现代毒理学的研究方法进展及其热点_顾祖维

合集下载

毒理学研究方法创新及预警技术发展前景

毒理学研究方法创新及预警技术发展前景

毒理学研究方法创新及预警技术发展前景近年来,随着越来越多的化学物质的广泛应用,人们对于毒性物质的研究和认识变得尤为重要。

毒理学研究方法的创新以及毒性预警技术的发展,对于保障公众健康和环境安全具有重要意义。

本文将探讨毒理学研究方法的创新以及毒性预警技术的发展前景。

首先,毒理学研究方法的创新是提高毒物评估准确性和效率的关键。

毒物评估是毒理学的核心内容,它需要对化学物质对生物体产生的毒性进行评估和预测。

以往的毒理学研究主要依赖于动物模型,然而该方法不仅需要大量经费和时间,而且还存在伦理和动物福利方面的问题。

因此,研究人员开发了许多替代方法,例如体外模型和计算机模拟等,以减少对动物实验的依赖。

其中一种重要的创新方法是体外模型。

体外模型是指将细胞或组织通过离体培养的方式进行研究。

与动物模型相比,体外模型可以提供更接近真实情况的结果,并且更便捷、经济。

例如,体外细胞毒性测试可以使用人体细胞培养物来评估化学物质对人体的毒性。

此外,体外模型还可以逐渐模拟复杂的生理和生化过程,提高毒物评估的准确性。

另外一种创新方法是计算机模拟。

计算机模拟是指使用计算机软件和数学模型对化学物质对生物体的影响进行预测。

计算机模拟可以快速且准确地预测毒性作用机制、生化代谢途径、毒物分布和排泄等,从而为毒物评估提供重要的参考依据。

此外,计算机模拟还可以帮助研究人员发现新的毒性机制和新的靶点,从而推动毒理学领域的研究进展。

除了毒理学研究方法的创新,毒性预警技术的发展也是一个备受关注的领域。

毒性预警技术的目标是在化学品或药物上市前,通过检测和评估其潜在毒性,从而及早识别和预测潜在的危害。

这种技术的发展可以帮助相关部门和企业制定相应的控制措施,以保护公众和环境的健康。

当前,毒性预警技术主要包括传统的实验动物模型和体外模型。

然而,这些方法存在着很多限制和不足。

为了克服这些问题,研究人员正在开发并应用多种高通量筛选技术。

这些技术可以同时测试大量样本,并提供快速准确的毒性评估结果。

毒理学研究的现状及未来发展方向

毒理学研究的现状及未来发展方向

毒理学研究的现状及未来发展方向毒理学作为一门重要的科学学科,研究的是毒物对生物体的危害和作用机理,对于保护人类和环境健康具有极其重要的意义。

随着化学工业、医药产业以及生物技术的发展,毒理学的研究也在不断深入和拓展。

本文将围绕毒理学研究的现状及未来发展方向进行探讨。

一、毒理学研究的现状1、毒物种类不断增多随着工业化进程的加快,化学工业和重金属污染等环境污染问题越来越突出,导致地球环境面临着严峻的挑战,各类毒物的类型也在逐年增加。

毒理学研究不断涌现新的热点问题和挑战,对毒物种类的探索和研究也愈加迫切。

2、研究手段不断完善对于毒理学研究而言,性质相似的毒物可能对机体产生相似的毒性效应,毒物的作用机制和毒性效应相对也相似。

近年来,高通量筛选技术、单细胞序列技术、基因组学研究方法和计算机模型等手段的发展,为毒理学研究提供了更加高效和可靠的技术手段。

3、毒物与健康之间联系日益明显毒物与健康之间的联系是毒理学研究的重点之一。

与人类健康相关的毒物主要包括致癌物、致畸原、神经毒物和免疫毒素等。

毒理学研究在这些方向上的深入探索,对于保障人类健康和健身具有重要的作用。

二、毒理学研究的未来发展方向1、全方位研究各类新毒物随着各行业的发展,新化合物不断涌现,不仅如此,新的使用场景和排放途径也在不断地出现,同时现有毒物的使用量和排放量也在增加,对毒理学研究提出了全新的挑战。

