中考数学复习 第28课时 视图与投影测试
中考数学专题复习题投影与视图(含解析)

2017-2018年中考数学专题复习题:投影与视图、选择题1. 图中三视图对应的几何体是2. 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是3. 如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为I IA. B. C. D.3112—60cm -—20cm M CE正视图侧视图A. 320 cmB. 讥IH .- ;C. 4 1, 一二’D. 480 cm4. 如图,一个正方体切去一个三棱锥后所得几何体的俯视图是A.5. 有一圆柱形的水池,已知水池的底面直径为 4米,水面离池口 2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为如图,直立于地面上的电线杆 AB 在阳光下落在水平地面和坡面上的影子分别是 BC CD 测得BC=6米, = -米,二 二:二FC',在D 处测得电线杆顶端 A 的仰角为:Ej ,则电线杆AB 的高度为,A. 2+ 2逅B. 4+ 2V3C. 2+D.4+8. 在阳光下,一名同学测得一根长为 1米的垂直地面的竹竿的影长为1七米,同时另一名同学测量树的高度时,发现树的影 子不全落在地面上,有一部分落在教学楼的第一级台阶上,6.如图所示,在房子外的屋檐E 处安有一台监视器,a一 一 -邛1■ 口 口FA B CA. _ -.1B. A BFDC.四边形 BCEDD. - -5;7.测得此影子长为米,一级台阶高为)d米,如图所示,若此时落在地面上的影长为丄丄]米,则树高为I IA. ■> -■ ■米B. 8 米C. .1 =米D. 12 米9. 如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是I .10. 圆桌面•桌面中间有一个直径为:.4-;的圆洞I正上方的灯泡I看作一个点I发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影,已知桌面直径为_.?:■,桌面离地面1m若灯泡离地面3m则地面圆环形阴影的面积是()A. 1.1. A1 1. ■B.丄,‘C.D. 0.72rm:、填空题11.如图,光源P在横杆AB的正上方,I' ^「,」3 = 1.;,「二二•:;「,则AB离地面的距离为12.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影圆形»已知灯泡距离地面2 4 ;,桌面距离地面■I “桌面厚度不计算「,若桌面的面积是一.J:'-,则地面上体的俯视图的周长是 _______ ,面积是 _______15. 如图,AB 和DE 是直立在地面上的两根立柱,-F 二F 米,某一时刻 AB 在阳光下的投影3 ? = :■米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为 6米,则 DE 的长为 _______ 16. 如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB 和一根高度未知的电线杆CD 它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进 行了如下测量.某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为3米,落在地面上的影子 BF 的长为8 米,而电信杆落在围墙上的影子 GH 的长度为:-2 米,落在地面上的银子 DH 的长为6米,依据这些数据,该小组的同学计算出了电 线杆的高度是的阴影面积是 ______ m 町13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 ______ .1 !r1 ■ ■ 1 ■ ■ ■ ■ ■ ■14.如图,正三棱柱的底面周长为15,截去一个底面周长为 6的正三棱柱,所得几何__________________ 米・地面的距离CD = ________19. ___________________________________________________________ 桌面上放两件物体,它们的三视图图,则这两个物体分别是 _____________________________ ,它们的位置20.桌上放着一个三棱锥和一个圆柱体, 如图的三幅图分别是从哪个方向看的?按图填17. 如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是 ________18.墙壁D 处有一盏灯如图,小明站在A 处测得他的影长与身长相等都为1三「,小明向墙壁走1m 到B 处发现影子刚好落在 A 点,则灯泡与厂□王观圈旗杆电遙杆(A) (B)是 ______21. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成亠卩角时,第二次是阳光与地面成 :< 角时,两次测量的影长相差8米,求树高AB多少米,结果保留根号・22. 如图,是住宅区内的两幢楼,它们的高-F = L":=■■ j ,两楼间的距离现需了解甲楼对乙楼的采光的影响情况..当太阳光与水平线的夹角为•工角时,求甲楼的影子在乙楼上有多高|精确到1 : > .厂1 ;若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?23. 某兴趣小组开展课外活动如图,小明从点M出发以]三米秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(4#)在某一灯光下的影长为MB继续按原速行走2秒到达点D,此时他在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1 1米,然后他将速度提高到原来的一上倍,再行走2秒到达点F,此时点A, C, E三点共线..请在图中画出光源0点的位置,并画出小明位于点F时在这个灯光下的影长- J 不写画法;•求小明到达点F时的影长FH的长.