降至零后, 由于允许缺货,所以企业可以在存储降至零后,还可以再 等一段时间然后订货。 等一段时间然后订货。这就意味着企业可以少付几次订货 的固定费用,少支付一些存储费用。 的固定费用,少支付一些存储费用。一般地说当顾客遇到 缺货时不受损失,或损失很小, 缺货时不受损失,或损失很小,而企业除支付少量的缺货 费外也无其他损失,这时发生缺货现象可能对企业是有利 费外也无其他损失, 的。 本模型的假设条件除允许缺货外, 本模型的假设条件除允许缺货外,其余条件皆与不允 许缺货模型一相同。 许缺货模型一相同。
允许缺货模型
设单位时间单位物品存储费用为C 每次订购费为C 设单位时间单位物品存储费用为 1,每次订购费为 3,缺货费 单位缺货损失), 为需求速度 求最佳存储策略, 为需求速度。 为C2(单位缺货损失 ,R为需求速度。求最佳存储策略,使平均总费 单位缺货损失 用最小。 用最小。 假设最初存储量为S, 假设最初存储量为 , 可以满足t 时间的需求, 可以满足 1 时间的需求 , t1 时间的平均存储量为 零,平均缺货量为
存储论 存储论的基本概念 确定性存贮模型 随机性存贮模型
存储问题的提出
为了解决供应( 生产) 与需求(消费) 之间的不协调, 为了解决供应 ( 生产 ) 与需求 ( 消费 ) 之间的不协调 , 这 种不协调性一般表现为供应量与需求量和供应时期与需求时 期的不一致性上,出现供不应求或供过于求。 期的不一致性上,出现供不应求或供过于求。人们在供应与 需求这两环节之间加入储存这一环节, 需求这两环节之间加入储存这一环节,就能起到缓解供应与 需求之间的不协调,以此为研究对象, 需求之间的不协调,以此为研究对象,利用运筹学的方法去 解决最合理、最经济地储存问题。 解决最合理、最经济地储存问题。 专门研究这类有关存储问题的科学, 专门研究这类有关存储问题的科学 , 构成运筹学的一 个分支,叫作存储论。 个分支,叫作存储论。

存储论模型

存储论模型
2 1 R C 2 / T 2 C1 ( R ) 0 2 P
第23页
T
2C 2 R C1 ( R ) P
2

2C 2 P C1 R ( P R )
T1
2C 2 R 1 C1 P ( P R )
2C 2 R ( P R) Q ( P R)T1 C1 P
第 5页
三、存储策略
常见的存储策略有三种类型:
1. t0 循环策略
每隔时间 t0 订货 Q 件。
第 6页
2. ( s , S ) 策略 当存储量 x > s 时,不订货;当 x ≤ s 时,订货, 订货量 Q = S – x ,即将存储量补充到 S。 3. ( t , s , S ) 策略 每经过 t 时间检查存储量,当存储量 x > s 时,不 订货;当 x ≤ s 时,订货,订货量 Q = S – x ,即 将存储量补充到 S。
第11页
(2)成本费
货物本身的价格等支出的费用。成本费与订货次
数无关,与订货数量有关。
如货物单价为 K 元,装配费用为 C2 元,生产数量 为 Q,则生产费为:C2 + K Q 。
第12页
4. 缺货费
当存储供不应求时所引起的损失。如市区销售机
会的损失、停工待料的损失、不能履行合同而缴 纳的罚款等。 在不允许缺货的情况下,在费用处理上缺货费为
第19页
C(T) = T 时间内的总费用 / T T 时间内的总费用 = T 时间内的存储费 + T 时间内的订货费
T 时间内的存储费 = 单位货物存储费(C1) ×T 时间
内的总存储量 T 时间内的订货费 = 装配费(C2)+货物单价(K) ×T 时间内的总订货量