未来毒理学研究的方向之一,就是全方位探索各种新毒物的毒性效应和作用机制,这对于工业界和环保机构来说具有极为重要的意义。

2、多学科交叉研究毒理学研究在今后的发展中将更加注重多学科交叉和相互融合。

化学、生物学、环境学等学科的交叉融合将为毒理学研究的深入提供更加广阔的视角和理论基础,为创新毒理学研究方法提供更多的思路和资源。

3、借助大数据的力量随着生物技术和计算机技术的快速发展,大数据技术的运用已经成为科学研究的一个重要方向。

毒理学研究也不例外。

未来,毒理学研究将会借助大数据技术的力量进行更深入的探索,从而发现和解决研究问题,推动毒理学研究进一步发展。

毒理学研究方法

毒理学研究方法

毒理学研究方法毒理学研究方法是指应用于研究化学物质对生物体产生毒性效应的方法。

毒理学研究方法主要分为体外实验和体内实验两种。

体外实验是指在离体条件下进行的实验研究。

常用的体外实验方法包括荧光标记法、细胞毒性实验和酶活性测定等。

荧光标记法是利用荧光染料将物质与细胞或分子结合,通过观察荧光信号的强弱来判断物质对生物体的毒性。

细胞毒性实验是将物质直接加入细胞培养基中,观察细胞形态和数量的变化来评估物质的毒性。

酶活性测定是通过测定酶的活性来判断物质对生物体酶系统的影响,常用的测定指标包括丙二醛含量、超氧化物歧化酶活性和谷胱甘肽过氧化物酶活性等。

体内实验是指在整个生物体内进行的实验研究。

常用的体内实验方法包括农药和药物的急性毒性实验、慢性毒性实验和基因毒性实验等。

急性毒性实验主要是通过给实验动物灌胃或皮下注射等方式给予一定剂量的物质,观察动物的死亡率来评估物质的急性毒性。

慢性毒性实验是将一定剂量的物质连续给予实验动物一定时间,观察动物的生长、繁殖和行为等指标的变化来评估物质的慢性毒性。

基因毒性实验是通过观察物质对动物或细胞的遗传物质的影响来评估物质的遗传毒性,常用的方法包括微核实验和突变基因检测等。

除了以上常用的体外和体内实验方法,还有一些辅助的研究方法用于辅助毒理学研究。

比如,系统毒理学研究方法是通过系统化的研究物质在生物体内的吸收、分布、代谢和排泄等过程来评估物质的毒性。

组织工程学是利用体外培养技术建立人工组织模型,通过观察物质对人工组织的影响来评估物质的毒性。

计算毒理学是利用计算机模拟和统计分析等方法对毒理学数据进行处理和分析,评估物质的毒性。

总之,毒理学研究方法可以在体外和体内条件下开展实验研究,通过观察实验结果来评估化学物质的毒性。

不同的实验方法可以相互印证,全面评估物质的毒性效应。

现代毒理学的概念及其主要研究领域的相互关系(一)

现代毒理学的概念及其主要研究领域的相互关系(一)

现代毒理学的概念及其主要研究领域的相互关系(一)现代毒理学的概念及其主要研究领域的相互关系1. 概念•现代毒理学是研究毒物对生物体产生的不良效应的学科,它涉及了毒物与生物体之间的相互作用机制以及毒物对健康和环境的影响。