■---------------------------------------M B G D F N24.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积结果保留根号【答案】J D 1 解:在A - _ "1中,:山 £T |J在丁_.匸〕中,'in 厂AB AB 如&'——^,答:树高AB 为4.-米.22.解:I 如图,延长0B 交DC 于E,作严丄_卫,交AB 于F ,在- 中,1. 2. C 3. C 4. D 5. C 6. D 7. B 8. 9. D 10. D11.12.13. (225 + 25 v 1?) T14. 13; Ml415. 10m16. 1117. B A 、C D18.4.Srn19. 长方体和圆柱;圆柱在前,长方体在后20. 左面、上面、正面21.= :: } ,一 匚二 I 二:口 ,设5-=.,则?5= : . • 根据勾股定理知'二.,. 2.「 「:小"■,:1 j-. 负值舍去, 八'二川;•因此,-—. - •(勻当甲幢楼的影子刚好落在点 C 处时,一 为等腰三角形,因此,当太阳光与水平线夹角为 芟,时,甲楼的影子刚好不落在乙楼的墙上.23.解:|如图,点0和FH 为所作;M B G D K F H M'.■ ■- ' — — '「一 ; . ,4 二一.=,;二二一 ♦一.二'2= - E-,设 -5 = II.二三二二 I :',作;■■-:于K 如图,I ■ ■.",_ j.\ 2、s _;「[ -■,V CD//OK,J 8OX 耐JT'•,即卩二——ffJC OK l.^rDK由注得"亠,解得H,.-m「,_三“_二即'■':OJC KK ffFM5 E答:小明到达点F时的影长FH的长为24. 解:根据该密封纸盒的三视图知道它是一个六棱柱,其高为12cm底面边长为5cm其侧面积为丨<,密封纸盒的上、下底面的面积和为:「「_「. -匚:”」,其表面积为-。
中考数学专题复习尺规作图、视图与投影(含答案)

第27课 尺规作图1.尺规作图是指_______________________________________________________ . 2.某产品的标志图案如图(1)所示,要在所给的图形中,把A 、B 、C 三个菱形通过一种或几种变换,使之变为与图(1)一样的图案(1)请你在图(二)中作出变换后的图案(最终图案用实线表示)(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述)①将菱形B 向上平移;②将菱形B 绕O 旋转1200;③将菱形B 绕O 旋转1800.(一) (二)3.已知∆ABC 与∆EFG 是关于点D 的中心对称图形,请将∆EFG 补充完整.4.如图,∆ABC 是一块直角三角形余料,222A B C ∠工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上. (1) 试协助工人师傅用尺规画出裁割线(不写作法、保留作图痕迹);DCB A(2)工人师傅测得AC =80cm ,BC=120cm ,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形的零件的边长.5.如图,107国道OA 和320国道OB 在我市相交于O 点,在AOB ∠的内部有工厂C 和D,现要修建一个货站P ,使P 到OA 、OB 的距离相等,且使PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论).6.如图,已知∆ABC ,(1)以直线l 为对称轴,画出∆ABC 关于直线l 对称的∆111A B C ;(2)将∆ABC 向右平移,得到∆222A B C ,其中2A 是A 的对称点,请画出∆222A B C (不写作法、保留作图痕迹).BC AA7.某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,不写作法保留作图痕迹).8.现有一长方形木块的残留部分如图,其中AB 、CD 整齐且平行,BC 、AD 是参差不齐的毛边,请你在毛边附近有尺规画出一条与AB 、CD 都垂直的边(不写作法、保留作图痕迹).9.如图,已知∆ABC 的三个顶点的坐标分别为A (-7,1)、B (-3,3)、C (-2,6). (1)求作一个三角形,使它与∆ ABC 关于y 轴对称. (2)写出作出的三角形的三个顶点的坐标.CBA CBADCBA第28课投影与视图1.请写出三种视图都相同的两种几何体是____________、______________ .2.同一形状的图形在同一灯光下可以得到_________的图形.(填“同”或“不同”)3.两个物体在同一灯光下的影子构成的两个三角形___相似三角形.(填“是”或“不是)4.如图,一几何体的三视图如右:那么这个几何体是____________ .5.两个物体的主视图都是圆,这两个物体可能是()A.圆柱体、圆锥体B.圆柱体、正方体C.圆柱体、球D.圆锥体、球6.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是()A.两根都垂直于地面B.两根平行斜插在地上C.两根竿子不平行D.一根倒在地上7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是()A.相等B.长的较长C.短的较长D.不能确定8.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都是可能9.棱长是1㎝的小立方体组成如图所示的几何体,那么这个几何体的表面积是()A.362cm B.332cm C.302cm D.272cm10.一个人离开灯光的过程中人的影长()A.不变B.变短C.变长D.不确定11.下列图中是太阳光下形成的影子是()A B C D12.有一实物如图,那么它的主视图()俯视图左视图主视图A B C D13.画出下图所示的三视图.(第13题)(第14题)14.楼房,旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)15.