初一列方程解应用题专项练习
初一数学《一元一次方程解应用题》典型例习题及答案

初一数学《一元一次方程解应用题》典型例习题及答案《一元一次方程解应用题》典型例习题1.作业问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变体1:一个水利施工现场派出48人挖掘和运输土壤。
如果每人每天平均挖掘5立方米或运输3立方米土壤,如何安排人员以便及时运走挖掘的土壤?变式2:某校组织七年级师生春游,若单独租用45座的客车若干辆正好坐满,租金每辆250元,若单独租用60座的客车可少租1辆,且有30个空余座位,租金每辆300元.(1)该校参加春游的师生共有多少人?(2)如果两辆车都租了,60座的车比45座的车多租一辆,那么租一辆车的总成本比租一辆车更经济。
按照这个计划租一辆车要多少钱?2、匹配问题:例2。
一个车间有22名工人生产螺钉和螺母。
每人平均每天生产1200个螺丝或2000个螺母。
一个螺钉应配备两个螺母。
每天应该分配多少工人来生产螺钉和螺母,以便与产品匹配?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、5个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变体2:使用白铁皮制作罐头。
每块铁可以做成10盒或底部30盒。
一个盒体和两个盒底构成一套罐。
有100块白铁皮。
有多少个箱体和箱底可以用来使箱体和箱底匹配并充分利用白铁皮?3、利润问题销售这类商品时,每件商品降价2.25%。
这种商品的价格是多少?变式1:一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______;一件衣服的进价为x元,若要利润率是20%,应把售价定为________.变体2:一件衣服的购买价格是X元,销售价格是80元。
如果以原价20%的价格出售,利润为人民币元,利润率为____变式3:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.;一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变量5:商品的价格根据成本价上涨20%,然后以10%的折扣出售。
完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
初一解方程10道应用题及答案

初一解方程10道应用题及答案1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×(a+16)-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
解:设四月份的利润为x则x*(1+10%)=13.2所以x=12设3月份的增长率为y则10*(1+y)=xy=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。
如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。
求有多少人?解:设有a间,总人数7a+6人7a+6=8(a-5-1)+47a+6=8a-44a=50有人=7×50+6=356人6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?按比例解决设可以炸a千克花生油1:0.56=280:aa=280×0.56=156.8千克完整算式:280÷1×0.56=156.8千克7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?解:设总的书有a本一班人数=a/10二班人数=a/15那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。
七年级数学列方程解应用题

七年级数学列方程解应用题
好的,以下是七年级数学列方程解应用题的示例题目:
1. 小明从家里到学校,每分钟走60米,15分钟就能到学校,如果每分钟走75米,需要多少分钟?
2. 一辆汽车从甲地开往乙地,每小时行驶40千米,3小时到达,若要2小时到达,每小时需要行驶多少千米?
3. 一本书的页码是连续的自然数:1,2,3,4,\ldots 当将这些页码加起来的时候,某个页码加了两次,得到不正确的结果2009,则正确的结果应该是多少?
请注意,列方程解应用题需要先理解题意,找出等量关系,然后列出方程求解。
初一列方程解应用题练习及答案

列方程解应用题练习及答案一、填空题(每小题3分,共18分)1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑8米,乙每秒钟跑6米.(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元. 二、选择题(每小题3分,共24分)7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是A.20 B.33 C.45 D.548.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么A.甲比乙更优惠 B.乙比甲更优惠C.甲与乙同等优惠 D.哪家更优惠要看原价9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为A.(x+y)千米/小时 B.(x-y)千米/小时C.(x+2y)千米/小时 D.(2x+y)千米/小时10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是A.a米 B.(a+60)米 C.60a米 D.米11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为A.1-( + )m B.5- mC. m D.以上都不对12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为A.x-1=5(1.5x) B.3x+1=50(1.5x)C.3x-1= (1.5x) D.180x+1=150(1.5x)13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为A.a元 B.1.08a元 C.0.972a元 D.0.96a元14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为全月应纳税金额税率(%)不超过500元 5超过500元到2000元 10超过2000元至5000元 15…… ……A.1900元 B.1200元 C.1600元 D.1050元三、简答题(共58分)15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.参考答案一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5+3 10 5.36 6二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.圆四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=517.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:100+ (x-100)=200+ [x-200-100-•(x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的一个班级的树苗数的,由最后两班的树苗相等,可得方程:100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少即得 =100,还可以设每班级取树苗x棵,得 =100.19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.-x)=100-27.60,解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.。
解方程应用题数学题100道七年级上册

