2019年高考数学数列小题练习集(一)
2019年高考试题汇编理科数学--数列(可编辑修改word版)

整理可得 an1 bn1
1 2 (an
bn ) ,又 a1 b1
1 ,故
an
bn
是首项为1,公比为 1 的等比数列. 2
将 4an1 3an bn 4 , 4bn1 3bn an 4 作差可得 4an1 4bn1 3an 3bn an bn 8 ,
1 / 13
整理可得 an1 bn1 an bn 2 ,又 a1 b1 1,故 an bn 是首项为1,公差为 2 的等差数列.
设所有长度为 q 的子列的末项分别为: aq1 , aq2 , aq3 , , 所有长度为 p 的子列的末项分别为: ap1 , ap2 , ap3 , , 则 an0 min aq1 , aq2 , aq3 , ,
注意到长度为 p 的子列可能无法进一步找到长度为 q 的子列,
故 am0 min ap1 , ap2 , ap3 , ,
(Ⅱ)已知数列{an}的长度为 p 的递增子列的末项的最小值为 am0 ,长度为 q 的递增子列的末项的最小值为 an0 . 若 p<q,求证: am0 < an0 ;
(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为 s 的递增子列末项的最小值为 2s–1,且长度为 s 末项为 2s–1 的递增子列恰有 2s-1 个(s=1,2,…),求数列{an}的通项公式. 【答案】(Ⅰ) 1,3,5,6. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】 【分析】
A. 16 B. 8 C. 4 D. 2
答案: C 解答:
设该等比数列的首项 a1 ,公比 q ,由已知得, a1q4 3a1q2 4a1 ,
因为 a1 0 且 q 0 ,则可解得 q 2 ,又因为 a1(1 q q2 q3 ) 15 ,
2019-2019云南省数列理科高考题目及答案word精品文档13页

2019年—2019年云南省10年高考数列试题汇总2019年高考数学大纲(理) 数列部分:等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式. 考试要求:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (2)理解等差数列的概念.掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。
2019年(4)如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++== (A )14 (B )21 (C )28 (D )35 (18)(本小题满分12分)已知数列{}n a 的前n 项和2()3n n S n n =+g. (Ⅰ)求limnn na S →∞;(Ⅱ)证明:12222312n n a a a n+++…>. 2009年14. 设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 。
19(本小题满分12分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。
2019年20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.2019年16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =,证明1n n b b +<,其中n 为正整数.2019年(11)设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612SS =( ) (A )310 (B )13 (C )18 (D )19(22)(本小题满分12分)设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一根为1,1,2,3,...n S n -= (I )求12,;a a(II )求{}n a 的通项公式2019年11. 如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A. a 1a 8>a 4a 5 B. a 1a 8<a 4a 5C. a 1+a 8>a 4+a 5D. a 1a 8=a 4a 518. (本小题满分12分)已知是各项均为正数的等差数列,、、成等差数列,又(Ⅰ)证明为等比数列;(Ⅱ)如果无穷等比数列各项的和,求数列的首项a 1和公差d.(注:无穷数列各项的和即当时数列前n 项和的极限) 2019年(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…). 证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n2019年22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts+ t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2019年(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ 2019年(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?2019年~2009年云南省历年高考数列题2009年解:(I )由11,a =及142n n S a +=+,有12142,a a a +=+21121325,23a a b a a =+=∴=-=由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....② ②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-Q ,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2n na 是首项为12,公差为34的等比数列. ∴1331(1)22444n na n n =+-=-,2(31)2n n a n -=-⋅ 2019年20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-. ······································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ······························································ 6分(Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=•+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔•+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ························································· 12分 2019年21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=, 所以1n n b a ++==由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭g两边开平方得32na a -<即 1n n b b n +<,为正整数.2019年22.