第2章 金属的晶体结构与缺陷
第二章-晶体结构与晶体中的缺陷

• 层内力远远大于层间力,容易形成片状解理。
• ⑷ 蒙脱石结构
• 单元层间:范德华力,弱。 • [SiO4]4-中的Si4+被Al3+取代(
同晶取代)为平衡电价,吸 附低价正离子,易解吸,使 颗粒荷电,因此使陶瓷制品 因带某些离子具有放射性。 • 性质: • 加水体积膨胀,泥料可塑性 好。
因子看,A位离子越大, B位离子才能较大。
理想立方钙钛矿结构中离子的位置
§2.2 硅酸盐晶体结构
一、硅酸盐结构特点与分类 硅酸盐是数量极大的一类无机物。硅酸盐晶体可以 按硅(铝)氧骨干的形式分成岛状结构、组群状结 构、链状结构、层状结构和架状结构。它们都具有 下列结构特点: 1)结构中Si4+之间没有直接的键,而是通过O2-连接 起来的 2)结构是以硅氧四面体为结构的基础 3)每一个O2-只能连接2个硅氧四面体 4)硅氧四面体间只能共顶连接,而不能共棱和共面 连接
陶瓷材料如MgO,CaO, NiO,
CoO,MnO和PbO等都形成
该结构。岩盐型结构还是若干
复杂层状化合物结构的一部分。
根据鲍林静电价规则,
S=Z/n NaCl: 每一个Na+静电键强度是 1/6。正负离子的配位数相等, 都是6。因此键强度总和达到氯 离子的价电荷数(6x(1/6)=1) MgO: 阳离子Mg2+的静电键强 度是2/6 ,键强度总和等于氧离子 O2-的电价6x(2/6)=2
缺陷的含义:通常把晶体点阵结构中周期 性势场的畸变称为晶体的结构缺陷。 理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完 整性。
晶体结构缺陷的类型
第二章晶体与晶体结构小结

小结第二章晶体与晶体结构内容:金属的晶体结构:合金的晶体结构实际金属的晶体结构第一节金属的晶体结构晶体与非晶体1. 晶体:指原子呈规则、周期性排列的固体。
常态下金属主要以晶体形式存在。
晶体具有各向异性。
非晶体:原子呈无规则堆积,和液体相似,亦称为“过冷液体”或“无定形体”。
在一定条件下晶体和非晶体可互相转化。
2. 区别(a)是否具有周期性、对称性(b)是否长程有序(c)是否有确定的熔点(d)是否各向异性3金属的晶体结构晶体结构描述了晶体中原子(离子、分子)的排列方式。
1)理想晶体——实际晶体的理想化·三维空间无限延续,无边界·严格按周期性规划排列,是完整的、无缺陷。
·原子在其平衡位置静止不动2)理想晶体的晶体学抽象(晶体)空间规则排列的原子→刚球模型→晶格(刚球抽象为晶格结点,构成空间格架)→晶胞(具有周期性最小组成单元)。
晶体学参数:a,b,c,α,β,γ晶格常数:a,b,c晶系:根据晶胞参数不同,将晶体分为七种晶系。
90%以上的金属具有立方晶系和六方晶系。
立方晶系:a=b=c,α=β=γ=90︒六方晶系:a1=a2=a3≠ c, α=β=90︒, γ=120︒原子半径:晶胞中原子密度最大方向上相邻原子间距的一半。
晶胞原子数:一个晶胞内所包含的原子数目。
配位数:晶格中与任一原子距离最近且相等的原子数目。
致密度:晶胞中原子本身所占的体积百分数。
二.常见的金属晶格晶胞晶体学参数原子半径晶胞原子数配位数致密度2 8 68% BCC a=b=c,α=β=γ=90oFCC a=b=c, α=4 12 74%β=γ=900HCP a=b c,a/2 6 12 74% c/a=1.633, α=β=90o, γ=120o第二节实际金属的晶体结构理想晶体+晶体缺陷——实际晶体实际晶体——单晶体和多晶体单晶体:内部晶格位向完全一致,各向同性。
多晶体:由许多位向各不相同的单晶体块组成,各向异性。
材料科学基础--第2章晶体缺陷PPT课件