•现代毒理学研究不仅局限于有毒化学物质,还包括辐射、微生物、环境因子等多个方面。

2. 主要研究领域物质毒理学•物质毒理学研究毒物的化学特性、毒性效应,以及毒物对细胞、器官、组织等的影响。

•研究领域包括毒理学基本理论、毒性评价方法及技术、毒性作用机制等。

药理学毒理学•药理学毒理学研究药物的毒理学特性及其对人体的不良反应。

•研究领域包括药物的剂量依赖性毒性、药物的不良反应机制、药物相互作用等。

环境毒理学•环境毒理学研究环境中各种污染物对生物体的毒性及其对生态系统的影响。

•研究领域包括环境污染物的毒性评价、环境影响评价、环境污染物毒性作用机制等。

遗传毒理学•遗传毒理学研究遗传物质(DNA)的突变、染色体畸变等对健康的影响及其遗传效应。

•研究领域包括突变机制、突变频率评估、遗传毒性评价等。

临床毒理学•临床毒理学研究临床药物治疗中的毒物的不良反应,以及毒物的预防和治疗方法。

•研究领域包括药物的毒性反应、药物不良反应的治疗方法、毒物中毒的临床特征等。

分子毒理学•分子毒理学研究毒物在分子水平上对生物体的影响及其作用机制。

•研究领域包括毒物与细胞分子结构的相互作用、毒物对基因表达的调控等。

3. 关系解释•这些主要的研究领域相互联系,共同构成现代毒理学的整体体系。

•进行物质毒理学的研究可以为药理学毒理学提供基础理论知识,有助于解释药物的不良反应机制。

•环境毒理学研究结果可以提供生态环境中毒物对生物体的影响和危害程度,对环境保护和生态安全具有重要意义。

•遗传毒理学的研究可以揭示突变物质、遗传毒物对人类和物种的遗传变异和遗传疾病的发生机制,对预防和治疗具有指导意义。

•临床毒理学则将现代毒理学的理论和研究应用于临床药物治疗,旨在减少毒物的不良反应或提供对毒物中毒的治疗方法。

毒理学研究的现状及发展趋势

毒理学研究的现状及发展趋势

毒理学研究的现状及发展趋势毒理学是一门研究毒物对生命体系的影响及其发生机制的学科。

随着化学品、食品、化妆品等日常生活中使用化学物质的增多,毒理学研究变得越来越重要。

本文将就毒理学研究的现状及发展趋势进行探讨。

一、毒理学研究的现状毒理学研究可以分为基础研究和应用研究两类。

基础研究主要研究毒物与生命体系之间的相互作用及其机制,包括毒物的吸收、转运、代谢、作用靶点、对生理功能的影响等方面。

应用研究则是将基础研究成果应用于食品、化妆品、药品等产品的安全评估和环境污染的监测与评估。

目前,毒理学研究的重点逐渐转向化学品组合对生命体系的影响。

常见的化学品组合包括农药残留、污水处理厂排放物等。

一些研究表明,化学品组合可能引发比单一化学物质更为严重的生态和健康风险。

因此,在应用研究中应首先考虑化学品组合的作用。

另外,毒理学研究的另一重要方向是畜禽食品中化学残留物的研究。

畜禽食品是人们日常生活中不可或缺的营养来源,但其中存在化学残留物。

化学残留物可能对人体健康造成危害,因此,对畜禽产品中的化学残留物进行分析和评价尤为重要。

毒理学研究在现代医药中也发挥着重要的作用。

药物毒理学研究主要研究药物对生命体系造成的毒性作用及其机制。

在药物安全性评价阶段,药物毒理学研究是不可或缺的环节。

药物的毒理学研究能够及早发现药物的毒性反应,在临床应用中更加安全。

此外,毒理学研究还可为药物设计和开发提供重要的线索和指导。

二、毒理学研究的发展趋势毒理学研究正朝着更加综合和精准的方向发展。

近年来,生物成像技术、系统生物学、工程毒理学等新技术和新理念的应用,推进了毒理学研究的精细化和前沿化。

生物成像技术是近年来发展迅速的一种新技术。

通过对生命体系的成像,可在更为细致和直观的水平上研究毒物的代谢规律和对生命体系的影响,从而促进毒理学研究的精细化。

系统生物学是利用基因组、转录组、蛋白质组等高通量技术和计算生物学方法来研究生命体系的整体响应。

毒物会对生命体系的基因、蛋白质等方面产生影响,因此,系统生物学在毒理学研究中的应用能够更加综合和全面地研究毒物与生命体系的相互作用。

毒 理 学 概 述

毒 理 学 概 述

2、现代毒理学(modern toxicology)
研究所有外源因素对生物系统的损害作用、 生物学机制、安全性评价与危险性分析的科学。
电磁炉
电脑
日常生活的几大杀手
微波炉 手机
现代毒理学
基础学科:与其他学科尤其是生命科学
广泛联系和渗透。
