(完整word版)2019年高考数学数列小题练习集(一)
2019年高考试题汇编理科数学--数列(可编辑修改word版)

整理可得 an1 bn1
1 2 (an
bn ) ,又 a1 b1
1 ,故
an
bn
是首项为1,公比为 1 的等比数列. 2
将 4an1 3an bn 4 , 4bn1 3bn an 4 作差可得 4an1 4bn1 3an 3bn an bn 8 ,
1 / 13
整理可得 an1 bn1 an bn 2 ,又 a1 b1 1,故 an bn 是首项为1,公差为 2 的等差数列.
设所有长度为 q 的子列的末项分别为: aq1 , aq2 , aq3 , , 所有长度为 p 的子列的末项分别为: ap1 , ap2 , ap3 , , 则 an0 min aq1 , aq2 , aq3 , ,
注意到长度为 p 的子列可能无法进一步找到长度为 q 的子列,
故 am0 min ap1 , ap2 , ap3 , ,
(Ⅱ)已知数列{an}的长度为 p 的递增子列的末项的最小值为 am0 ,长度为 q 的递增子列的末项的最小值为 an0 . 若 p<q,求证: am0 < an0 ;
(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为 s 的递增子列末项的最小值为 2s–1,且长度为 s 末项为 2s–1 的递增子列恰有 2s-1 个(s=1,2,…),求数列{an}的通项公式. 【答案】(Ⅰ) 1,3,5,6. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】 【分析】
A. 16 B. 8 C. 4 D. 2
答案: C 解答:
设该等比数列的首项 a1 ,公比 q ,由已知得, a1q4 3a1q2 4a1 ,
因为 a1 0 且 q 0 ,则可解得 q 2 ,又因为 a1(1 q q2 q3 ) 15 ,
2019-2019云南省数列理科高考题目及答案word精品文档13页

2019年—2019年云南省10年高考数列试题汇总2019年高考数学大纲(理) 数列部分:等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (2)理解等差数列的概念.掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。
2019年(4)如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++== (A )14 (B )21 (C )28 (D )35 (18)(本小题满分12分)已知数列{}n a 的前n 项和2()3n n S n n =+g. (Ⅰ)求limnn na S →∞;(Ⅱ)证明:12222312n n a a a n+++…>. 2009年14. 设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 。
19(本小题满分12分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。
2019年20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.2019年16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数.2019年(11)设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612SS =( ) (A )310 (B )13 (C )18 (D )19(22)(本小题满分12分)设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一根为1,1,2,3,...n S n -= (I )求12,;a a(II )求{}n a 的通项公式2019年11. 如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A. a 1a 8>a 4a 5 B. a 1a 8<a 4a 5C. a 1+a 8>a 4+a 5D. a 1a 8=a 4a 518. (本小题满分12分)已知是各项均为正数的等差数列,、、成等差数列,又(Ⅰ)证明为等比数列;(Ⅱ)如果无穷等比数列各项的和,求数列的首项a 1和公差d.(注:无穷数列各项的和即当时数列前n 项和的极限) 2019年(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…). 证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n2019年22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts+ t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2019年(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ 2019年(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?2019年~2009年云南省历年高考数列题2009年解:(I )由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a a b a a =+=∴=-=由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....② ②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-Q ,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2n na 是首项为12,公差为34的等比数列. ∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅ 2019年20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-. ······································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ······························································ 6分(Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=•+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔•+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ························································· 12分 2019年21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=, 所以1n n b a ++==由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭g两边开平方得32na a -<即 1n n b b n +<,为正整数.2019年22.