解方程应用题数学题100道七年级上册题目1:小明的年龄
小明今年13岁,他的弟弟比他小5岁,几年后他们两兄弟的年龄差将是多少岁?
解法:设几年后小明的年龄为x岁,则小明弟弟的年龄为(x−5)岁。
根据题意可得方程:
(x−5)−x=?
简化方程:(x−5)−x=−5
答案:几年后他们两兄弟的年龄差将是5岁。
题目2:运动会接力赛
A队和B队进行接力赛,A队的前两个跑步员的速度比例为3:5,如果A队的第一个跑步员用30秒跑完,那么A队和B队跑完接力赛所需时间的比为多少?
解法:设A队的第二个跑步员用的时间为x秒,则根据题意可得方程:
$$ \\frac{30}{x}=\\frac{3}{5} $$
简化方程:$30 \\times 5 = 3x$
解方程:$x=\\frac{30 \\times 5}{3}$
答案:A队和B队跑完接力赛所需时间的比为5:10,即1:2。
题目3:购买苹果
小明用40元去超市买苹果,第一个苹果的价格是第二个苹果的2倍,而第二个苹果的价格是第三个苹果的3倍。
问小明最多能买几个苹果?
解法:设第一个苹果的价格为x元,则第二个苹果的价格为2x元,第三个苹果的价格为$3 \\times 2x = 6x$元。
根据题意可得方程:
$$ x + 2x + 6x \\leq 40 $$
简化方程:$9x \\leq 40$
解方程:$x \\leq \\frac{40}{9}$
答案:小明最多能买4个苹果。
…
(继续编写剩余题目)。
初一列方程解应用题练习题及答案

初一列方程解应用题练习题及答案班级:__学号:__姓名:______得分:__列方程解应用题1.甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B地,乙车还需要9小时到达A地.若A、B8两地相距210千米,试求甲乙两车的速度.2.先读懂古诗,然后回答诗中问题.巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g蛋白质、脂肪、碳水化合物产生和热量分别为16.8J、37.8J、16.8J.当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J的热量?4.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为合适,即100kg洗衣水里含200-500g的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg洗衣水,已知缸中的已有衣服重4kg,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉问还需加多少kg洗衣粉,添多少kg水比较合适? 5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买?若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量. 6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.7.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?8.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?9.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG”改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料3,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未202改装车辆每天燃料费用的.问:5费用的公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?10.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.你认为哪种方案获利最多?为什么?;参考答案:1.解:设甲车的速度为x千米/时,乙车的速度为y千米/时,由题意得9y2x? yx4x得y?1.5?210 1.5?210x?6044y?x??60?8033答:甲车的速度为60千米/时,乙车的速度为80千米/时.2.解:设寺内有x名僧人,由题意得xx36434x?624答:寺内有624名僧人.3.解:设取牛奶3x克,取鸡蛋2x克,由题意得16.8??37.8??16.8??1260x?603x?3?60?1802x?2?60?120答:约取牛奶180g,鸡蛋120g.4.解:设还需加洗衣粉xkg,由题意得x0.02?24?150.4%0.4%x?0.00415?4?0.02?2x0.9960.4%答:还需加0.004kg的洗衣粉,添加0.996kg的水.5.解:分甲乙组合;乙丙组合;甲丙组合三种情况.方案一:甲乙组合:设买甲种手机x部,则买乙种手机部,由题意得1800x?600?60000x?3040?x?10方案二:乙丙组合:设买乙种手机y部,则买丙种手机部,由题意得600y?1200?60000y??20方案三:甲丙组合:设买甲种手机z部,则买丙种手机部,由题意得1800z?1200?60000z?2040?z?20综上所述,可以买甲种手机30部,乙种手机10部或买甲种手机和丙种手机各20部.分乙种手机买6部、7部、8部三种情况买乙种手机6部:设买甲种手机x部,则买丙种手机部,由题意得1800x?6?600?1200?60000x?2640?6?x?18买乙种手机7部:设买甲种手机x部,则买丙种手机部,由题意得1800x?7?600?1200?60000x?2740?7?x?16买乙种手机8部:设买甲种手机x部,则买丙种手机部,由题意得1800x?8?600?1200?60000x?280?8?x?14综上所述,可以买甲乙丙三种型号的手机的数量分别为26部,6部,18部或27部,7部,16部或28部,8部,14部.6.解:分三种情况讨论:应用题练习一、填空题1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑8米,乙每秒钟跑6米.当两人同时同地背向而行时,经过__________秒钟两人首次相遇;两人同时同地同向而行时,经过__________秒钟两人首次相遇.2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵. 3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2米,请问这根绳子的长度是__________米.4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.二、选择题7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是A.20B.33C.D.548.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么A.甲比乙更优惠 B.乙比甲更优惠C.甲与乙同等优惠 D.哪家更优惠要看原价9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为A.千米/小时B.千米/小时C.千米/小时 D.千米/小时10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是A.a米 B.米 C.60a米 D.米11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为A.1-某户五月份用电84度,共交电费30.72元。
初一解方程应用题10题