应用学科:与经济建设、人民生活和生
态环境保护密切相关。
3、毒物(poison)
亦称整体动物实验。可严格控制接触条件, 测定多种类型的毒作用。多用于检测外源化 学物的一般毒性。
急性毒性实验 亚急性毒性实验 亚慢性毒性实验 慢性毒性实验
体内实验法优缺点
优点: 1、易于控制暴露条件 2、能测定多种效应 3、可能评价机制 缺点: 1、动物暴露与人暴露相关的不确定性 2、受控的饲养条件与人的实际情况不一 致
(二)、机制毒理学
研究外源因素对生物系统产生损害作用 的细胞、生化和分子机制。
吸收 分布 排泄
代谢
生物转运
生物转化
机制毒理学的内容
阐明化学物是如何产生毒作用的,为 建立敏感的预测试验,安全性评价,设计 和生产安全性的化学物及化学性疾病的诊 断和治疗提供依据。
机制毒理学研究资料主要用途
1 证实与人类直接相关的实验动物中所观察 到的损害作用(如癌症、出生缺陷等)。 2 验证可能与人类无关的发生于实验动物中 的有害效应。 3 设计和生产较为安全的化学物以及合理治 疗化学中毒和临床疾病。 4 进一步加深对基础生理学、药理学、细胞 生物学和生物化学的了解。
(三)、管理毒理学
根据描述和机制毒理学的研究资料进 行科学决策,协助政府部门制定相关法规 条例和管理措施并付诸实施,以确保化学、 药品、食品等进入市场足够安全,达到保 护人民群众身心健康的目的。

毒理学的新技术和应用

毒理学的新技术和应用

毒理学的新技术和应用毒理学是一门研究毒物及其对生物体造成的不良影响的学科。

随着人工合成化合物的广泛使用和环境污染问题的日益严重,毒理学的研究变得越来越重要。

如今,毒理学的新技术不断涌现,为毒理学的研究和应用提供了新的可能性。

一、体外毒理学技术传统的毒理学研究主要依赖于动物试验,其缺点是耗时、昂贵,并且存在伦理和可靠性问题。

而现在,体外毒理学技术的快速发展,已成为一种更加可行的替代方案。

一种流行的体外毒理学技术是使用体外细胞模型。

体外细胞模型是指采用体外培养系统,利用人类或动物细胞来直接测试毒物对细胞、组织、器官和生物系统的影响。

这种技术可以快速、廉价地测试毒物引起的细胞毒性,并产生更加可信的毒性数据。

目前,体外毒理学技术已广泛应用于药物、化妆品、化学品以及其他化学和生物学相关领域的毒性评估。

二、计算毒理学技术计算毒理学技术(Computational Toxicology)是用计算机模拟和预测毒性数据的一种方法。

它可以更准确和快速地评估大量化学物质的毒性,并预测这些化学物质的潜在风险。

计算毒理学技术主要包括:毒性预测、结构活性关系预测、毒物动力学模拟和生物信息学技术等。

毒性预测是一种常见的计算毒理学技术,它通过对化学物质的化学特性进行分析,预测出该化学物质的毒性。

现在,越来越多的预测模型被开发出来,比如结构-活性模型、QSAR (Quantitative Structure-Activity Relationship)模型等。

这些计算模型能够有效减少动物试验,降低风险评估成本,并提高毒性预测的可靠性。

三、基因组学和毒理学基因组学技术的发展也为毒理学研究提供了巨大的帮助。

这项技术可以对基因组进行大规模测序和分析,解释基因与环境因素之间的相互关系。

基因组学技术的应用对毒理学起到了较大的影响,它可以帮助研究者发掘与毒物毒性相关的基因变异,并揭示基因 - 环境交互作用。

同时,基因组学还可以通过研究基因表达谱变化,揭示毒物引起的不良影响机制,从而更好地评估化学物质的毒性。

毒理学研究的新技术与方法

毒理学研究的新技术与方法

毒理学研究的新技术与方法随着社会的发展和科技的进步,毒理学研究的新技术和方法也在不断涌现。

这些新技术和方法旨在更准确、更快速地评价化学物质的毒性,为保护人类健康和环境生态提供科学依据。

在本文中,我们将简要介绍一些毒理学研究的新技术和方法。

一、“体外”检测技术传统的毒性测试主要是采用“体内”测试方法,即在动物身上进行毒性试验。

这种方法存在许多问题,比如说:1. 试验动物满足条件的数量困难,往往需要大量的试验动物,也就极大了整个体系的成本和时间开销。

2. 这种试验结果的可靠性存在较大的争议,因为即使两种动物属于同一种,但是其生理状态、代谢能力、能否耐受毒性物质等方面都有可能存在差异,所以在某些情况下,通过动物实验得到的结果可能与真实生态环境和人体情况存在较大差异。