解:(Ⅰ)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是(a 2-12)2-a 2(a 2-12)-a 2=0,解得a 1=16.(Ⅱ)由题设(S n -1)2-a n (S n -1)-a n =0,即 S n 2-2S n +1-a n S n =0.当n ≥2时,a n =S n -S n -1,代入上式得 S n -1S n -2S n +1=0 ①由(Ⅰ)知S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3,…. ……8分下面用数学归纳法证明这个结论. (i )n =1时已知结论成立.(ii )假设n =k 时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k ,即S k +1=k +1k +2, 故n =k +1时结论也成立. 综上,由(i )、(ii )可知S n =nn +1对所有正整数n 都成立. ……10分于是当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),又n =1时,a 1=12=11×2,所以{a n }的通项公式a n =nn +1,n =1,2,3,…. ……12分 2019年18. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。
2019年全国高考理科数学试题分类汇编4:数列

2019 年全国高考理科数学试题分类汇编4:数列一、选择题1 .( 2019 年高考上海卷(理) )在数列 { a n } 中 , a n2n 1, 若一个 7 行 12 列的矩阵的第 i 行第 j列的元素ai ,ja i a j a i a j ,( i 1,2,L,7; j1,2,L ,12 ) 则该矩阵元素能取到的不一样数值的个数为( )(A)18(B)28(C)48(D)63【答案】 A.2 .( 2019 年一般高等学校招生一致考试纲领版数学(理) WORD 版含答案(已校 对))已知数列a n 知足3a n 1an0,a 24 , 则 a n 的前 10 项和等于3 1 1(A)61 310 (B)3 10 (C) 3 1 3 10(D)3 1+3 109【答案】 C3 (. 2019 年高考新课标 1(理))设A nB nC n 的三边长分别为 a n , b n ,c n , A n B n C n 的面积为 S n , n 1,2,3, L ,若 b 1c 1 ,b 1 c 1 2a 1 ,a n 1a n,bn 1c n an, cn 1 b na n, 则 ()22A.{ S } 为递减数列B.{S } 为递加数列nnC.{ S 2n-1 } 为递加数列 ,{ S 2n } 为递减数列D.{ S 2n-1 } 为递减数列 ,{ S 2n } 为递加数列【答案】 B4 .( 2019 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 函数 y= f (x) 的图像以下图 ,在区间 a,b 上可找到 n(n 2) 个不一样的数x 1 ,x 2 ...,x n ,使得f (x 1) f (x 2 )f (x n )==, 则 n 的取值范围是x 1x 2x n(A) 3,4 (B) 2,3,4 (C) 3,4,5(D) 2,3【答案】 B5 .( 2019 年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))已知等比数列{ a n}的公比为q,记 b n am( n 1) 1am( n 1) 2... am (n 1) m,c n am(n 1) 1? am(n 1) 2 ?...? a m( n 1) m (m, nN * ), 则以下结论必定正确的选项是( )A. 数列 {b n} 为等差数列 , 公差为q m B. 数列 { b n } 为等比数列,公比为 q2mC. 数列{c n}为等比数列 , 公比为q m2D. 数列 { c n } 为等比数列,公比为 q m m【答案】 C6 .( 2019 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等比数列a n的前 n 项和为 S n,已知 S3 a2 10a1, a5 9 ,则 a11(B) 1 1 1(A)3 (C) (D)3 9 9【答案】 C7 .( 2019 年高考新课标1(理))设等差数列a n的前n项和为S n, S m 12, S m0, S m 1 3 ,则 m ( )【答案】 C8 .( 2019 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))下边是对于公差 d 0 的等差数列a n的四个命题 :p1 : 数列 a n 是递加数列;p2 : 数列 na n 是递加数列;p3 : 数列an是递加数列;p4 : 数列 a n 3nd 是递加数列;n此中的真命题为(A) p1, p2(B)p3 , p4(C)p2 , p3(D)p1, p4【答案】 D9 .( 2019 年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】 A二、填空题10.( 2019 年高考四川卷(理))在等差数列{ a n}中,a2 a1 8 ,且 a4为 a2和 a3的等比中项,求数列 { a n} 的首项、公差及前 n 项和.【答案】解 : 设该数列公差为 d ,前n项和为s n.由已知, 可得2a1 2d 8, a12a1 d a1 8d . 3d所以 a1 d 4,d d 3a1 0 ,解得 a1 4, d 0 ,或 a1 1,d 3,即数列a n的首相为4,公差为0,或首相为1,公差为 3.所以数列的前 n 项和 s n 4n 或 s n 3n2 n211.( 2019 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等差数列a n 的前 n 项和为S n,已知 S10 0, S15 25 ,则 nS n的最小值为________.【答案】4912.( 2019 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各样多边形数. 如三角形数 1,3,6,10,,第 n 个三角形数为n n 1 1 n2 1n .记第 n 个 k 边形数为 N n,k k 3 ,以以下出了部分k 边形2 2 2数中第 n 个数的表达式:三角形数N n,3 1 n2 1 n2 2正方形数N n,4 n2五边形数N n,5 3 n2 1 n2 2六边形数N n,6 2n2 n能够推断 N n, k 的表达式,由此计算 N 10,24___________.选考题【答案】 100013.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯WORD版含附带题))在正项等比数列 { a n} 中,a5 1a6 a7 3 ,则满足 a1 a2 a n a1a2 a n的最大正整数 n, 的值为2_____________. 【答案】 1214.