运筹学第十三章存储论

运筹学第十三章存储论
2
Q0
2C 3 D C1
最佳批次
n0
最佳周期
t0
2C 3 C1D
另外:t0 要取整数。
13
模型2: 边生产边供应,不允许缺货的模型 假设
缺货费用无穷大; 不能得到立即补充,生产需一定时间; 需求是连续的、均匀的;
每次订货量不变,订购费用不变(每次生产量不变 ,装配费不变);
C3 -- 每次订购费用 P -- 生产速度
C2 -- 缺货费 R -- 需求速度


t1 0 t2 t3 t
天数
31
取 [ 0, t ] 为一个周期,设 t1时刻开始生产。 [ 0, t2 ] 时间内存储为零,B为最大缺货量。 [t1, t2 ] -满足需求及[ 0, t1 ] 内的缺货。 [t2, t3 ] -满足需求,存储量以P-R速度增加。 存储量 t3时刻达到最大。 [t3, t ] -存储量以需求速度R减少。 S
,当 C 2 时 ,
1
最佳周期 t0是模型1的最佳周期 t 的
C 1
C2 C2
倍,
又由于
(C1 C2 ) C2
1
,所以两次订货时间延长了。
Rt 0 2 RC C1
3
不允许缺货量,订货量为 最大缺货量为:
Q0 S0 2 RC C1
3
C 1
C2 C2
C 1 C 2
C ( t0 ) C 3
C1R 2C 3

1 2
C1R

2 C 1C 3 R
10
Annual cost (dollars)
Total cost = HC + OC C(t)

运筹学课件k7

运筹学课件k7
存储策略
策略:几天进货一次,一次订购多少 三种策略: 1.t0循环策略 2.(s,S)策略 3.(t0 ,s,S)策略
优化尺度--费用
存储费C1:库存期间发生的费用 内涵:管理费、租金、物耗、利息 订购费C3:为订购支付的费用 内涵:差旅费、邮电费 缺货费C2 :供不应求导致的损失 内涵:停工待料、违约金、机会损失 使得总费用最低的策略为最优策略
第7章 存储论
本章要点 存储论的基本概念 确定性存储模型的特点 不允许缺货条件下的建模 随机性存储模型的特点 需求离散与连续型下的随机性库存建模
第1节 存储论概述
存储现象:成袋买粮、成桶买油 存储目的:应对不确定性,满足不时之需 存储原因:解决供需矛盾 1、供需时间不平衡 2、供需空间不平衡 3、供需数量不平衡 讨论:你遇到的存储问题
根据不同的概率和供货提前期确定预定服务水平(如保证95%概率不缺货) 例如,假设市场每日的需求是均值D,标准差为 的正态分布。 设提前期为L,期望值= ,方差= ,服务水平为 ,订货点为R,得
则可变为
第2节 存储论的基本概念
存储模型 存储是供需之间的平衡装置,存储量因供应而增加,因需求而减少;需求是已知参数,供应是可控变量
存储状态
供应
需求
存储论研究什么?
在既定的需求约束之下,以适当的存储策略,寻求最优化的存储水平。 决策变量:订购批量、订购周期、订购批次。
存储状态
外部订购自行生产
间断、连续确定、随机
一、需求为随机离散型
例4、挂历新年期间每售出一千张可赢利700元。否则须削价处理且一定可以售完,但是此时每千张赔本400元。据经验统计数据,市场需求的概率如下 问:应该订购多少张?
需求量(千张)

随机性存储模型

随机性存储模型

r0
r0
r Q 1
经化简后得
Q
kP(Q 1) hP(r) h P(r) 0
r0
rQ2
k
1
Q
P(r)
Q
h
P(r)
0
r0
r0
Q P(r)
k
r0
kh
同理从②推导出
Q1 P(r)
k
r0
kh
用以下不等式确定Q的值, 这一公式与(13-25)式完全相同。
Q1
k
Q
P(r)
P(r)
r0
PE(r)
P(rQ)(r)dr Q
0QC1(Q-r)(r)drKQ
常量(平均因 盈缺 利货 )失去失 销的 售期 机望 会因 值 损滞销受到值 损失常的量期望

E [C (Q ) ]
PQ (rQ )(r)d rC 10 Q (Q r)(r)d rKQ
• 为使赢利期望值极大化,有下列等式:
订购量为2千张时,损失的可能值:
当市场需求量为(千张) 0 1 2
3 4 5
滞销损失(元) (-400)×2=-800 (-400)×1=-400 0(元) (以上三项皆为供大于需时 滞销损失) (-700)×1=-700 (-700)×2=-1400 (-700)×3=-2100 (以上三项皆为供小于需时, 失去销售机会而少获利的损失)