解:(Ⅰ)当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是(a 2-12)2-a 2(a 2-12)-a 2=0,解得a 1=16.(Ⅱ)由题设(S n -1)2-a n (S n -1)-a n =0,即 S n 2-2S n +1-a n S n =0.当n ≥2时,a n =S n -S n -1,代入上式得 S n -1S n -2S n +1=0 ①由(Ⅰ)知S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3,…. ……8分下面用数学归纳法证明这个结论. (i )n =1时已知结论成立.(ii )假设n =k 时结论成立,即S k =kk +1,当n =k +1时,由①得S k +1=12-S k ,即S k +1=k +1k +2, 故n =k +1时结论也成立. 综上,由(i )、(ii )可知S n =nn +1对所有正整数n 都成立. ……10分于是当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),又n =1时,a 1=12=11×2,所以{a n }的通项公式a n =nn +1,n =1,2,3,…. ……12分 2019年18. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。
2019年高考数学试题分项版—数列(解析版)

2019年高考数学试题分项版——数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2019·浙江,10)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A .当b =12时,a 10>10 B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 当b =12时,因为a n +1=a n 2+12,所以a 2≥12,又a n +1=a n 2+12≥√2a n ,故a 9≥a 2×(√2)7≥12×(√2)7=4√2,a 10>a 92≥32>10.当b =14时,a n +1-a n =(a n −12)2,故当a 1=a =12时,a 10=12,所以a 10>10不成立.同理b =-2和b =-4时,均存在小于10的数x 0,只需a 1=a =x 0,则a 10=x 0<10,故a 10>10不成立.3.(2019·全国Ⅰ理,9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n答案 A解析 设等差数列{a n }的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2, ∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5, S n =na 1+n (n−1)2d =n 2-4n .故选A.4.(2019·全国Ⅲ理,5)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .2 答案 C解析 设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4. 二、填空题1.(2019·全国Ⅰ文,14)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.答案 58解析 设等比数列的公比为q , 则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12,∴S 4=1×[1−(−12)4]1−(−12)=58.2.(2019·全国Ⅲ文,14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________. 答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13, ∴公差d =a 7−a 37−3=13−54=2,首项a 1=a 3-2d =5-2×2=1, ∴S 10=10a 1+10×92d =100.3.(2019·江苏,8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________. 答案 16解析 方法一 设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二 ∵S 9=a 1+a 92×9=27,∴a 1+a 9=6, ∴a 2+a 8=2a 5=6, ∴a 5=3,则a 2a 5+a 8=3a 2+a 8=0, 即2a 2+6=0, ∴a 2=-3,则a 8=9,∴其公差d =a 8−a 58−5=2,∴a 1=-5,∴S 8=8×a 1+a82=16.4.(2019·全国Ⅰ理,14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q ,因为a 42=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1−q 5)1−q=13×(1−35)1−3=1213.5.(2019·全国Ⅲ理,14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则s 10s 5=________.答案 4解析 设等差数列{a n }的公差为d ,由a 2=3a 1, 即a 1+d =3a 1,得d =2a 1,所以s 10s 5=10a1+10×92d 5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.6.(2019·北京理,10)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .【思路分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,能求出14a =-,1d =,由此能求出5a 的n S 的最小值.【解析】:设等差数列{}n a 的前n 项和为n S ,23a =-,510S =-,∴113545102a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得14a =-,1d =,5144410a a d ∴=+=-+⨯=, 21(1)(1)19814()22228n n n n n S na d n n --=+=-+=--, 4n ∴=或5n =时,n S 取最小值为4510S S ==-.故答案为:0,10-.【归纳与总结】本题考查等差数列的第5项的求法,考查等差数列的前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查推理能力与计算能力,属于基础题. 三、解答题1.(2019·全国Ⅰ文,18)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5,即9a 5=-a 5,所以a5=0,得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n,n∈N*.(2)由(1)得a1=-4d,故a n=(n-5)d,.S n=n(n−9)d2由a1>0知d<0,≥(n-5)d,化简得故S n≥a n等价于n(n−9)d2n2-11n+10≤0,解得1≤n≤10,所以n的取值范围是{n|1≤n≤10,n∈N*}.2.(2019·全国Ⅱ文,18)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.3.