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在太阳光下...的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,计算DE的长.16.如图,一个棱长为10㎝的正方形,当你观察此物体时.(1)在什么区域内只能看到一面?(2)在什么区域内只能看到两个面?(3)在什么区域内能看到三个面?EAB C17.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.18.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.732.13≈,414.12≈)1第27课尺规作图答案1.尺规作图就是只准有限次地使用没有刻度的直尺和圆规进行作图。
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。
初中数学专题特训第二十八讲投影与视图(含详细参考答案)

中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【赵老师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【赵老师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【赵老师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.A.18cm2B.20cm2C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查..考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案..考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.个.考点:由三视图判断几何体;简单组合体的三视图.分析:由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图都相同,由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知最少有4个小立方体,所以第一层4个小立方体不变,同时第二层每一横行和每一竖列上都有一个小立方体.解答:解:由主视图和左视图可得第二层的每一行每一列都要保留一个立方体,∴取走的小立方体最多可以是2个,即一条对角线上的2个.故答案为2.点评:本题考查了学生的观察能力和对几何体三种视图的空间想象能力,难度中等.三、解答题考点:作图-三视图.分析:从正面看下面是一个横着的长方形,上面是一个竖着的长方形;从左面看下面是一个横着的长方形,上面是一个三角形;从上面看是一个大正方形中右上一个小正方形.解答:解:如图所示:点评:考查了作三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来.。
中考数学复习专题精品导学案:第28讲投影与视图含答案详解

2013年中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影例1 (2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练2.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图例 2 (2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.例3 (2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练2.(2012•随州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.(2012•宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数例4(2012•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练4.(2012•孝感)几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算例 5 (2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练1.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】1.(2012•济南)下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2012•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.(2012•潍坊)如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.4.(2012•威海)如图所示的机器零件的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.5.(2012•泰安)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.6.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.7.(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2 B.20cm2 C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题1.(2012•绵阳)把一个正五菱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.2.