初一解方程应用题10题以下是10道适合初一学生练习的解方程应用题:
1.一家超市的苹果每千克3元,小明买了x千克苹果,给了售货员50
元,售货员找回给他26元,请问小明买了多少千克的苹果?
2.一辆汽车从A地到B地,每小时行驶60千米,用了x小时,A地
到B地的距离是多少千米?
3.小华的妈妈买了2x千克的苹果和3x千克的梨,一共花了36元,如
果苹果每千克4元,梨每千克3元,那么x是多少?
4.一家书店新进了一批书,每本书的成本是20元,售价是25元,如
果书店要获得x元的利润,那么需要卖出多少本书?
5.小王用x元钱买了y支钢笔,每支钢笔的单价是6元,请问小王买
了多少支钢笔?
6.小明的爸爸每月给他x元零花钱,小明用这些钱买了y本笔记本,
每本笔记本的单价是3元,请问小明买了多少本笔记本?
7.一家工厂生产了x件产品,其中有y件不合格,合格率是多少?
8.小丽每分钟走60米,她走了x分钟,请问她走了多少米?
9.小明的爷爷今年70岁,小明的年龄是爷爷年龄的1/5,请问小明今
年多少岁?
10.小华的妈妈买了2千克的苹果和3千克的梨,一共花了24元,如果
苹果每千克x元,梨每千克y元,那么x和y分别是多少?
这些题目涵盖了各种不同类型的解方程应用题,旨在帮助学生提高解决实际问题的能力。
希望这些题目对初一学生的数学练习有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程综合练习
【配套问题】
1.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?
2.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
3.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?
4.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?
5.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
求每个房间需要粉刷的墙面面积。
【工程问题】
1.一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?
2.要生产940个某种零件,甲,乙两人合作5天可以完成,若甲每天能生产这种零件80个,问乙每天能生产这种零件多少个?
3.一项任务,原计划每天做80件,可按计划天数完成,实际上每天比原计划多完成25%,结果提前6天完成,问原计划几天完成?共完成多少件?
4.某车间一项工作由一名师傅去做要12天完成,由一名徒工去做要14天完成,现在派6名师傅和49名徒工共同完成,几小时可以完成?(一天工作时间为8小时)?
5.一条地下管线由甲工程单独铺设需要12天,由乙工程单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?
【球赛积分问题】
1.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。
小明同学参加了竞赛,成绩是96分。
请问小明在竞赛中答对了多少题?
3.在一次数学竞赛中,共有60题选择题,答对一题得2分,答错一题扣1分,不答题不得分也不扣分。
小华在竞赛中有2题忘记回答结果他得了92分。
问小华答对了多少题?
4.一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4,不选或选错扣1分,如果一个学生得90分,那么他选对几题?
【盈亏问题】
1.仙游某琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈利20%,另一台亏损20%。
这次琴行是盈利还是亏损,或是不盈不亏?
2.商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,若该商品的进价为1600元,问商品的原价是多少?
3.某型号文曲星每件标价900元,在促销过程中,商店按标价的9折降价出售并让利40 元,可获利10%。
问这种商品进价是多少元?
4.某股民将甲、乙两种股票卖出,甲种股票卖了1500元,盈利20%,乙种股票卖了1600元,但亏损20%。
该股民在这次交易中是盈利还是亏损?盈利或亏损多少元?
5.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元。
这种商品的定价是多少元?
6.某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
【行程问题】
1.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米,乙练习赛跑,平均每分钟跑250米.两人同时、同地、同向出发,经过多少时间,两人首次相遇?