( 2019 年高考湖南卷(理))设S n为数列a n 的前 n 项和 , S n ( 1)n a n 1n , n N , 则2(1) a3 _____; (2) S1 S2 S100 ___________.【答案】1 1(11) 16; 1003 215.( 2019 年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))当x R, x 1时 , 有以下表达式 : 1 x x2 ... x n ... 1 .1 x1 1 1 1 11两边同时积分得 : 2 1dx 2 xdx 2 x2dx ... 2 x n dx ... 2 dx.0 0 0 0 01 x进而获得以低等式 : 1 1 1 ( 1)2 1 (1)3 (1)1 ( 1)n 1 ... ln 2.2 2 23 2 n 2请依据以下资料所包含的数学思想方法,计算:0 1 1 1 1 2 1 2 1 3 1 n 1 n 1C n 2 2C n ( 2 ) 3 C n ( 2) ... n 1C n ( 2 ) _____【答案】 1 [( 3 )n 1 1]n 1 216.( 2019 年一般高等学校招生一致考试重庆数学(理)试题(含答案))已知 a n 是等差数列 , a1 1,公差d 0 , S n为其前n项和 , 若a1, a2, a5成等比数列 , 则S8 _____【答案】6417.( 2019 年上海市春天高考数学试卷( 含答案 ) )若等差数列的前6项和为 23,前 9 项和为 57, 则数列的前n 项和 S n = __________.【答案】5n2 7 n 6 618(. 2019 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD版))在等差数列a n中, 已知a3 a8 10,则 3a5 a7 _____ 【答案】2019.( 2019 年高考陕西卷(理) )察看以下等式 :12 12231212 22 32 6 2222123410照此规律 , 第 n 个等式可为 ___ 1 2- 2 22n -1 2( -1) n 13 -( -1) nn(n 1) ____.22 - 2 23 2- n -1n 2 ( - 1) n 1n(n 1)【答案】 1( -1)220 .( 2019 年 高考新课标2 1 1(理)) 若数列 { a n } 的前 n 项和为 S n = a n, 则数列 { a n } 的通项公式是33a n =______.【答案】 a n = ( 2)n 1 .21.( 2019年一般高等学校招生一致考试安徽数学 (理)试题(纯 WORD 版))如图 , 互不 - 同样的点 A 1 , A 2 K , X n ,K和 B 1 , B 2 K , B n ,K 分别在角 O 的两条边上 , 全部 A n B n 互相平行 , 且全部梯形 A n B n B n 1 A n 1 的面积均相等 . 设OA n a n . 若 a 1 1,a 2 2, 则数列 a n 的通项公式是 _________.【答案】a n3n 2, nN *22(. 2019 年高考北京卷 (理))若等比数列 n 2 4 35{ a } 知足 a +a =20, a +a =40,则公比 q =_______; 前 n 项和n =___________.S【答案】 2,2n 12 23.( 2019 年一般 高等学校招生一致考试辽宁数学(理)试题(WORD 版)) 已知等比数列 a n 是递加数列,S n 是 a n 的 前 n 项 和 , 若 a 1, a 3 是 方 程 x 2 5x 4 0的两个根,则S6____________. 【答案】 63三、解答题24.( 2019 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD版))设函数f n (x)1 x x2 x2 x n(x R, n N n ),证明: 22 2Kn23( Ⅰ) 对每个( Ⅱ) 对随意n N n,存在独一的x [2,1] ,知足f n(x n) 0 ;n 31 p N n,由(Ⅰ)中 x n组成的数列x n知足 0 x n x n p .n【答案】解: ( Ⅰ) 当 x 0时, y x nf n (x) 1 xx 2x3 x 4 x n n 2是单一递加的2 23 24 2 n 2 是x 的单一递加函数 , 也是 n 的单调递加函数 . 且f n( 0) 1 0, f n (1) 1 1 0 .存在独一 x n (0,1], 知足 f n ( x n ) 0,且 1 x1 x2 x3 x n 0当 x (0,1).时, f n ( x) 1 x x2 x3 22 220 f n ( x n ) 1 x n x n 2 14 1 x n综上 , 对每个n N n,存在独一的x n [ 23(Ⅱ) 由题知1 x n xn p 0, f n ( x n )x 4 x n1x2 1 x n 1 x 2 122 22x11 x1 x4 x 4(x n 2)(3x n 2) 0 x n2,1][3,1] ,知足f n( x n) 0 ;( 证毕 )1x n2 x n3 x n4 x n nx n32 4222 n22 3 4 xn pn n 1 n pf n p (x n p ) 1 x n p xn pxn pxn pxn pxn p 0 上式相22 32 42 n 2 (n 1) 2 (n p) 2减:x n2 x n3 x n4 x n n 2 xn p3 x n p4 nxn pn 1 n pxn p xn pxn pxn px n2 32 42 n2 22 32 42 n2 (n 1) 2 ( n p) 222 2 334 4 n n n 1 n px n- x n p( x n p - x n x n p - x n x n p - x n x n p - x n )( x n p x n p )2 2 32 4 2 n 2 ( n 1) 2 (n p) 21 1 1 x n - x n p 1 .n n p n n法二 :25.( 2019 年高考上海卷(理))(3 分 +6 分+9 分 ) 给定常数c 0 ,定义函数f (x) 2 | x c 4 | | x c |, 数列 a1 , a2 , a3 ,L 知足 a n 1 f ( a n ), n N *.(1) 若a1 c 2 ,求 a2及 a3 ;(2) 求证 : 对随意n N*, a n 1 a n c ,;(3)能否存在 a1,使得 a1, a2 ,L a n ,L 成等差数列若存在,求出全部这样的 a1,若不存在,说明原因. 【答案】 :(1) 因为c 0 ,a1(c 2) ,故 a2 f (a1 ) 2 | a1 c 4 | | a1 c | 2 ,a3 f (a1 ) 2 | a2 c 4 | | a2 c | c 10(2) 要证明原命题 , 只要证明f ( x) x c 对随意x R都建立,f ( x) x c 2 | x c 4 | | x c | x c即只要证明 2 | x c 4 | | x c | + x c若 x c 0 , 明显有 2 | x c 4 | | x c | + x c=0 建立 ; 若 xc 0 , 则 2 | x c 4 | | x c | +x cx c 4 x c 明显建立综上 , f ( x)x c 恒建立 , 即对随意的 nN * , a n 1a n c(3) 由 (2) 知 , 若 { a n } 为等差数列 , 则公差 d c 0 , 故 n 无穷增大时 , 总有 a n 0此时,a n 1f (a n ) 2(a n c 4) ( a n c) a n c8即 d c 8故 a 2 f ( a 1 ) 2 | a 1 c 4 | | a 1 c | a 1 c 8 ,即 2 | a 1 c 4 | | a 1 c | a 1c 8 ,当 a 1 c 0 时, 等式建立 , 且 n 2 时 , a n 0 , 此时 { a n } 为等差数列 , 知足题意 ;若 a 1 c 0 , 则 | a 1 c 4 | 4 a 1c 8 ,此时 , a 20, a 3 c 8,L , a n (n 2)(c 8) 也知足题意 ;综上 , 知足题意的 a 1 的取值范围是 [ c, ){ c 8} .26.