(2012•益阳)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.3.(2012•玉林)下列基本几何体中,三视图都相同图形的是()A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.4.(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.5.(2012•义乌市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6.(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.7. (2012•黄冈)如图,水平放置的圆柱体的三视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.8.(2012•白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状9.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.12.(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.13.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.14.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.15.(2012•肇庆)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.16.(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题18.(2012•新疆)请你写出一个主视图与左视图相同的立体图形是.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为.考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.(2012•鸡西)由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.考点:由三视图判断几何体;简单组合体的三视图.。
中考数学 第一部分 考点研究 第七章 图形的变化 课时28 视图与投影练习 新人教版(2021年整

江西省2017年中考数学第一部分考点研究第七章图形的变化课时28 视图与投影练习新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省2017年中考数学第一部分考点研究第七章图形的变化课时28 视图与投影练习新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省2017年中考数学第一部分考点研究第七章图形的变化课时28 视图与投影练习新人教版的全部内容。
第七章图形的变化课时28 视图与投影(建议时间:45分钟分值:71分)评分标准:选择题和填空题每小题3分.基础过关1. (2016江西样卷二)如图,将一只青花碗倒放在水平桌面上,它的左视图是()2。
如图是某几何体的三视图,则该几何体可能是()第2题图A。
圆柱 B. 圆锥 C. 球D。
长方体3. (2016西宁)下列几何体中,主视图和俯视图都为矩形的是( )4. 下面几何体的左视图是( )5。
(2016莆田)图中三视图对应的几何体是()6. (2016雅安)将下图的左图绕AB边旋转一周,所得几何体的俯视图为( )7。
(2016荆门)由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是( )A。
主视图的面积最小B. 左视图的面积最小C。
俯视图的面积最小D。
三个视图的面积相等第7题图第8题图8. (2016乌鲁木齐)在市委、市政府的领导下,全市人民齐心协力,力争于2017年将我市创建为“全国文明城市”,为此小宇特制了一个正方体模具,其展开图如图所示,则原正方体中与“文”字所在的面相对的面上标的字是()A。
全 B. 国 C. 明D。
城第9题图9。
如图是一个由多个相同的小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()10。
2023广东中考数学专题课件第28讲 视图与投影

7分
故制作每个密封罐所需钢板的面积为(15 000+7 500 3)mm2. 8分
满分:8分
实得:
分
·数学
10.(2020深圳)分别观察下列几何体,其中主视图、左视图和 俯视图完全相同的是( D )
·数学
11.(2018广东)如图是由5个相同正方体组合而成的几何体,它 的主视图是( B )
·数学
12.(2019广东)如图是由4个相同正方体组合而成的几何体,它 的左视图是( A )
·数学 13.(2016广州)如图所示的几何体的左视图是( A )
·数学 14.(2021广东)下列图形是正方体展开图的有( C )
·数学 教材拓展 15. (人教9下P109复习巩固、P111拓广探索变式) (运算能力、 几何直观、空间观念)(1)如图是一个组合几何体的两种视图, 请写出这个组合几何体是由哪两种几何体组成的; (2)根据两种视图中的尺寸(单位: cm),计算这个组合几何体的 体积(结果保留π).
·数学
2.三视图的关系 主视图反映物体的长和高;左视图反映物体的宽和高;俯视图 反映物体的长和宽,因此三视图有如下对应关系: (1)长对正:主视图与俯视图的长度相等,且相互对正; (2)高平齐:主视图与左视图的高度相等,且相互平齐; (3)宽相等:俯视图与左视图的宽度相等. “长对正,高平齐,宽相等”,这“九字令”是阅读和绘制三视图必 须遵循的对应关系.
解:(1)由圆柱和长方体组成的.
2
(2)体积=8×5×2+π
4 2
×6=(80+24π)(cm3).
·数学
答题模板与评分标准
解:由三视图可知,密封罐的形状是正六棱柱.
1分
密封罐的高为50 mm,
底面正六边形的直径为100 mm,边长为50 mm.
