绝对编码器与增量编码器的区别

合集下载

分别说明绝对式和增量式光电编码器的工作原理

分别说明绝对式和增量式光电编码器的工作原理

分别说明绝对式和增量式光电编码器的工作原理光电编码器的工作原理1. 引言光电编码器是一种精密测量仪器,广泛应用于工业自动化、机械加工、机器人等领域。

它可以将旋转或线性运动转换为数字信号,实现位置、角度等参数的准确测量和控制。

2. 绝对式光电编码器的工作原理绝对式光电编码器可以直接获取运动目标的位置信息,而无需复位操作。

它主要由光源、光栅、光电元件和信号处理电路组成。

光源光源发出光线,照射到光栅上。

光栅光栅是由透明和不透明的条纹交替组成的,有着特定的周期和形状。

光栅可以将光线分成多个光斑,并将其传递到光电元件上。

光电元件光电元件是一种将光信号转换为电信号的器件。

光电编码器中常用的光电元件包括光电二极管和光电三极管。

当光线照射到光电元件上时,光电元件会产生相应的电信号。

信号处理电路信号处理电路将光电元件产生的电信号进行放大、滤波等处理,得到数字信号。

这些数字信号可以表示光栅上光斑的位置信息。

工作原理在绝对式光电编码器中,光栅上的每个光斑都被赋予了一个唯一的编号。

当光栅和光电元件相对运动时,光电元件会感知到每个光斑的位置,并将其转换为数字信号。

通过解读这些数字信号,可以准确获取运动目标的位置信息。

3. 增量式光电编码器的工作原理增量式光电编码器可以实时监测对象的运动方向和速度,但无法直接获取位置信息。

它由光源、光栅、光电元件和信号处理电路组成,与绝对式光电编码器类似。

光源、光栅、光电元件和信号处理电路增量式光电编码器的光源、光栅、光电元件和信号处理电路的原理与绝对式光电编码器相同,不再赘述。

工作原理在增量式光电编码器中,光栅上的光斑被分为A相和B相两组,每组中的光斑数量相同但错位。

光电元件检测到光栅上的光斑变化,并产生相应的电信号。

通过检测A相和B相两组信号的相位变化和周期,可以确定对象的运动方向和速度。

由于无法直接获得位置信息,增量式光电编码器通常需要结合其他传感器或复位机构来实现位置的准确测量。

结论绝对式光电编码器和增量式光电编码器都是常用的位置测量和控制装置。

增量编码器与绝对编码器的关系

增量编码器与绝对编码器的关系

增量编码器与绝对编码器的关系
将机械转动的模拟量(位移)转换成以数字代码形式表示的电信号,这类传感器称为编码器。

编码器以其高精度、高分辨率和高可靠性被广泛用于各种位移的测量。

编码器的种类很多,主要分为脉冲盘式(增量编码器)和码盘式编码器(绝对编码器),其关系如下所示:
脉冲盘式编码器的输出是一系列脉冲,需要一个计数系统对脉冲进行加减(正向或反向旋转时)累计计数,一般还需要一个基准数据即零位基准,才能完成角位移测量。

绝对编码器不需要基准数据及计数系统,它在任意位置都可给出与位置相对应的固定数字码输出,能方便地与数字系统(如微机)连接。

编码器按其结构形式有接触式、光电式、电磁式等,后两种为非接触式编码器。

非接触式编码器具有非接触、体积小和寿命长,且分辨率高的特点。

三种编码器相比较,光电式编码器的性价比最高,它作为精密位移传感器在自动测量和自动控制技术中得到了广泛的应用。

目前我国已有23位光电编码器,为科学研究、军事、航天和工业生产提供了对位移量进行精密检测的手段。

增量式编码器和绝对式编码器区别

增量式编码器和绝对式编码器区别

增量式编码器和绝对式编码器区别一、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。

,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

2.绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。

显然,吗道必须N条吗道。

目前国内已有16位的绝对编码器产品。

3.混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

二、光电编码器的应用1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。

重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。

摆锤冲击实验机,利用编码器计算冲击是摆角变化。

2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。

拉线位移传感器,利用收卷轮周长计量物体长度距离。

联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。

介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。

3、速度测量线速度,通过跟仪表连接,测量生产线的线速度角速度,通过编码器测量电机、转轴等的速度测量4、位置测量机床方面,记忆机床各个坐标点的坐标位置,如钻床等自动化控制方面,控制在牧歌位置进行指定动作。