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学) (已校正纯 WORD 版含附带题) ) 本小题满分10 分 .k 个6444744481, 2, 2,3,3,3, 4, 4, 4,k-1k-1设数列4,,(),,( ),即 当a n : ------ L-1 k L-1 k( k)()k11 kk k1k N 时 , a na 2 L a nn N , 对于 l N ,定义2n( - 1) k , 记 S n a 12会合 P ln S n 是a n 的整数倍,nN ,且1 n l(1) 求会合 P 11 中元素的个数 ; (2) 求会合 P 2000 中元素的个数 .【答案】 此题主要观察会合 . 数列的观点与运算 . 计数原理等基础知识 , 观察研究能力及运用数学概括法剖析解决问题能力及推理论证能力.(1) 解 :由数列a n 的 定 义得 : a 11, a 2 2 , a 3 2 , a 4 3 , a 5 3 , a 6 3 , a 7 4 , a 84 , a 94 , a 10 4 , a 11 5∴S1 1,S21,S33,S4 0,S5 3,S6 6,S7 2,S82,S9 6, S1010, S11 5∴ S11? a1, S40 ? a4, S51? a5, S6 2 ? a6, S111? a11∴会合 P11中元素的个数为 5(2) 证明 : 用数学概括法先证S i ( 2i 1)i (2i1)事实上 ,①当 i 1时,S i ( 2i 1)S31? (2 1) 3 故原式建立②假定当 i m 时,等式建立,即S m( 2 m 1) m ? (2m 1) 故原式建立则 : i m 1, 时 ,S( m 1)[ 2 (m1) 1} S( m 1)( 2 m3}Sm (2m1)(2m 1) 2 ( 2m 2) 2 m(2m 1) ( 2m 1) 2 (2m 2) 2(2m 2 5m 3) ( m 1)(2m 3)综合①②得:Si (2 i 1) i (2 1) 于是iS( i 1)[2 i1} Si ( 2i1} (2i 1)2 i (2i 1) (2i 1) 2 (2i 1)(i 1)由上可知 : S i (2i 1} 是 ( 2i 1) 的倍数而a( i 1)( 2 i1} j 2i 1( j 1,2, ,2i 1) ,所以 S i (2i 1) j Si (2 i 1) j (2i 1) 是a( i 1)( 2i 1} j ( j 1,2, ,2i 1) 的倍数又S( i 1)[ 2 i 1} (i1)( 2 1) 不是2i 2的倍数 , i而a( i 1 )(2 i 1} j ( 2 2)(j1,2, ,2i2) i所以S(i 1)( 2i 1)j S(i 1)( 2 i 1) j ( 2i 2) ( 2 i 1)(i 1) j (2i 2) 不是 a( i 1)( 2i 1} j( j1,2, ,2i 2) 的倍数故当 l i (2i 1) 时, 会合 P l中元素的个数为 1 3 (2i -1) i 2于是当l i ( 2i 1) j(1 j 2i时, 会合P l中元素的个数为i2j 1)又 2000 31 (2 31 1) 47故会合 P2000中元素的个数为31247 100827.( 2019 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD 版)) 在公差为 d 的等差数列 { a n }中 ,已知 a 1 10 , 且 a 1 ,2a 2 2,5a 3 成等比数列 .(1) 求 d , a n ; (2)若 d0 , 求 | a 1 | | a 2 | | a 3 || a n | .【答案】 解:( Ⅰ) 由已知获得 :(2a2)25a a4(ad 1)250(a2d )(11 d )225(5 d)21 311121 22d d2125 25dd23d 4 0d 4d1a n或;4n6a n 11 n( Ⅱ) 由 (1) 知 , 当 d0 时 , a11 n ,n①当 1n 11时 ,an 0 | a 1 | | a 2 | | a 3 | ggg | a n | a1a 2a 3 ggg an n(10 11 n)n(21 n)22②当 12n 时 ,a n 0 | a 1 | | a 2 | | a 3 | ggg | a n | a 1 a 2a 3 ggg a 11 (a 12a13ggg a n )2(a 1a 2 a 3 ggg a 11) (a 1 a 2a 3 ggg a n ) 2 11(21 11) n(21 n)n 221n 2202 22n(21 n),(1 n 11)所以 , 综上所述 :| a 1 || a 2 | | a 3 | ggg | a n |2 ;n 2 21n 22012)2,( n28.( 2019 年高考湖北卷(理) ) 已知等比数列a n 知足 : a 2 a 310 , a 1a 2a 3 125 . (I)求数列 a n 的通项公式 ;(II) 能否存在正整数 m , 使得11 L 1 1 若存在 , 求 m 的最小值 ; 若不存在 , 说明原因 .a 1a 2 a m【答案】 解 :(I) 由已知条件得 :a 2 5 , 又 a 2 q 1 10 ,q 1或3 ,所以数列 a n 的通项或 a n 53n 2(II) 若q, 11 L 111a 1a 2 a m 或 0, 不存在这样的正整数 m ;53 ,1m若 q1L1 9 1 1 9 , 不存在这样的正整数 m .a 1a 2a m 10 3 1029.( 2019 年一般高等学校招生一致考试山东数学(理)试题(含答案))设等差数列a的前 n 项和为Snn ,且 S 4 4S 2 , a 2n 2a n 1.( Ⅰ) 求数列 a n 的通项公式 ;( Ⅱ) 设数列b n 前 n 项和为 T n , 且 T na n 1 ( 为常数 ). 令 c nb 2n ( nN *). 求数列c n 的前 n2n项和 R n .【答案】 解:( Ⅰ) 设等差数列a n 的首项为a 1, 公差为 d ,由S 44S2, a 2n2a n1得4a 1 6d 8a 1 4da 1 (2n 1) 2a 12(n 1)d 1,解得 ,a11, d 2所以 a n2n 1 (n N * )T nn2n1( Ⅱ) 由题意知 :b n T n T n1n n 1所以n 2时, 2n 12n 22n 21 n 1故 , c nb2 n22n 1(n 1)( 4 )(nN * )R0 (1)1 (1)12 (1)23 (1)3(n 1) ( 1) n 1n44444,所以1R n0 (1)1 1 (1)22 (1)3(n 2) ( 1)n 1( n 1) ( 1)n则 4444443R n(1 )1 (1)2(1 )3( 1 )n 1(n 1) (1) n两式相减得 4 444441 (1 )n1 44( nn1 1)( )144R n1 3n 1 (4 4 n 1 ) 整理得9cn 的前 n项和R n13n 1所以数列数列9 (44n 1 )30.