12
2.1.5点缺陷与材料行为
Or, there should be 2.00 – 1.9971 = 0.0029 vacancies per unit cell. The number of vacancies per cm3 is:
17
Other Point Defects
Interstitialcy - A point defect caused when a ‘‘normal’’ atom occupies an interstitial site in the crystal.
11
2.1.4 过饱和点缺陷
晶体中的点缺陷浓度可能高于平衡浓度,称为过饱和点 缺陷,或非平衡点缺陷。获得的方法:
高温淬火:将晶体加热到高温,然后迅速冷却(淬火 ),则高温时形成的空位来不及扩散消失,使晶体在低 温状态仍然保留高温状态的空位浓度,即过饱和空位。
冷加工:金属在室温下进行冷加工塑性变形也会产生 大量的过饱和空位,其原因是由于位错交割所形成的割 阶发生攀移。
6
2.1.1 分类
3.置换原子(Substitutional atom) 异类原子代换了原有晶体中的原子,而处于晶体点阵的结 点位置,称为置换原子,亦称代位原子。 各种点缺陷,都破坏了原有晶体的完整性。它们从电学
和力学这两个方面,使近邻原子失去了平衡。空位和直 径较小的置换原子,使周围原子向点缺陷的方向松弛, 间隙原子及直径较大的置换原子,把周围原子挤开一定 位置。因而在点缺陷的周围,就出现了一定范围的点阵 畸变区,或称弹性应变区。距点缺陷越远,其影响越小 。因而在每个点缺陷的周围,都会产生一个弹性应力场 。
工程材料 第2版课件PDF 版02

02—金属的晶体结构
与缺陷
图标
XI’AN TECHNOLOGICAL UNIVERSITY
第二章 金属的晶体结构与缺陷
1 材料的结合方式;
2 晶体结构的基本概念;
3 纯金属的晶体结构;
4 金属的实际结构与晶体缺陷;
5 合金的相结构。
工程材料学——第2章 金属的晶体结构与缺陷
2.1 材料的结合方式
r=
3
a
4
r=
2
a
4
1
r = 2a
3 配位数 ——晶格中任一原子周围与其最临近且等距离的原子数目。
工程材料学——第2章 金属的晶体结构与缺陷
2.3 纯金属的晶体结构
4 致密度
2.3.2 描述晶胞的指标
nv
—— 一个晶胞内原子所占体积的百分数。 K =
×
bcc: =
fcc: =
2.4 实际结构与晶体缺陷
2.4.3 面缺陷
奥氏体不锈钢冷轧100倍
超纯铝阳极化偏振光
Hadfield热变形高锰钢固溶处理
冷拉退火海军黄铜偏光α+β
奥氏体不锈钢热轧及固溶退火
Fe-39%Ni变形退火后奥氏体
工程材料学——第2章 金属的晶体结构与缺陷
2.4 实际结构与晶体缺陷
晶粒由许多尺寸很小、位相差也很小
退火态
105~108/cm2
ρ
金属的塑性变形主要是由位错运动引起的,因此,阻碍位错运动
是强化金属的主要途径。
工程材料学——第2章 金属的晶体结构与缺陷
2.4 实际结构与晶体缺陷
2.4.2 位错
Ni
Si
中
机械工程材料:第二章 金属的晶体结构与结晶

亚晶界:实际金属晶体内部,晶粒内原子排列也不完全理想 的规则排列,也存在很小位向差的小晶块,即亚晶 粒,亚晶粒的交界即亚晶界。
在实际晶体中,这三种缺陷随加工条件变化而变化,可产 生、发展,也可消失,对材料性能有很大影响。
常见的利用增加材料的缺陷,提高强度的方法
第二章 金属的晶体结构与结晶
金属特性与金属键 金属的晶体结构 实际金属结构 金属的结晶 金属铸锭组织
一、金属特性与金属键
原子的构造
①金属原子的最外层轨道电子少。 ②金属原子易失去电子而成为正离子。 ③金属键
金属正离子与自由电子间的静电作用, 使金属原子结合起来形成金属整体。
金属特性
关系
①优良的导电性和导热性。 ①导电:在电势作用下,自由
②不透明和具有金属光泽。
电子定向移动;
③较高的强度和较好的塑性。②正的电阻温度系数:
④正的电阻温度系Βιβλιοθήκη 。T↗,离子振动↗,电子运动阻力↗ ③塑性:金属中离子与电子间能保
持一定的相对关系。
二、金属的晶体结构
1. 晶体的基本知识
晶体与非晶体 晶体:内部原子在空间呈一定的有规则排列,具有固定熔 点和各向异性。(金刚石、盐) 非晶体:内部原子是无规则堆积在一起的。没有固定的熔 点,具有各向同性。(玻璃、石蜡)
晶格(点阵) 表示晶体中的原子(正离子)排列方式的空间几何体。 假设:A.金属中的原子(正离子)都是刚性小球; B.金属中的原子都缩小为一个点,线将点连 接起来,线与线的交点为节点。
晶胞:表示晶格几何特征的最小几何单元。 (1)晶格常数: 棱边长度 (a,b,c),单位A0(10-10m) ; 轴间夹角 (α、β、γ ) (2)晶面、晶向 : 晶面:在晶体中通过原子中心的平面,用晶面指数表示。
06材料科学基础点缺陷