针对这些问题,近年来科学家们开发出了“体外”检测技术,这种技术并未需要使用活体动物进行试验,能够极大地提高检测效率和减少实验成本。

现如今,“体外”检测技术已经成为毒理学领域热门研究方向,不断有新的技术被研发,比如人工智能辅助计算、荧光传感技术、生物芯片技术等。

二、毒性小分子研究毒素通常是指那些在人或某些生物体上引起不良反应的化学物质。

除了它们可能对人类的生命、健康和环境产生负面影响外,从科学角度看,毒素也同时作为天然的和合成的小分子,贡献着基础研究的重要成果。

关于毒性小分子的研究,传统上主要采用各种化学方法来分离、鉴定和表征。

但最近,许多机器学习和人工智能的新技术为毒性小分子研究提供了一个全新的视角。

利用机器学习结合各种基因组数据,我们可以更好地预测毒性以及有潜在毒性的小分子化合物的机理。

这种技术有望帮助科学家快速、准确地识别潜在毒性分子,并为药物研发和毒性评估提供指导,诸此端倪已经在药物开发等领域得到更快的进展。

三、3D打印技术和有机仿生材料传统上,毒性测试和药物研发严重依赖于动物实验,如同以上所示。

但是近来,随着3D打印技术和仿生材料的快速发展,可以创建非常接近人体器官的“人体器官模型”,从而代替动物实验,具有重大的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1001-0580(2005)02-0254-03中图分类号:R114文献标识码:A=继续医学教育讲座>作者简介:顾祖维,男,1935年1月生,上海人,研究员。

1954~1960年在苏联列宁格勒公共卫生医学院学习。

1979~1981年在法国进修毒理学。

1987年获法国国家毒理学博士学位。

1960~1992年在上海医科大学劳卫生教研组任教,曾任教研室主任。

1989~1992年应邀赴美国国家职业安全与卫生研究(NI OSH)工作,兼聘为美国国家研究委员会(NR C)高级研究员。

1992年10月~1998年底任上海市劳动卫生职业病防治研究所研究员。

1999年1月至今任上海市疾病预防控制中心研究员。

从事职业医学和遗传及分子毒理学研究。

现任中国毒理学会生化与分子毒理学专业委员会委员,国家自然科学基金会同行评议专家。

5卫生毒理学杂志65工业卫生与职业病65中华医疗卫生65环境与健康展望6杂志副主编;5中华劳动卫生职业病杂志65中国工业医学杂志65中国公共卫生65环境与职业医学6等杂志编委。

现代毒理学的研究方法进展及其热点顾祖维毒理学在20世纪下半叶有了迅猛的发展,目前已形成了诸多的毒理学分支。

按研究的对象或物质可分为金属毒理学、农药毒理学等。

随着生产和科学技术的发展,肯定还会不断出现新的分支112。

本文对现代毒理学的研究方法进展及其热点作一介绍。

1毒理学研究方法和技术发展毒理学研究所用的方法和技术决定于要解决的问题。

毒理学随科学发展,尤其是生物学和医学的发展也随之发展。

毒理学发展的历史证明,引进新的概念、新的理论、新的方法和技术,会导致新的边缘学科的形成,出现毒理学新的分支。

分子毒理学的形成是一个明显的见证。

在毒理学研究中只要主动引进一种新的方法或技术,就有可能开创一个新的领域,获得一批创新和领先的科研成果。

例如生物芯片包括基因芯片、蛋白质芯片的应用,将取代一些耗时的DN A印迹法(Souther n blot)、蛋白质印迹法(Western blot)、R NA印迹法(No rthern blot)和点印迹法(dot blot)。