( 2019 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD 版含附带题) ) 本小题满分16 分 . 设 { a n } 是首项为 a , 公差为 d 的等差数列 (d0) , S n 是其前 n 项和 . 记 b nnS n , nN * , 此中 cn 2 c为实数 .(1) 若 c 0 , 且 b 1, b 2, b 4 成等比数列 , 证明 :Snkn 2 S k ( k ,n N * ) (2) 若 {b n } 是等差数列 , 证明 : c 0 .【答案】 证明 : ∵ { a n } 是首项为 a , 公差为 d 的等差数列 (d 0) , S n 是其前 n 项和∴ S nna n(n 1) d2(1) ∵ c0 ∴ b n S na n 1 dn2 ∵ b 1, b 2, b 4 成等比数列∴ b 22b 1b 4 ∴ (a 1 d ) 2 a( a3 d)22∴ 1ad1 d2 0 ∴ 1 d( a 1d ) 0 ∵ d 0∴ a1 d ∴ d 2a24 222∴ S nna n(n 1) d na n(n1)2a n 2 a22∴左侧 = S nk (nk ) 2 a n 2 k 2a右侧 = n 2S k n 2 k 2 a∴左侧 =右侧∴原式建立(2) ∵ { b n } 是等差数列∴设公差为 d 1 , ∴ b n b 1 ( n 1)d 1 带入 b nnS n得 :n 2cb 1 (n 1)d 1nS n∴ (d 11 d )n 3 (b 1 d 11 ) n2 cd 1 n (b 1 ) 对 n N 恒建立n 2c2adc d 12d 1 1 d 02∴ b 1d 1 a 1 dcd 1 02c(d 1 b 1 ) 0由①式得 :d 11 d ∵ d 0 ∴ d 12 由③式得 :c法二 : 证:(1) 若 c0 , 则 a n a ( n 1)d , S nn[( n 1)d2a] , b n(n 1)d 2a .22当 b 1, b 2,b 4 成等比数列 , b 22b 1b 4 ,d 23d即 : aa a , 得 : d22ad , 又 d 0 , 故 d 2a .22由此 : S n n 2a ,Snk( nk) 2 a n 2k 2 a , n 2 S k n 2 k 2 a .故 : S nkn 2 S k ( k , n N * ).nS nn 2 ( n 1) d 2a(2) b n2 ,n 2cn 2cn 2 ( n 1)d 2ac (n1)d 2a c ( n 1) d 2a2n 2 2 2c(n 1)d 2a(n 1) d 2a c 2 . ( ※)n 22c若 { b n }是等差数列 , 则 b nAn Bn 型 .察看 ( ※) 式后一项 , 分子幂低于分母幂 ,( n 1)d 2a故有 : c 20, 即 c (n 1)d2a 0 , 而(n1)d 2a ≠0,n2c22故 c 0 .经查验 , 当 c0 时 { b n } 是等差数列 .31.( 2019 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 等差数 列 a n 的前 n 项和为 S n , 已知 S 3 =a 22 , 且 S 1 , S 2 , S 4 成等比数列 , 求 a n的通项式 .【答案】32.( 2019 年一般高等学校招生一致考试天津数学(理)试题(含答案))已知首项为3的等比数列 { a n } 不是2递减数列 , 其前 n 项和为S n (n N*) 3 3 5 5 4 4成等差数列 ., 且S+ a , S + a , S + a( Ⅰ) 求数列 { a n } 的通项公式 ;( Ⅱ) 设 T n S n 1(n N * ) , 求数列 { Tn } 的最大项的值与最小项的值 . S n【答案】33.( 2019 年高考江西卷(理) )正项数列 {a n } 的前项和 {a n } 知足 : s n 2 ( n 2n1)s n (n 2 n)(1) 求数列 {a n } 的通项公式 a n ;(2) 令 b nn 1 , 数列 {b n } 的前 n 项和为 T n . 证明 : 对于随意的 n N * , 都有 T n5(n 2) 2 a 264【答案】 (1) 解 : 由 S n2(n 2 n 1) S n (n 2 n)0 , 得 S n (n 2 n) (S n 1) 0 .因为 a n 是正项数列 , 所以 S n0, S nn 2 n .于是 a 1 S 1 2, n 2时 , a n S nSn 1n 2 n (n 1)2(n 1) 2n .综上 , 数列 a n 的通项 a n 2n .(2) 证明 : 因为 a n2n, b nn 1.( n2) 2 a n 2则 bn11 11 .n4n 2 ( n 2) 216 n 2( n 2)2T n1 11 11 11 1 1 1 16 122 42 3252(n 1)2 (n 1)2 n 2( n 2)2321 11111 1516 2(n22 (1 2 2).2 1) (n 2)1664是等比数列 .。
2019年高考数学试题分项版—数列(解析版)

2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
(完整word版)数列高考真题专项练习2019(word文档良心出品)

数列高考真题专项练习2019
1. (2018)记Sn为等差数列{an}的前n项和, 已知a1=﹣7, S3=﹣15.
(1)求{a n}的通项公式;
(2)求Sn, 并求Sn的最小值.
2. (2017)已知等差数列{an}的前n项和为Sn, 等比数列{bn}的前n项和为Tn, a1=
﹣1, b1=1, a2+b2=2.
(1)若a3+b3=5, 求{bn}的通项公式;
(2)若T3=21, 求S3.
3. (2016)等差数列{an}中, a3+a4=4, a5+a7=6.
(Ⅰ)求{a n}的通项公式;
(Ⅱ)设bn=[an], 求数列{bn}的前10项和, 其中[x]表示不超过x的最大整数, 如
[0.9]=0, [2.6]=2.
4. (2015)数列{an}满足a1=1, a2=2, an+2=2an+1﹣an+2.
(Ⅰ)设bn=an+1﹣an, 证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.
5. (2014)已知等差数列{an}的公差不为零, a1=25, 且a1, a11, a13成等比数列. (Ⅰ)求{a n}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n﹣2.
6. (2013)等差数列{an}中, a7=4, a19=2a9,
(Ⅰ)求{a n}的通项公式;
(Ⅱ)设bn=/, 求数列{bn}的前n项和Sn.
7. (2012)已知数列{an}中, a1=1, 前n项和/
(1)求a2, a3;
(2)求{an}的通项公式.