中考数学 尺规作图

交BO于点C,过点C作CD⊥BO交AB于点D.若CD=2,∠B=30°,则点
A的坐标为
(A)
A.(0,3)
B.(0,4)
C.(0,5)
D.(0,6)
课时28 视图与投影
4.如图,在□ABCD 中,AB=5,BC=8,以点 D 为圆心,任意长
为半径画弧,交 AD 于点 P,交 CD 于点 Q,再分别以点 P,Q 为圆心,
课时28 视图与投影
10.(5分)(2021宜昌)如图,在△ABC中,∠B=40°,∠C=50°. (1) 通 过 观 察 尺 规 作 图 的 痕 迹 , 可 以 发 现 直 线 DF 是 线 段 AB 的 ___垂__直__平__分__线___,射线AE是∠DAC的___平__分__线___; (2)在(1)所作的图中,求∠DAE的度数.
对角线. (1)作对角线BD的垂直平分线,分别交AD,
BC,BD于点E,F,O(尺规作图,不写作法,保 留作图痕迹);
解:如答图1,EF即为所求.
答图 1
课时28 视图与投影
(2)连接BE,DF,求证:四边形BEDF为菱形. 证明:∵EF垂直平分BD,∴OB=OD,EB=ED,FB=FD. ∵四边形ABCD为平行四边形, ∴AD∥BC. ∴∠EDO=∠FBO,∠DEO=∠BFO.
A.5 3
B.8
C.4 5
D.10
课时28 视图与投影
3.(2021唐河县一模)如图,已知Rt△AOB的顶点
O(0,0),∠AOB=90°,点B在x轴正半轴上,点A在y
轴正半轴上,按以下步骤作图:①以点A为圆心,适
当长为半径作弧,分别交AO,AB于点M,N;②分别
以点M,N为圆心,大于
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七单元图形的变化
第28课时视图与投影
1. (xx桂林)如图所示的几何体的主视图是( )
2. (xx宁波)如图所示的几何体的俯视图为( )
3. (xx安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )
4. (xx广安)如图所示的几何体,上下部分均为圆柱体,其左视图是( )
5. 关注传统文化(xx永州)湖南省第二次文物普查时,省考古研究所在冷水滩钱家州征集到一个宋代“青釉瓜棱形瓷执壶”(如图所示),该壶为盛酒器,瓷质,侈口,喇叭形长颈,长立把,则该“青釉瓜棱形瓷执壶”的主视图是( )
6. (xx济宁)下列几何体中,主视图、俯视图、左视图都相同的是( )
7. (xx娄底)如图的几何体中,主视图是中心对称图形的是( )
8. (xx河北)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )
第9题图
9. (xx舟山)一个立方体的平面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A. 中
B. 考
C. 顺
D. 利
10. (xx南雅中学第七次阶段检测)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )
第11题图
11. (xx荆门)已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )
A. 6个
B. 7个
C. 8个
D. 9个
12. (xx连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的主视图、左视图和俯视图的面积,则( )
A. 三个视图的面积一样大
B. 主视图的面积最小
C. 左视图的面积最小
D. 俯视图的面积最小
第12题图第13题图
13. (xx青岛)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为________.
答案
1. A
2. D
3. B
4. C
5. D
6. B
7. C
8. A
9. C
10. A 【解析】由几何体的俯视图可知,该几何体的主视图从左到右依次是由2个,3个,2个正方形构成.
11. B 【解析】根据三视图可知其摆放如解图所示,共有7个小正方体.
12. C 【解析】∵几何体的主视图、左视图、俯视图分别是由5个、3个、4个正方形构成,∴面积最小的为左视图.
13. 123+48 【解析】由三视图可知,该几何体是正六棱柱,其中底面正六边形外接圆
的直径为4,则正六边形的边长为2,故底面正六边形的面积为6×
3
4
×22=63,正六棱
柱的高为4,则侧面积为2×4×6=48,∴该正六棱柱的表面积为123+48.
【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。