毒理学研究涉及受试化学物及它们的代谢产物的定性和定量问题,需要应用分析化学的方法。

色谱)质谱联用的方法已普及。

在整体动物实验中常用组织病理学检查以观察全身器官和组织病理学改变,有利于找到靶器官,对进一步的研究可提供有价值的线索。

毒理病理学方法包括光镜和电镜的检查、酶组织化学及免疫组织化学,可用于揭示病变的性质和定位。

近年来,也用于研究基因包括癌基因和抑癌基因的表达。

经典的病理学检查往往是定性或半定量的,现今结合图像分析,可将图像的改变转化为数据,做到定量的研究。

计算机体层摄影(CT)、磁共振成像(M RI)和超声检查可提供形态和功能改变的信息。

实质脏器功能主要应用血液和尿生化指标改变,多功能生化检测仪,在一次进样后可同时检测近百种指标,血液和尿液酶谱分析也常用。

对脑的研究常用电生理方法,经典的有脑电图,进一步可用微电极观察特定脑区的电活动。

化学物对海马回的作用揭示了大脑学习与记忆的功能,研究毒物对基底节的作用有助于了解Par kinson.s病。

大脑诱发电位技术可客观地检查感觉神经系统通路的结构和功能。

还常用神经递质及其代谢产物的分析12~62。

我国神经行为方法在研究职业性毒物方面已广泛应用。

2当今毒理学研究的热点211一系列/组学0的形成当今毒理学面临前所未有的良好机遇和快速发展。

近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列/组学0(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(ce-l lomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。

其中某些学科已与毒理学产生交叉融合形成了新分支。

如基因组学v毒物基因组学和环境基因组学(tox-i cog enomics or environmental genomics),蛋白质组学v毒物蛋白质组学(tox icoproteomics),代谢组学(metabonomics)v毒物代谢组学(toxicometabonmics),生物信息学(bioinformatics)或芯片生物学(in silico biolog y)v芯片毒理学(in silico toxicolo-gy)等,这此交叉分支学科已成为当前毒理学中最活跃的研究领域172。

近年来,新技术、新方法不断涌现,如包括各种生物芯片转基因和基因删除(gene knockout)技术、报告基因技术、干细胞技术、基因或蛋白质差异表达检测技术、实时定量PCR(r e-a-l time and quantitative PCR)技术、蛋白质组技术平台、代谢组技术平台、发光技术、荧光/比色、干细胞培养技术等。

人体和其他生物的基因组计划、环境基因组计划、细胞凋亡和细胞胀亡(o ncosis)等细胞死亡模式、细胞信号转导通路、细胞周期调控和细胞分化机制等的研究进展,为毒理学的发展提供了理论指导。

由于物种间基因的同源性,鼠的基因仅比人少300条,约1%的差异,这为从基因水平上研究毒作用的种属差异提供了可能;生物芯片技术可用于筛选毒性相关基因、揭示毒作用的基因表达谱、快速筛选毒物、筛选和检测基因多态性、检测基因突变、进行安全性评价等,从而为解决化学物的联合作用、高通量的筛选化学物、研究毒作用机制等问题18~102。

我国近来报道应用基因芯片技术探讨小鼠胚胎心脏发育过程中的差异基因,结果表明,在8404个靶基因中,143个基因差异表达,其中上调基因52个,下调基因91个,分别是细胞分裂、凋亡、信号传导、基因蛋白质表达调控及某些功能尚不清楚的基因1112。