8. (2011)设等比数列{an}的前n项和为Sn, 已知a2=6, 6a1+a3=30, 求an和Sn.。
精选2019年高中数学单元测试试题-数列专题完整考题库(含答案)

2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.一个凸五边形的内角的度数成等差数列,且最小角是46°,则最大角是 A.108° B.139° C.144° D.170°第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.等比数列{}n a 中,若33=a ,246=a ,则8a 的值为______________.3.设n S 是公差不为零的等差数列{}n a 的前n项和,若137920,,,a a a a =且成等比数列,则10S = ▲ .4. 命题“有的三角形的三个内角成等差数列”的否定是 ▲ .5.在ABC ∆中,内角A 、B 、C 的对边分别为c b a ,,,已知c b a ,,成等比数列,且3=+c a ,37tan =B ,则ABC ∆的面积为 .6.古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:w.w.w.k.s.5.u.c.o.m他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。
下列数中及时三角形数又是正方形数的是( )A.289B.1024C.1225D.1378(2009湖北文)7.若数列{}n a 的前n 项和225n S n n =++,则567a a a ++=8.一个屋顶的某一斜面成等腰梯形,最上面一层铺瓦片21块,往下每一层多铺1块,斜面上铺了瓦片19层,共铺了______块瓦片。
9.数列5,55,555,5555,的一个通项公式为_______________10.数列}{n a 的递推公式是7,211-=+=+a a a n n ,则7a =________ 11.在11+n n和之间插入n 个正数,使这n +2个正数成等比数列,则插入的n 个正数之积 为 ;下面分别是数列{}n a 的前n 项和n S 的公式,求数列{}n a 的通项公式:(1)223n S n n =-; (2)32nn S =-13.已知等差数列{}n a 的首项1a 及公差d 都是整数,前n 项和为n S (n N *∈).若1431,3,9a a S >>≤,则通项公式____________n a =三、解答题 14.在数列{}()122211,2,2sin (3,2nn n n a a a a n n N a π*--===-≥∈中,),数列{}n n a 前项和的为n S 。
数列综合问题(练)-2019年高考数学---精校解析Word版

数学试题1.若无穷数列满足:恒等于常数,则称具有局部等差数列.(1)若具有局部等差数列,且,求;(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有局部等差数列,并说明理由;(3)设既具有局部等差数列,又具有局部等差数列,求证:具有局部等差数列.2.已知数列是首项为、公比为的等比数列,数列满足,.(1)求数列的通项公式;(2)若数列前项和为,求所有满足等式成立的正整数;(3)若且对任意都有,求实数的取值范围.【解析】(1)依题意,由可得当时,当时,,因此(2)由题意得,由得,化简得,由得;因为,所以,当时,由式得,无正整数解;当时,由式得,无正整数解;当时,由式得,所以.综上可知,满足条件的正整数3.设等比数列的各项均为正数,前项和为,且.(1)求;(2)是否存在常数,使得数列是等差数列?若存在,求的值;若不存在,请说明理由.【解析】(1)设等比数列的公比为,因为各项均为正数,所以.由得,解得已舍去.所以.(2)设,由(1)知.若数列是等差数列,则成等差数列,于是,即,整理得,解得或.当时,,满足,所以是等差数列;当时,,则,所以,舍去.综上,存在唯一的常数满足题意.4.已知为正整数,数列满足,,设数列满足. (1)求证:数列为等比数列;(2)若数列是等差数列,求实数的值;(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.当=12时,,,,5.已知数列的前项和为,满足,且,正项数列满足,其前7项和为42.(1)求数列和的通项公式;(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;(3)将数列的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行排列,得到一个新的数列:,求这个新数列的前项和.【答案】(1);(2);(3),【解析】(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴,又,∴,∴数列是等差数∴,∵对任意正整数,都有恒成立,∴.(3)数列的前项和,数列的前项和,①当时,;②当时,,特别地,当时,也符合上式;③当时,.综上:,.6.已知数列的首项,且满足,其中.设数列的前项和分别为.(Ⅰ)若不等式对一切恒成立,求;(Ⅱ)若常数且对任意的,恒有,求的值;(Ⅲ)在(2)的条件下且同时满足以下两个条件:(ⅰ)若存在唯一正整数的值满足;(ⅱ) 恒成立.试问:是否存在正整数,使得,若存在,求的值;若不存在,请说明理由.【解析】故,而,因为,所以,令,则所以存在正整数,使得,此时,或者.7.在数列中,已知为常数.(Ⅰ)证明:成等差数列;(Ⅱ)设,求数列的前项和;(Ⅲ)当时,数列中是否存在三项成等比数列,且也成等比数列?若存在,求出的值;若不存在,说明理由.【解析】(Ⅰ)因为,所以,同理,,,又因为,,所以,故,,成等差数列.(Ⅱ)由,得,令,则,,所以是以0为首项,公差为的等差数列,则,即,因为成等比数列,所以,所以,化简得,联立,得.这与题设矛盾. 故不存在三项成等比数列,且也成等比数列.8.已知数列{a n }的前n 项和为S n ,数列{b n },{c n }满足 (n +1) b n =a n +1-n Sn ,(n +2) c n =2 an +1+an +2-n Sn,其中n ∈N*.(1)若数列{a n }是公差为2的等差数列,求数列{c n }的通项公式;(2)若存在实数λ,使得对一切n ∈N*,有b n ≤λ≤c n ,求证:数列{a n }是等差数列. 解:(1)因为{a n }是公差为2的等差数列,因此c n =21( b n +b n +1).因为对一切n ∈N*,有b n ≤λ≤c n ,所以λ≤c n =21(b n +b n +1)≤λ, 故b n =λ,c n =λ.所以 (n +1)λ=a n +1-n Sn, ① (n +2)λ=21(a n +1+a n +2)-n Sn, ②②-①,得21(a n +2-a n +1)=λ,即a n +2-a n +1=2λ. 故a n +1-a n =2λ (n ≥2).又2λ=a 2-1S1=a 2-a 1,则a n +1-a n =2λ (n ≥1). 所以数列{a n }是等差数列. 9.设数列的前n 项和为S n ,且满足:①;②,其中且.(1)求p 的值; (2)数列能否是等比数列?请说明理由;(3)求证:当r 2时,数列是等差数列.解:(1)n 1时,,因为,所以,又,所以p1.(2)不是等比数列.理由如下:……10.已知正项数列的前项和为,且,.(1)求数列的通项公式;(2)若对于,都有成立,求实数取值范围;(3)当时,将数列中的部分项按原来的顺序构成数列,且,证明:存在无数个满足条件的无穷等比数列.【解析】(1)当时,,故;当时,,所以,即,又,所以,所以,,,故(2)当为奇数时,,由得,恒成立,令,则,所以.当为偶数时,,由得,恒成立,所以.又,所以实数的取值范围是.(3)当时,若为奇数,则,所以.解法1:令等比数列的公比,则.设,因为,所以,,因为为正整数,。
2019年高考数学数列小题练习集(一)

A. 2017 2018
B. 2017 1009
C. 2018 2019
D. 4036 2019
20. 已知 1 i n b0 2 i 0 b1 2 i b2 2 i 2
bn 2 i n ( n 2,i 为虚
数单位),又数列 an 满足:当 n 1时, a1
2 ;当 n
2 , an 为 b2
2
i
2
的虚部,
2
若数列
的前 n 项和为 Sn ,则 S2018 ( )
x、 y R ,且 y> 0),则数列 { zn} 的前 2019 项的和为(
)
1
A.
3i
22
13
B.
i
22
C . 1 3i
D . 1 3i
4. 等比数列 { an} 的前 n 项和 Sn 3n t ,则 t a3 的值为
A. 1
B.