编码器工作原理

编码器工作原理

编码器工作原理编码器是一种用于将输入信号转换成特定输出信号的设备。

它广泛应用于自动控制系统、通信系统、数码产品等领域。

本文将详细介绍编码器的工作原理和其常见的工作方式。

一、编码器的基本原理编码器的基本原理是将输入信号转换成特定的输出信号,以实现信息的编码和传输。

它通常由输入部份、编码部份和输出部份组成。

1. 输入部份:输入部份接收来自外部的输入信号,可以是电流、电压、光信号等。

输入信号的特点决定了编码器的适合范围和工作方式。

2. 编码部份:编码部份是编码器的核心部份,它将输入信号转换成特定的编码形式。

常见的编码方式有脉冲编码、格雷码、二进制编码等。

不同的编码方式适合于不同的应用场景。

3. 输出部份:输出部份将编码部份生成的编码信号转换成输出信号,可以是电流、电压、光信号等。

输出信号的特点决定了编码器的输出方式和使用方式。

二、编码器的工作方式编码器的工作方式主要分为绝对编码和增量编码两种。

1. 绝对编码:绝对编码器可以直接读取出物体的精确位置信息,不需要通过计数或者复位等操作。

它的工作原理是将每一个位置对应一个惟一的编码,通过读取编码信号来确定物体的位置。

绝对编码器通常具有高精度和高分辨率的特点,适合于对位置要求较高的应用。

2. 增量编码:增量编码器通过计数脉冲的方式来确定物体的位置。

它的工作原理是将物体的运动转换成脉冲信号,通过计数脉冲的数量和方向来确定物体的位置和运动状态。

增量编码器通常具有较低的成本和较简单的结构,适合于对位置要求不太严格的应用。

三、编码器的应用领域编码器广泛应用于各个领域,以下是一些常见的应用领域:1. 自动控制系统:编码器可以用于测量和控制机械设备的位置、速度和角度等参数,实现精确的运动控制。

2. 通信系统:编码器可以用于数字通信系统中的信号编码和解码,实现信息的传输和处理。

3. 数码产品:编码器可以用于数码相机、数码音乐播放器等产品中的位置和控制功能,提供更好的用户体验。

分别说明绝对式和增量式光电编码器的工作原理(一)

分别说明绝对式和增量式光电编码器的工作原理(一)