2.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米。
若甲让乙先跑1秒,甲经过几秒可以追上乙?
3.敌、我相距28千米,得知敌军1小时前以每小时8千米的速度逃跑,现在我军以每小时14千米的速度追敌军,问几小时可以追上敌军?
6.甲、乙两站间的路程为284千米.一列慢车从甲站开往乙站,每小时行驶48千米;慢车行驶了1小时后,另有一列快车从乙站开往甲站,每小时行驶70千米.快车行驶了几小时与慢车相遇?
7.一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?
8.一队学生去校外参加劳动,以4千米/时的速度步行前往.走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上去.通讯员要多少分才能追上学生队伍?
9.一队步兵正以5.4千米/时的速度匀速前进。
通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵列的长是.
【数字问题】
2.有一些分别标有6,12,18,24,……的卡片,后一张卡片上的数比前一张卡片上的数大6,你能拿到相邻的3张卡片,使得卡片上的数之和是375吗?如果能拿到,请求出这三张卡片上的数各是多少?如果拿不到,请说明理由。
3.有一户人家,父亲和儿子同一天过生日,若父子两的年龄加起来是100岁,则称为“百岁父子”,已知父亲38岁时,儿子10岁,现在父亲是儿子年龄的2倍,请算一下,现在父子各多少岁?再过几年两个人加起来等于100岁?
4.丢番图是希腊数学家,他的一生:他的生命的六分之一是幸福的童年;再活了他生命的十二分之一,长了胡须,他结了婚。
又度过了一生的七分之一,再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,与世长辞。
请你算出丢番图年龄。
5.某校初一年级举行春游活动,共租5辆大客车,每辆车有座位60个,若该初一年级的男生比女生多20人,而刚好每人都有座位,则该初一年级有男、女生各多少人?
6.牧羊人赶着一群羊寻找草,一个过路人牵着一只肥羊从后面跟上来,他对牧羊人说:“你赶着的羊大概 100只吧?”牧羊人答:“若一群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚凑满100只。
”问牧羊人的这群羊共多少只?
【补充题】
1.营销问题
某商品月末的进货价比月初进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?
2.数字问题
一个三位数,十位上的数字比个位上的数字大3,且比百位上的数字小1,三个数字的和的50倍比这个三位数小2,求这个三位数。
3.形行程问题
甲乙两人参加环形跑道竞走比赛,跑道一周长400m,乙的速度是80m/min,甲的速度是是乙的5/4倍,若现在甲在乙前面100m处,多少分钟后,两人第一次相遇。
4.某飞机所载油料最多只够在空中连续飞行4h,飞机飞出的速度为900km/h,飞回的速度为850km/h,问飞机最远飞出
5.方案问题
某音乐厅5月初决定在暑假期间举办音乐会,入场券分为团体票和零售票,其中团体票占总票数的2/3,若提前购买,则给予不同程度的优惠,在5月份买票,团体票每张12元,共售出团体票的3/5,零售票每张16元,共售出零售票的一半;若在6月份购票,团体票每张16元,并计划在6月分内售出全部余票,那么零售票每张多少元才能使这两月的票价收入持平。
6.某工人若每小时生产38个零件,在规定时间里还有15个不能完成,若每小时生产42个零件,则可以超额5个,问总共有多少个零件。
7.甲乙丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%,那么顾客到哪家超市购买此种商品最划算?
8.一辆长为3.5m的小汽车正以45m/s的速度行驶,前方一长为16.5m的大货车正以35m/s的速度同向行驶,从小汽车车头与大货车车尾平齐算起,小汽车完全超过大货车的时间是多少?
9.某铁路桥长1200m,现有一列火车从桥上通过,测得火车从上桥到完全过桥共用50s,整个火车完全在桥上的时间是30s,求火车的长度和速度。
10.一个长方形的养鸡场的长边靠墙,墙长14m,其他三边用竹篱笆围成,现有长度为35m的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米,小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际?按他的设计,鸡场的面积是多少?
11. 某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?。