-1
C. 17
D. 18
5. 设函数 f ( x) 2x cos x , { an} 是公差为 8 的等差数列,
1
2an,0 an
1
2 ,若 a1
2an 1, an 1
2
6 ,则 a2020 的值为 ( )
7
B. 4
C. 5
D. 6
7
7
7
9. 设正项等比数列 { an} 的前 n 项和为 Sn,且 S20 210 1 S10 ,则数列 { an} 的公比为 ( )
A.4
B.2
C.1
D. 1
2
10. 已知数列 an 满足 a1 1 , an 1 an
1
a2017 等于 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学数列小题练习集(一)1.已知数列{a n }的前n 项和为S n (S n ≠0),且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A.数列{a n }的前n 项和为S n =4nB. 数列{a n }的通项公式为14(1)n a n n =+C.数列{a n }为递增数列D. 数列1{}nS 为递增数列2.已知数列{}n a 满足:11a =,12nn n a a a +=+*()n N ∈.若()1121n n b n a λ+⎛⎫=-⋅+ ⎪⎝⎭*()n N ∈,1b λ=-,且数列{}nb 是单调递增数列,则实数λ的取值范围是( )A. 23λ>B.32λ>C.32λ<D.23λ<3.已知等比数列{z n }中,11z =,2z x yi=+,yix z +-=3(其中i 为虚数单位,x y R ∈、,且y >0),则数列{z n}的前2019项的和为( ) A .i 2321+ B .i 2321- C .i 31- D .i 31+4.等比数列{a n }的前n 项和3n n S t=+,则3t a +的值为A. 1B.-1C. 17D. 185.设函数()2cos f x x x =-,{}n a 是公差为8π的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则2315[()]f a a a -= A .0 B .2116π C .218πD .21316π6.已知数列{a n }的前n 项和为S n ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=LC .2499a a a a +++=LD .12398100100S S S S S ++++=-L7.已知数列{a n }满足2(1)211131,log n n n a aa -++==+,则41a =A .-1B .-2C .-3D .1-log 3408.已知数列{a n }满足112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若167a =,则2020a 的值为( )A.37B.47C.57D.679.设正项等比数列{a n }的前n 项和为S n ,且()10201021S S =+,则数列{a n }的公比为( ) A.4B.2C.1D.1210.已知数列{}n a 满足11a =,()()11112n n n a a n n ++-=-+,则数列(){}1nna -的前40项的和为( ) A .1920B .325462C .4184D .204111.已知正方形ABCD 的边长是a ,依次连接正方形ABCD 各边中点得到一个新的正方形,由此规律,依次得到一系列的正方形,如图所示.现有一只小虫从A 点出发,沿正方形的边逆时针方向爬行,如此下去,爬行了10条线段.设这10条线段的长度之和是S 10,则10(22)S -=A .3164aB .6164aC .3132aD .61128a12.数列{a n }满足a 1=1,且对于任意n ∈N +的都有a n +1 = a n + a 1 +n ,则201721111a a a +++Λ等于 ( )A. 20172016B. 20174032C. 20182017D. 2018403413.已知数列{a n }满足:1+n a +n a =(n +1)cos2πn (n ≥2,n ∈N *), S n 是数列{a n }的前n 项和,若 2017S +m =1010,1a ·m >0,则ma 111+的最小值为( ) A.2B.2C.22D.2+214.数列{}n a 的通项公式1sin π12n n a n +⎛⎫=+⎪⎝⎭,前n 项和n S ,则2017S =( ) A .1232 B .3019 C .3025 D .432115.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驾马初日行九十七里,日减半里.良马先至齐,复还迎驽马.何日相逢,”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”现有三种说法:①驽马第九日走了93里路;②良马四日共走了930里路;③行驶5天后,良马和驽马相距615里. 那么,这3个说法里正确的个数为( ) A .0B .1C .2D .316.设数列{a n }的前n 项和为S n ,121n n a a n ++=+,且1350n S =.若22a <,则n 的最大值为( ) A .51 B .52C .53D .5417.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( ) A . a 1<a 3,a 2<a 4 B . a 1>a 3,a 2<a 4 C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 418.设等差数列{}n a 的前n 项和为n S ,已知335588(1)34,(1)32a a a a -+=-+=,则下列选项正确的是 A .125812,S a a => B .125824,S a a => C .125812,S a a =<D .125824,S a a =<19.己知数列{}n a 中,11a =,且对任意的,m n N *∈,都有m n m n a a a mn +=++,则201811i ia ==∑A .20172018B .20171009C .20182019D .4036201920.已知()()()()()nn ni b i b i b i b i +-+++-++-++-=+-2222122100Λ i n ,2≥(为虚数单位),又数列{}n a 满足:当1=n 时,21-=a ;当2≥n ,n a 为()222i b +-的虚部,若数列⎭⎬⎫⎩⎨⎧-n a 2的前n 项和为n S ,则=2018S ( ) A .20182017B .20172018C.20184035D .2017403321.已知数列{}n a 的前n 项和n S ,若1111,3n n a S a +==,则7a =( )A .74 B .534⨯C. 634⨯D .641+22.已知等差数列}{n a 的公差0≠d ,前n 项和为n S ,若对所有的)(*∈N n n ,都有10S S n ≥,则( ).A. 0≥n aB.0109<⋅a aC.172S S <D. 019≤S23.设实数b ,c ,d 成等差数列,且它们的和为9,如果实数a ,b ,c 构成公比不等于-1的等比数列,则a +b +c 的取值范围为( )A. (49,+∞)B. (-∞,49)C. [49,3)∪(3,+∞)D. (-∞,-3) ∪(-3, 49)24.已知数列{}n b 满足121,4,b b ==2221sin cos 22n n n n b b ππ+⎛⎫=++ ⎪⎝⎭,则该数列的前23 项的和为( ) A .4194 B .4195C .2046D .204725.等差数列{}n a 的前n 项和为n S ,若7S 为一个确定的常数,下列各式中也为确定常数的是( ) A .147a a a B .147a a a ++ C .18a aD .18a a +26.下列结论正确的是( ) A .若{}n a 为等比数列,n S 是{}n a 的前n 项和,则n S ,2n n S S -,32n n S S -是等比数列 B .若{}n a 为等比数列,n S 是{}n a 的前n 项和,则n S ,2n n S S -,32n n S S -是等差数列 C .