3.2 模型六:需求是连续的随机变量
• 设 货物单位成本为K,货物单位售价为P, 单位存储费为C1,需求r是连续的随机变量, 密度函数为Φ(r),Φ(r)dr表示随机变量在r与 r+dr之间的概率,其分布函数
a
F(a) 0 (r)dr,(a 0)

(s,S)策略随机存贮模型

(s,S)策略随机存贮模型

(s,S)策略随机存贮模型在国民经济各个部门和生产过程的各个环节中都有大量的库存现象。

在工厂中为了使得生产过程能连续地、均衡地进行下去,并保证按时交货,必须贮备一定数量的原料、辅助材料、燃料、劳动工具等,必须储备一定数量的在制品,半成品,也必须储备一定的成品。

商业部门为了保证满足社会需要,也要贮存一定数量的商品。

在商店里若存贮商品数量不足就可能发生缺货现象,从而失去销售机会,导致利润减少;如果存贮数量过多,一时售不出去,会造成商品积压,占用流动资金过多而使流动资金周转不开,这样也会给国家造成经济损失。

银行里每天随时都可能有人来提取现款。

人们来不来提款,提多少款,虽有一定规律,但都不是确定的,因此,银行也应保持一定数量的现金。

诸如此类还有如水电站雨季到来之前,水库应蓄水多少?等等。

当前我国物资管理中存在不少问题,其中最突出的就是库存储备过大,占用资金过多,资金利用和周转率不高,根据发达国家的经验,随着市场竞争的加剧,在原材料、设备和劳动力成本压缩的空间趋于饱和后,对成本的控制将转为物流领域。

而在物流领域中,库存管理占有很重要的地位。

因此,我们有必要对库存问题进行研究。

本论文利用概率论和运筹学知识来研究需求是连续型随1/ 14机存贮问题,因为随机存贮问题在现实生活中比确定型存贮问题更为普遍。

本论文先讨论如何得到这些概率分布的统计方法,再利用所获得的概率分布来讨论随机存贮问题。

1数理统计在概率论的许多问题中,概率分布通常总是已知的,或者假设为已知,而一切计算与推理就是在这已知的基础上得出来的。

但在实际中,情况往往并非如此。

一个随机现象所服从的分布是什么概型可能不知道,或者由于现象的某些事实而知道其概型,但不知其分布函数中所含的参数。

如我们考察某工厂生产的电灯泡的质量,在正常生产的情况下,电灯泡的质量是具有统计规律性的,它可以表现为电灯泡的平均寿命是一定的,电灯泡的寿命这个用来检查产品质量的指标,由于生产过程中的种种随机因素的影响,各个电灯泡的寿命是不相同的,由于测定电灯泡是一一进行测试,而只能从整批电灯泡中取出一小部分来测试,然后根据所得到的这一部分电灯泡的寿命的数据来推断整批电灯泡的平均寿命。

存储论

存储论

大连大学
28
数学建模工作室
随机性存储模型的策略
❖ (1) 定期订货,但订货数量需要根据上一个周期末剩下货物的数量决
定订货量。剩下的数量少,可以多订货。剩下的数量多,可以少订或不 订货。这种策略可称为定期订货法。
❖ (2) 定点订货,存储降到某一确定的数量时即订货,不再考虑间隔的 时间。这一数量值称为订货点,每次订货的数量不变,这种策略可称之 为定点订货法。
存储模型的基本介绍
存储模型的分类
存储模型大体分为两类:一类是确定性模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机性模型,即模型中含有随机变量。
大连大学
7 数学建模工作室
存储模型的分类
存储模型的分类
存储模型大体分为两类:一类是确定型模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机型模型,即模型中含有随机变量。
确定型存储模型
(4)允许缺货,补充时间极短的经济订购批量模型
基本假设:除允许缺货外,其余条件皆与模型一相同。
大连大学
23
数学建模工作室
确定型存储模型
从图上可知:
平均存储量 Q S T1 Q S 2
2T
2Q
平均缺货量 ST2 S 2 2T 2Q
因此,最优策略为:
Q* 2CD DCP CS
Q
C
1 2
1
D P
QC
P
CDD Q
因此,平均总费用为:
大连大学
21
数学建模工作室
Q确* 定CP型2C1D存DDP 储 模 型
T * Q* D
2CD P
CPDP D
A* 1 D Q* P