点缺陷平衡浓度:在一定温度下,晶体中存在 一定平衡数量的点缺陷(空位、间隙原子等) 一定平衡数量的点缺陷(空位、间隙原子等), 此时点缺陷的浓度称为该温度下的点缺陷的平 衡浓度。 影响平衡浓度的因素:点缺陷的平衡浓度随温 度变化.下面以空位为例,用统计热力学的方 法计算点缺陷的平衡浓度.
二、点缺陷的平衡浓度
间隙原子的形成能较大,在相同温度下间隙原子比空位平衡 浓度小得多,通常可以忽略不计。 所以一般情况下,金属晶 体的点缺陷主要是指空位。
三、点缺陷的运动和作用
点缺陷的运动:(产生、迁移和消亡) 点缺陷的运动:(产生、迁移和消亡) 空位运动:空位周围原子的热振动给空位的运 动创造了条件,空位就是通过与周围原子不断 地换位来实现其运动的。 迁移能:空位运动时,必然会引起点阵畸变, 因而必须克服能垒,为此所需要的额外的能量 称为迁移能。 点缺陷运动的实质:点缺陷的运动实际上是原 子迁移的结果,而这种点缺陷的运动所造成的 原子迁移正是扩散现象的基础。
点缺陷对性能的影响
1. 2. 3.
4.
点缺陷能使金属的电阻增加; 体积膨胀,密度减小; 能加速与扩散有关的相变、化学热处理及 高温下的塑性变形和断裂等; 过饱和点缺陷还可以提高金属的屈服强度。
四、过饱和点缺陷
概念:在某些特殊情况下,晶体也可以具有超 过平衡浓度的点缺陷,称之为过饱和点缺陷。 几种获得过饱和点缺陷的方法. (1)淬火法 (1)淬火法 (2)辐照法 (2)辐照法 (3)塑性变形 (3)塑性变形 过饱和点缺陷的特性:这些过饱和点缺陷是非 平衡点缺陷,是不稳定的,在加热过程中它们 将通过运动而消失,最后又趋子平衡浓度。
点缺陷示意图
点缺陷对晶体结构的影响
空位和间隙原子都将使周围原子间作用力 失去平衡,点阵产生弹性畸变,形成应力场,
第二章晶体构与晶体中的缺陷

第二章 晶体结构与晶体中的缺陷1、证明等径圆球面心立方最密堆积的空隙率为25.9%。
解:设球半径为a ,则球的体积为4/3πa 3,求的z=4,则球的总体积(晶胞)4×4/3πa 3,立方体晶胞体积:33216)22(a a =,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。
2、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
解:ρ=m/V =1.74g/cm 3,V=1.37×10-22。
3、 根据半径比关系,说明下列离子与O 2-配位时的配位数各是多少? 解:Si 4+ 4; K + 12; Al 3+ 6; Mg 2+ 6。
4、一个面心立方紧密堆积的金属晶体,其原子量为M ,密度是8.94g/cm 3。
试计算其晶格常数和原子间距。
解:根据密度定义,晶格常数)(0906.0)(10906.094.810023.6/(43/13/183230nm M cm M M a =⨯=⨯⨯=- 原子间距= )(0641.02/0906.0)4/2(223/13/1nm M M a r ==⨯=5、 试根据原子半径R 计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。
解:面心立方晶胞:3330216)22(R R a V ===六方晶胞(1/3):3220282/3)23/8()2(2/3R R R c a V =•••=•= 体心立方晶胞:333033/64)3/4(R R a V ===6、MgO 具有NaCl 结构。
根据O 2-半径为0.140nm 和Mg 2+半径为0.072nm ,计算球状离子所占据的体积分数和计算MgO 的密度。
并说明为什么其体积分数小于74.05%?解:在MgO 晶体中,正负离子直接相邻,a 0=2(r ++r -)=0.424(nm)体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52%密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm 3)MgO 体积分数小于74.05%,原因在于r +/r -=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。
1金属的晶体结构-2