分别说明绝对式和增量式光电编码器的工作原理(一)光电编码器的工作原理1. 引言光电编码器是一种将机械运动转换为电子信号的装置,广泛应用于自动化控制系统中。

其中,绝对式光电编码器和增量式光电编码器是两种常见的类型。

本文将逐步介绍它们的工作原理。

2. 绝对式光电编码器的工作原理传感器阵列绝对式光电编码器通过使用一个传感器阵列来确定位置。

该传感器阵列由一系列光电接收器组成,每个光电接收器都能检测到固定位置上的光线。

光源和缝隙绝对式光电编码器中,存在一个光源和一个旋转的光学光栅。

在光栅上有一些精确的缝隙,当旋转时,光线可以穿过缝隙到达传感器阵列。

信号解码当光线穿过缝隙时,光电接收器会感知到光信号的存在,然后将其转换为相应的电信号。

所经过的缝隙数量和光栅的起始位置决定了相应的编码值。

原始位置计算通过检测光线通过光栅的缝隙,可以计算出初始位置,即将光栅与传感器阵列的位置进行匹配。

在之后的运动中,光栅的旋转会导致光线通过不同的缝隙,从而使传感器阵列能够不断更新位置信息。

绝对位置计算根据光线通过的缝隙数量,可以计算出绝对位置。

每个缝隙对应一个特定的编码值,通过将这些编码值进行组合和分析,可以准确地确定光栅所处的绝对位置。

优势与应用绝对式光电编码器具有高精度、高分辨率和迅速的位置检测能力,适用于需要准确位置反馈的应用,如机器人控制、数控机床等。

3. 增量式光电编码器的工作原理传感器和光栅增量式光电编码器也包括传感器和光栅两部分。

在增量式编码器中,光栅的缝隙数量相对较少,通常为两个。

光信号计数当光线通过光栅时,传感器会检测到信号的变化。

光线从一个缝隙穿过时,信号计数器会进行加一操作;而当光线从另一个缝隙穿过时,信号计数器会进行减一操作。

脉冲输出增量式光电编码器的输出信号是一个脉冲信号,在光栅旋转时,信号计数器会根据光线通过光栅的缝隙数量变化而产生相应的脉冲输出。

相对位置计算根据脉冲信号的数量和方向,可以计算出光栅的相对位置。

旋转编码器原理是什么?增量式编码器和绝对式编码器有什么区别?

旋转编码器原理是什么?增量式编码器和绝对式编码器有什么区别?

旋转编码器原理是什么?增量式编码器和绝对式编码器有什么区别?先给出结论,最重要的区别在于:增量式编码器没有记忆,断电重启必须回到参考零位,才能找到需要的位置,而绝对式编码器,有记忆,断电重启不用回到零位,即可知道目标所在的位置。

接下来细说一下,主要包含如下的内容:1.增量式旋转编码器的工作原理是什么?2.绝对式旋转编码器的工作原理是什么?3.增量式和绝对式旋转编码器有哪些不同?4.单圈绝对式和多圈绝对式编码器有什么不同?5.选择编码器,需要考虑的最重要的因素有哪3点?6.编码器的实际应用举例。

1.电机屁股那点事作为机械设计人员,我们在选电机时,非常注重电机的扭矩和尺寸,因为这直接决定了电机是否能按规定的运动模式拖动负载,能不能很好地布置在有限的空间之中。

但在精密机械设计中,其实还有一个和扭矩及尺寸同等重要的参数,那就是分辨率。

说起分辨率,很多时候,在电机参数中,可以看到一组数据,例如2000Count/Turn=2000脉冲/圈,和17bit/33bit等。

对旋转电机有所了解的朋友都知道,2000C/T,这其实是说,这个电机带有一个增量式编码器,转一圈对应着2000个脉冲,所以该编码器的分辨率是360/2000=0.18度。

由于相对式编码器通常可以做4倍频(后面我会解释为什么),所以2000C/T的分辨率可以变成0.18°/4=0.045度。

而17bit/33bit则是在说,这个电机带有一个17位的多圈绝对编码器。

那么问题来了,绝对式编码器和增量式编码器原理上有什么区别?应用上有什么区别?绝对式编码器为什么用二进制表示分辨率?单圈和多圈绝对式编码器有什么区别?我想,弄清楚这几个问题,对于电机或者需要用到旋转编码器的地方,心里就不会像过去那样模模糊糊,而是会清晰明了地,直接选择合适的编码器。

这也是我本次理清编码器这个基本概念的目的。

2. 旋转编码器的类型和优缺点现在市面上通常有三种编码器:光学编码器(Optical Encoder),磁编码器(Magnetic Encoder),和电容式编码器(Capacitive Encoder)。

编码器—搜狗百科

编码器—搜狗百科

编码器—搜狗百科主要分类编码器可按以下方式来分类。

1、按码盘的刻孔方式不同分类[1]编码器(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,编码器然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。

(2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。

2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。

3、以编码器机械安装形式分类(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。

(2)轴套型:轴套型又可分为半空型、全空型和大口径型等。

4、以编码器工作原理可分为:光电式、磁电式和触点电刷式。

工作原理编码器由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

主要作用编码器它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。

伺服电机使用的编码器-增量式和绝对式之探究

伺服电机使用的编码器-增量式和绝对式之探究

线、位、分辨率、增量式、绝对式:线:编码器光电码盘的一周刻线,增量式码盘刻线可以10线100线、2500线的刻线,只要你码盘能刻得下,可任意选数;绝对值码盘其码盘刻线因格雷码的编排方式,决定其基本是2的幂次方线,如256线、1024线、8192线等。