存储模型

存储模型

时补充存贮,补充量Q=S-x(即将存贮补充到S)。
3.(t,s,S)混合策略每隔t时间检查存贮量x,当
x>s时不补充;当x≤s时,补充存贮量使之达到S。
(四)费用
1.订货费它包括两部分,一部分是订购一次货物
所需的订购费用(如手续费、出差费等),它是仅
与订货次数有关的一种固定费用。另一部分是货物 的成本费 kx(x 为订货数量, k 为单价),成本费随 订货数量变化而变化。 2.保管费包括货物的库存费和货物的损坏变质等
假设每隔 T 时间补充一次,则订货量必须满足 T
时间内的需求 rT ,即订货量 Q rT ,每次订货费 为 c1 ,货物单价为 k ,则订货费为 c1 krT T 时间内的存贮 量(如图)为
T
1 2 (rT rt )dt rT 0 2
1 2 则T时间内的存贮费为 rT c2 2 1 2 故T时间内的总费用 c1 krT rT c2 2 为确定订货周期 T 及每次订货量 Q,考虑 T 时间内
例2
某厂每月需某产品100件,生产每件产品存贮费
为 0.4 元,求最优生产周期、生产时间和生产批 量。
解 已 知 c1 5,p=500/30,r=100/30, c2 =
0.4/30,则
即最优生产周期为17天,生产时间为3.4天,生产
批量为56件。
四、模型三
支出的费用。
3.缺货费由于供不应求造成缺货带来的损失费用, 如停工停产造成的损失和罚款等。
(五)目标函数
为了衡量存贮策略的好坏,必须建立一个衡
量指标,这个指标称为目标函数。通常把目标函
数取为该策略的平均费用或平均利润。
二、模型一
模型一——不允许缺货,生产时间很短 为了使模型简单,易于理解,便于计算,可作以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
右端=2825+850*100+45*(2+2+0)+1250*(3+2)=94255 左端:s=80时 左端=940250<94255
ks r s C1 ( s r ) p(r ) r s C2 (r s) p(r )
所以s=80, 存储策略为
(b) 每阶段期初检查存储, I>s,不订货; 否则,订货,Q=S-I
第6页
随机性存储模型—(S,s)型存储策略(5)
模型五: 需求是离散型随机变量
设: 需求r 的取值为 r0, r1, …, rm, ri<ri+1 对应概率为p(r0),p(r1),…,p(rm) , ∑p(ri)=1 其余与模型四相同: 货物单位成本k, 存储费为C1;缺货费C2;订货费C3
(1) ri从小到大排列; (2) S只从ri 中取值,记为Si; (3) 从

r Si1
C2 k p(r ) N r S p(r ) i C1 C2
确定S=Si 若本阶段订货量为Q=S-I
第9页
随机性存储模型—(S,s)型存储策略(8)
例1 设某公司用塑料作原料制成产品出售。已知每箱塑料 购价为800元,订购费为60元,每箱存储费为40元、缺货费 为1015元,原有存储量10箱,已知对原料需求的概率:
0 S S
C2 k F ( S ) (r )dr 0 C1 C2
S
C2 k 因为 1 C1 C2
称F(S)为临界值,记为
C2 k N C1 C2
第5页
随机性存储模型—(S,s)型存储策略(4)
则本阶段的存储策略为
(1) 由 N (2) Q=S-I (3) 确定s a) 若本阶段不订货,则省去C3,找s,使得
(2) p(80)+p(90) =0.3<0.309 p(80)+p(90)+p(100)=0.6>0.309
S=100
(3) 计算s
第12页
随机性存储模型—(S,s)型存储策略(9)
C3 kS r S C1 (S r ) p(r ) r S C2 (r S ) p(r )
Q* 0
pk (r )dr C1 p
讨论:(1) p≤k, F(Q*) ≠ 0, 此时Q*取0
(2) 若p<C2, 有
C2 k F (Q*) C1 C2
(3) 若上一阶段剩余量为I, 则
I>Q*,不订货; 否则,订货,到Q*为止
第2页
随机性存储模型—(S,s)型存储策略(1)
第11页
随机性存储模型—(S,s)型存储策略(10)
例2 已知某公司每箱原料购价850元,订购费2825 元, 每箱存储费45元、缺货费1250元,对原料需求的概率:
r 80 90 100 110 120
p (r ) 0.10 0.20 0.30 0.30 0.10
求存储策略
C2 k 解: (1) N 0.309 C1 C2
r 30 40 50 60
p (r ) 0.20 0.20 0.4
0.20
求最佳订购量
C2 k 解: (1) N 0.204 C1 C2
s=?
S=40
(2) p(30)=0.20 <0.204; p(30)+p(40)=0.4>0.204 (3) Q=S-I=30
公司应订购30箱。
第10页
随机性存储模型—报童问题(4)
模型一:需求是离散型随机变量