2 金属结晶的过冷现象 过冷度——实际结晶温度T与理论结晶温度T0 的差称为过冷度 △T=T0-T 。 一定过冷度的存 在是金属结晶的必 要条件。
30
3 结晶的基本规律
金属的结晶
31
3.1 晶核的形成与长大
1)晶核的形成: 晶核的形成有自发和非自发之分。 2) 晶核的长大: 宏观长大的方式有:平面长大和树枝状长大方式。
27
§1-4 金属的结晶与铸锭
金属由液态转变为固态的过程称为凝固,由于固 态金属是晶体,故又把凝固称为结晶。
28
1 金属结晶的条件
1)结晶热力学条件:
2)结构条件:
热温仪表
3)能量条件:
温 度
热电耦 金属 坩埚
Tm DT
Ti
时间
其中:Tm是金属的熔点,在金属学中常称为理论结晶温 度,Ti是实际结晶温度。
23
1). 间隙相 形成间隙相时,金属原子形成与其本身 晶格类型不同的一种新结构,非金属原子处于晶 格的间隙中。例如,钒为体心立方晶格,但它与 碳形成碳化钒(VC)时,钒原子却构成面心立方 晶格,碳原子占据晶格的所有八面体间隙位置 2). 间隙化合物 间隙化合物的晶体结构都很复杂, 有的一个晶胞中就含有几十个到上百个原子。铬、 锰、铁、钴的碳化物及铁的硼化物均属此类,如 在合金钢中常见的有M3C型(如Fe3C),M7C3 型(如Cr7C3),M23C6型(如Cr23C6)和M6C型 (如Fe3W3C、Fe4W2C(Fe3C)-正交晶系等。其中 Fe3C是钢中的一种基本相也是重要的间隙化合物, 称为渗碳体,其晶体结构属正交晶系
一、一些基本概念
合金是指由两种或两种以上的金属元素与非金属元
素经过冶炼、烧结或用其它方法组合而成具有金属
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 金属的晶体结构
一、金属的特性与金属键
良好的导热性和导电性 有光泽、不透明 较高强度、可塑性
二、晶体结构的基本概念
晶体结构:晶体中原子(离子或分子)在 三维空间的具体排列方式。
晶格:为了便于研究,用假想直线将金属 中原子的中心位置连接起来表示原子分 布的几何图形。
晶向指数的确定方法: a) 任选一点为空间坐标系原点,以晶胞三棱边 为空间坐标轴; b) 过坐标原点作一直线,使其平行于待求晶向; c) 读出该方向任意一点的空间坐标值; d) 化为最小整数,加方括号。[uvw] 所有原子排列相同的一族晶向称为晶向族<uvw>
致密度K:晶胞中原子所占体积与该晶 包体积之比。
晶胞:代表晶格结构特征的最基本单元。
晶格常数: 晶胞各边尺寸a.b.c 单 位:Å (1 Å =10-8 c m ) 晶胞各边夹角αβγ
晶面:晶体中原子排列的平面。 晶向:晶体中原子排列的方向。 晶面指数:用以表示晶面空间方位的符号。 晶向指数:用以表示晶向空间方位的符号。
晶面指数确定方法: a) 任选一点为空间坐标系原点,以晶胞三 棱边为空间坐标轴; b) 以晶格常数为单位,求晶面截距,取倒 数; c) 将各倒数化为最小整数,加圆括号。 (hkl) 晶面族{hkl}
2)面心立方晶格
A=b=c;
α=β=γ=900 n= (1/8)×8+(1/2)×6=4 密排方向:面对角线 2 a 原子半径r=( 2 /4)a K=0.74 常见金属:γ-Fe Au(10630),Ag(9600),Cu(9000)AL(6000), Ni,Mn
3)密排六方晶格 a.a夹角1200 n=(1/6) ×12+(1/2) ×2+3=6 密排方向a R=a/2 K=0.74 常见金属:Mg Zn Be
位错密度——单位体积中位错线长度。
位错的存在使金属能够比较容易发生塑性变形。
3)面缺陷——晶界、亚晶界
面缺陷能提高金属材料的强 度和塑性,因此细化晶粒是 改善金属材料性许多位向不同的单晶体组成的晶体。 各向异性被抵消——伪等向性 晶粒:多晶体中每一个单晶体。 不规则颗粒状 10-1~10-3 mm 晶界:晶粒与晶粒之间交界处的界面。 原子排列混乱疏松
二、晶体缺陷
1)点缺陷——空位和离位原子
(置换原子)
2)线缺陷——位错
四、晶体的各向异性 单晶体:原子排列具有同一位向的晶体。 各向异性:在单晶体中,不同晶向或晶面 的原子密度和分布状态不同,从而导致 不同方向上的性能差异,这种现象叫各 向异性。
单晶体铁的弹性模量 <111> 2.90×105MPa <100> 1.35 × 105MPa 单晶体铁在磁场中 沿<100> 方向磁化,比沿 <111> 方向容易,所以制造 变压器硅钢片时<100> 方向 应平行于导磁方向,以降低 损耗。
对原子排列的紧密 程度进行定量比较!
三、金属中常见的三种晶体结构
体心立方晶格
面心立方晶格
密排六方晶格
1)体心立方晶格
A=b=c;
α=β=γ=900 晶胞内原子数n=(1/8)×8+1=2 密排方向:体对角线 3 a 原子半径 r=( 3 /4)a K=0.68 常见金属: α-Fe, Cr, V, Nb, W, Mo等高 熔点金属。