但绝对值码盘也有特别的格雷余码输出的,如360线、720线、3600线等。

位:2的n次方,由于绝对值码盘常常是2的幂次方线输出,所以,大部分的绝对值码盘是以“位”来表达,但也有例外,如360线、720线、3600线的(格雷余码)。

增量值编码器也有用位来表示的,如15位、17位,其是通过内部细分,将计算的线数倍增后,一般大于10000线了,就用“位”来表达。

分辨率:编码器可以分辨的角度,对于一般计算,以360度/刻线数计算,目前大部分就直接用多少线来表达了。

但这样就有一些概念的混淆,如增量值编码器,如用上A/B两相的四倍频,2500线的,分辨率实际可以是360/10000的,如果内部细分计算的“线”可以更多,达到15位、17位的,所以,常常的增量编码器用“线”来表达的,代表还没有倍频细分,用“位”来表达的,是已经细分过的了。

增量式:码盘内刻线是两道:A/B,Z,通过数线累加(增量)计算旋转角度,有的增加了U\V\W,将编码器通过120度的分割,分成三个区来判断位置,称为混合型编码器。

有的通过内部细分电路,提高分辨“线”,并用内部电池记忆及用“位”来表达,常常混称为“绝对值”,实际应该是“伪绝对”。

绝对式:码盘内刻线是n道,以2,4,8,16。

编排组合,读数是以“0”“1”编码方式光盘直接读取,而非累加,故不受停电、干扰影响。

至于增量绝对哪个分辨率及精度更高,如果是实际的码盘刻线,绝对值码盘分辨“数”可以是增量码盘的一倍,如果是倍频技术,那增量值码盘分辨"数”又可以大于绝对值,但注意,我用的是“分辨数”,不代表精度,因为细分倍频是电气模拟技术,并不改善精度,精度是由码盘刻线、轴的机械安装、电气的响应综合因数决定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对编码器与增量编码
器的区别
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
一、光电编码器:光电编码器是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量。

增量式旋转编码器
定义:用光信号扫描分度盘(分度盘与转动轴相联),通过检测、统计信号的通断数量来计算旋转角度
增量式旋转编码器的特点:
1)编码器每转动一个预先设定的角度将输出一个脉冲信号,通过统计脉冲信号的数量来计算旋转的角度,因此编码器输出的位置数据是相对的;
2)由于采用固定脉冲信号,因此旋转角度的起始位可以任意设定;
3)由于采用相对编码,因此掉电后旋转角度数据会丢失需要重新复位。

增量式编码器综述
特点:数字编码, 根据旋转角度输出脉冲信号;根据旋转脉冲数量可以转换为速度
选型: - 旋转一周对应的脉冲数 (256, 512, 1024, 2048);输出信号类型 (TTL, HTL, push-pull mode);电压类型 (5V, 24V);最大分辨速度
优点:分辨能力强;测量范围大;适应大多数情况
缺点:断电后丢失位置信号;技术专有,兼容性较差
绝对式旋转编码器
定义:用光信号扫描分度盘(分度盘与传动轴相联)上的格雷码刻度盘以
确定被测物的绝对位置值,然后将检测到的格雷码数据转换为电信号以
脉冲的形式输出测量的位移量
绝对式旋转编码器的特点:
1)在一个检测周期内对不同的角度有不同的格雷码编码,因此编码器输出的位置数据是唯一的;
2)因使用机械连接的方式,在掉电时编码器的位置不会改变,上电后立
即可以取得当前位置数据;
3)检测到的数据为格雷码,因此不存在模拟量信号的检测误差;
绝对式编码器综述
特点:数字编码, 根据旋转角度输出脉冲信号;根据输出的脉冲信号可以
转化为速度.
选型:单编码盘 / 多编码盘 (测量一个或二个旋转变量);代码 (格雷码, BCD码, 二进制码)
信号传输方式 (并口, 串口);分辨率;最大旋转速度
优点:1)结构简单2)角行程编码 (通过旋转轴获得)3)线性编码 (激
光远距离测量)4)掉电不影响编码数据的获得5)最大24位编码
缺点:比较贵
混合式旋转编码器定义:用光信号扫描分度盘(分度盘与转动轴相
联),通过检测、统计光信号的通断数量来计算旋转角度,同时输出绝
对旋转角度编码与相对旋转角度编码
混合式旋转编码器的特点:具备绝对编码器的旋转角度编码的唯一性与增量编码器的应用灵活性。

相关文档
最新文档