Q 1 r 0
k Q p(r ) r 0 p(r ) hk
模型二:需求是连续型随机变量(无存储费)

Q
0
k p(r )dr hk
第1页
随机性存储模型—一般问题(5)
模型三:需求是连续型随机变量(有存储费)
F (Q*)
C (S ) C ( I Q) C3 kQ
Q=S-I

r I Q
C1 ( I Q r ) p (r )
r I Q C2 ( r I Q ) p ( r )
第8页
随机性存储模型—(S,s)型存储策略(7)
则本阶段的存储策略为:
C (S ) C ( I Q) C3 kQ

S
Q=S-I

S
0
C1 (S r ) (r )dr C2 (r S ) (r )dr
S
第4页
随机性存储模型—(S,s)型存储策略(3)
由C`(S)=0得
k C1 (r )dr C2 (r )dr 0
模型四: 需求是连续型随机变量
设: 货物单位成本k, 存储费为C1;缺货费C2;订货费C3 设需求为r时,其概率密度函数为 (r ) 则 (r ) dr表示随机变量在[r, r+dr]之间的概率 分布函数 F (a) (r )dr (r )dr (a>0)
0 a a
其中s 从 r0, r1, …, rm中取值 使上式成立的最小的 ri 记为s
右端=60+800*40+40*(40-30)*0.2+1015*(10*0.4+20*0.2)
=40260
左端:s=S=40时,不等式成立
s=30,左端=800*30+0+1015*(10*0.2+20*0.4+30*0.2) =40240<40260 I>30,不订货; 所以s=30, 存储策略为 否则,订货,补到40为止
I>80,不订货; 否则,订货,补到100为止
第13页
期初存储为I
订货量为Q 问:如何确定Q,使损失期望值最小(赢利期望值最大)?
第3页
随机性存储模型—(S,s)型存储策略(2)
解:损失的期望值=订货费+存储费+缺货费 期初存储达到S=I+Q,则订货费+成本费=C3+kQ 存储费期望值:0 C1 (S r ) (r )dr 缺货费期望值: S C2 (r S ) (r )dr 本阶段支出费用期望
ks C1 ( s r ) (r )dr C2 (r s ) (r )dr
0 s s

(r )dr 确定S 0
S
定 期 订 货
C3 kS C1 ( S r ) (r )dr C2 (r S ) (r )dr
0 S
S

若不少于一个s,取其中最小者
期初存储为I, 订货量为Q 问:如何确定Q,使损失期望值最小(赢利期望值最大)?
第7页
随机性存储模型—(S,s)型存储策略(6)
解:损失的期望值C(S)=订货费+存储费+缺货费 期初存储达到S=I+Q,则订货费+成本费=C3+kQ 存储费期望值: r I Q C1 ( I Q r ) p (r ) 缺货费期望值: r I Q C2 (r I Q) p (r ) 本阶段支出费用期望
随机性存储模型—(S,s)型存储策略(9)
计算s的方法。考察不等式
C3 kS r S C1 (S r ) p(r ) r S C2 (r S ) p(r ) ks r s C1 ( s r ) p(r ) r s C2 (r s) p(r )
相关文档
最新文档