若{}n a 为等比数列,“m n p q +=+”是“m n p q a a a a +=+”的充要条件D .满足1n na qa +=(*n N ∈,q 为常数的数列{}n a 为等比数列27.已知定义在[0,+∞)上的函数f (x )满足f (x )=2 f (x +2),当x ∈[0,2]时, f (x )=-2x 2+4x ,设f (x )在[2n -2,2n )上的最大值为a n(n ∈N *),且{a n }的前n 项和为S n ,则S n = A .2-121-nB .4-221-nC . 2-n21D . 4-121-n28.已知数列{a n }{n =1,2,3…,2015}为等差数列,圆C 1:x 2+y 2﹣4x ﹣4y =0,圆C 2:x 2+y 2﹣2a n x ﹣2a 2016﹣n y =0,若圆C 2平分圆C 1的周长,则{a n }的所有项的和为( ) A .2014 B .2015C .4028D .403029.已知数列{}n a 满足112a =,111n n a a +=-(n ∈N *),则使12100k a a a +++<L 成立的最大正整数k 的值为( ) A .198 B .199C.200D .20130.定义123nnp p p p ++++L 为n 个正数123,,,,n p p p p L 的“均倒数”.若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12233410111111b b b b b b b b ++++=L ( )A .111B .109C . 1110D .121131.已知等差数列{}n a 的公差0d ≠,前n 项和为n S,则对正整数m ,下列四个结论中:(1) 232m m m m m S S S S S --、、成等差数列,也可能成等比数列; (2) 232m m m m m S S S S S --、、成等差数列,但不可能成等比数列;(3) 23m m m S S S 、、可能成等比数列,但不可能成等差数列; (4)23m m mS S S 、、不可能成等比数列,也不叫能成等差数列.正确的是( ) A.(1)(3) B.(1)(4)C.(2)(3)D.(2)(4)32.对于实数x ,[]x 表示不超过x 的最大整数. 已知正数数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1280111...S S S +++=( )A .2323140B .5241280C .2603140D .517128033.设S n 为数列{a n }的前n 项和,a 1=1,S n =2S n ﹣1+n ﹣2(n ≥2),则a 2017等于( ) A .22016﹣1B .22016+1C .22017﹣1D .22017+134.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2017积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为( ) A .1008B .1009C .1007或1008D .1008或100935.已知在各项为正数的等比数列{}n a 中,2a 与12a 的等比中项为4,则当5928a a +取最小值时,3a 等于( ) A .32 B .16C .8D .436.如图,已知点D 为ABC ∆的边BC 上一点,3BD DC =u u u r u u u r,n E(*n N ∈)为AC 边上的一列点,满足11(32)4n n n n n E A a E B a E D +=-+u u u u r u u u u r u u u u r ,其中实数列{}n a 中,0n a >,11a =,则{}n a 的通项公式为( )A .1321n -⋅- B .21n-C .32n-D .1231n -⋅-37.已知数列{}n a 的前n 项和为n S ,若=n n S a 对任意的*n ∈N 都成立,则数列{}n a 为( )A .等差数列B .等比数列C. 既等差又等比数列D .既不等差又不等比数列38.已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是正有理数.若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q =( )A. 12B. 2C. 2或8D. 2,或1239.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第n 天所织布的尺数为n a ,则302842312931a a a a a a a a ++++++++ΛΛ的值为( )A.1615B.165C.1629D.163140.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N +),则S 100=( ) A .0B .1300C .2600D .260241.已知集合{}230123|222A x x a a a a =+⨯+⨯+⨯,其中{}0,1(0,1,2,3)k a k ∈=,且30a ≠,则A 中所有元素之和是().A .120B .112C .92D .8442.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(-∞,-1)∪(1,+∞)B .(-∞,0)∪(1,+∞)C .(1,+∞)D .(-1,0)43.已知数列1:A a ,2a ,L ,12(0,3)n n a a a a n <<<L ≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论:①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3B .2C .1D .044.若等差数列{a n }的公差为d ,前n 项和为S n ,记b n =n S n,则( )A .数列{b n }是等差数列,{b n }的公差也为dB .数列{b n }是等差数列,{b n }的公差为2dC .数列{a n +b n }是等差数列,{a n +b n }的公差为dD .数列{a n ﹣b n }是等差数列,{a n ﹣b n }的公差为2d45.设等差数列{}n a 的前项的和为n S ,若60a <,70a >,且76a a >,则( ) A .11120S S +< B .11120S S +> C.11120S S ⋅<D .11120S S ⋅>46.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,则()2201620182017a a a -等于( )A .1B .-1C.2017D .-201747.已知{a n }是等差数列,{b n }是等比数列,且a 3=b 3=a ,a 6=b 6=b ,若a >b ,则下列正确的是( )A .若ab >0,则a 4>b 4B .若a 4>b 4,则ab >0C .若ab <0,则(a 4﹣b 4)(a 5﹣b 5)<0D .若(a 4﹣b 4)(a 5﹣b 5)<0,则ab <048.已知等比数列{a n }的公比是q ,首项a 1<0,前n 项和为S n ,设a 1,a 4,a 3﹣a 1成等差数列,若S k <5S k ﹣4,则正整数k 的最大值是( ) A .4B .5C .14D .1549.设{a n }是等差数列,S n 为其前n 项和.若正整数i ,j ,k ,l 满足i+l =j +k (i ≤j ≤k ≤l ),则( ) A .a i a l ≤a j a kB .a i a l ≥a j a kC .S i S l <S j S kD .S i S l ≥S j S k50.已知公差为d 的等差数列{a n }前n 项和为S n ,若有确定正整数n 0,对任意正整数m ,nS •mn S +0<0恒成立,则下列说法错误的是( )A .a 1•d <0B .|S n |有最小值C .0n a •10+na >0D .10+na •20+n a >0试卷答案1.D2.D3.D4.C5.D6.C7.C8.D9.B10.D由已知条件得到,,,左右两侧累加得到正好是数列的前40项的和,消去一些项,计算得到。