21111代谢组学代谢组学(mteabonomics)是研究机体内代谢网络系统的科学,揭示机体在正常和病理状态下代谢的全貌1122。

代谢组学的技术是一种检测整个机体的代谢动力学变化的方法。

这种检测仅需几滴血液,利用高频无线电波检测血液中分子磁性,通过高级计算机程序分析,检测血液、血浆和尿液,标本无须特殊的前期处理。

此检测也可以有效地作者单位:上海市疾病预防控制中心,200336应用于人群的筛查。

可以提供有关毒理、药物毒理、药效、临床诊断以及基因功能的信息。

代谢组学的技术在临床检测和诊断中具有很大的潜在应用前景,可以帮助医生在很短的时间内诊断疾病,并且判断那一种药物最有疗效。

英国剑桥大学的科学家发明了用代谢组学的方法作快速血液检测来帮助预测心脏病发作。

它具有最小限度的损害,可以用来检测冠心病。

它优于传统的血管造影术,检测心脏病具有快速、廉价、安全的优点且副作用少。

21112糖原组学糖原组学(g lycomics)是在基因组学和蛋白质组学相继成为生物学中的重点研究领域后,生物学的另一分支)糖原组学有望取得突破性进展。

糖原组学是研究糖和碳水化合物的学科。

长期以来,一些科学家认为,糖只是存储能量,形成诸如植物细胞壁结构等。

但现在,生物学家发现,糖结构的微小差异可能对生物功能有重大影响。

事实上,糖涉及到从胚胎发育到免疫系统控制的每一个事件。

在所有器官中,糖无所不在。

对糖生物学的深入研究可能会产生新药,或改进现有药物的疗效。

例如,加有适量糖的、基于蛋白质的药物,可能产生更好的疗效,并可减少所需药物剂量。

糖原生物学落后于基因和蛋白质的研究,在于以前缺乏研究碳水化合物分子的有效工具和糖分子本身的复杂性。

DNA和蛋白质实际上是直线序列,而糖有分叉序列。

D NA 仅有4种基本单元,蛋白质有20种,而糖有30种以上的基本单元。

目前重点是破译糖原的密码,以揭示糖的奥秘。

麻省理工学院实验室近年来开发出了第一个糖排序方法。

现在自动化的/糖合成仪0已问世。

就像20世纪80年代中期发明自动化DNA排序和合成仪,从而开辟出基因组学领域一样,自动化/糖合成仪0也使糖原组学成为热门学科。

了解糖的功能对于改进药的剂量、战胜癌症、控制帕金森氏病、早老性痴呆和艾滋病等病的发展有重要意义。

212环境基因组计划突变的本质即DN A的改变。

要了解基因型(突变)和表型(疾病)之间的确切关系,就必须彻底了解相关的基因及其功能,而这正是人类基因组计划的目标。

基因组计划为突变研究提供了信息资源、技术方法和相关的仪器设备,突变研究则可利用这些资源来了解基因及其功能,了解突变是如何积累演化成疾病的。

人类健康状况受多种因素影响,如遗传易感性、环境的暴露和衰老等。

快速发展的分子遗传学使人们认识到对环境暴露的易感性存在不同个体遗传背景的差异。

美国国家卫生研究院(N IEHS)启动的环境基因组计划即是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因。

此计划在美国人群中选择具有不同年龄、性别和种族背景的10个群体中1000个个体,并应用人类基因组计划所使用的方法,鉴定与环境相关疾病易感基因的等位片段多态性(allelic poly-morphism),建立这些基因多态性的中心数据库,并服务于疾病流行病学中基因与环境相互作用的人群研究1132。

通过鉴定影响个体对环境成分反应的基因和等位片段多样性,科学家们将能准确地预测出影响人类健康的危险度和帮助政府制定出环境保护策略。

鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库。

并在以下4个方面为重点:即环境基因组图谱的建立,包含足够的血样数和20个基因多态性;大规模从具有代表性的美国人群中检出主要接触的化学物质;恢复这些因素的真实相互作用;用转基因鼠和其他改进模式建立快速和更好的检测系统。

环境基因组计划拟分析的候选基因中大约有100个左右的代谢及解毒基因,它们调控细胞色素P450、N-乙酰化酶(N AT)、谷胱甘肽-S-转移酶、葡萄醛酸转移酶、磺基转移酶、甲基转移酶、金属硫蛋白酶、二乙基对硝基苯磷酸酯酶等;大约有50个DNA修复基因及50个毒物受体基因。

DNA修复基因可纠正DN A匹配、核酸切除、碱基切除及重组过程中发生的错误。

毒物受体基因包括那些可改变毒物反应的基因,如芳烃受体、雌激素受体、孕激素受体等基因;大约有25个基因涉及到营养介质或营养代谢;另约有25个基因涉及到雌激素、孕激素及睾丸激素合成的类固醇的代谢。

213从基因组学到蛋白质组学和细胞组学蛋白质组(pro-teo me)一词,源于蛋白质(protein)与基因组(geno me)两个词的组合,指基因组表达的所有蛋白质,即指细胞、组织和机体全部蛋白质的存在及其相互作用的方式。

相关文档
最新文档