(2019·北京文,16)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).即(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)由(1)知,a n=2n-12.则当n≥7时,a n>0;当n≤6时,a n≤0.所以S n 的最小值为S 5=S 6=-30.4.(2019·天津文,18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92(n ∈N *).5.(2019·浙江,20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.(1)解 设数列{a n }的公差为d ,由题意得 a 1+2d =4,a 1+3d =3a 1+3d , 解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得(S n +1+b n )2=(S n +b n )(S n +2+b n ).解得b n =1a (S n+12-S n S n +2).所以b n =n 2+n ,n ∈N *.(2)证明 c n =√a n 2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设n =k (k ∈N *,k ≥1)时不等式成立,即 c 1+c 2+…+c k <2√k . 那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k=2√k +2(√k +1-√k )=2√k +1.即当n =k +1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.6.(2019·江苏,20)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n -2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.(1)证明 设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3−4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2−4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)解 ①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由2S n=2b n-2bn+1,得S n =b nb n+12(b n+1−b n ),当n ≥2时,由b n =S n -S n -1, 得b n =b nb n+12(b n+1−b n)-b n−1bn2(b n−b n−1), 整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m . 当k =1时,有q ≥1; 当k =2,3,…,m 时,有lnk k≤ln q ≤lnkk−1.设f (x )=lnx x(x >1),则f ′(x )=1−lnx x 2(x >1).令f ′(x )=0,得x =e ,列表如下:因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q =√33,当k =1,2,3,4,5时,lnk k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.7.(2019·全国Ⅱ理,19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n−1,,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.8.(2019·北京理,20)(13分)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:数列{}n a 的任意一项都是{}n a 的长度为1的递增子列. (Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式.【思路分析】()1I ,3,5,6.答案不唯一.()II 考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,可得0n a >该数列的第p 项0m a ,即可证明结论.()III 考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列,这与长度为s 的递增子列末项的最小值为21s -矛盾,可得2s 必在21s -之前.继续考虑末项为21s +的长度为1s +的递增子列.因此对于数列21n -,2n ,由于2n 在21n -之前,可得研究递增子列时,不可同时取2n 与21n -,即可得出:递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.可得2,1,4,3,6,5,⋯⋯,是唯一构造. 【解析】:()1I ,3,5,6.()II 证明:考虑长度为q 的递增子列的前p 项可以组成长度为p 的一个递增子列,∴0n a >该数列的第p 项0m a , ∴00m n a a <.()III 解:考虑21s -与2s 这一组数在数列中的位置.若{}n a 中有2s ,在2s 在21s -之后,则必然在长度为1s +,且末项为2s 的递增子列, 这与长度为s 的递增子列末项的最小值为21s -矛盾,2s ∴必在21s -之前. 继续考虑末项为21s +的长度为1s +的递增子列.对于数列21n -,2n ,由于2n 在21n -之前,∴研究递增子列时,不可同时取2n 与21n -, 对于1至2s 的所有整数,研究长度为1s +的递增子列时,第1项是1与2二选1,第2项是3与4二选1,⋯⋯,第s 项是21s -与2s 二选1,故递增子列最多有2s 个.由题意,这s 组数列对全部存在于原数列中,并且全在21s +之前.2∴,1,4,3,6,5,⋯⋯,是唯一构造. 即221k a k =-,212k a k -=,*k N ∈.【归纳与总结】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.9.(2019·天津理,19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (ⅰ)求数列{a 2n (c 2n -1)}的通项公式;(ⅱ)求(n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 依题意得{6q =6+2d ,6q 2=12+4d ,解得{d =3,q =2,所以a n =a 1+(n -1)d =4+(n -1)×3=3n +1, b n =b 1·q n -1=6×2n -1=3×2n .所以{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)(ⅰ)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ⅱ)a i c i =[a i +a i (c i -1)] =a i +a 2i (c 2i -1)=[2n ×4+2n (2n −1)2×3]+(9×4i -1) =(3×22n -1+5×2n -1)+9×4(1−4n )1−4-n=27×22n -1+5×2n -1-n -12(n ∈N *).。
数列小题大做-备战高考数学冲刺横向强化精练精讲(解析版)

数列小题大做一、单选题1.(2021·吉林省实验模拟预测(理))设等差数列{}n a 的前n 项和为n S ,若73a =,4516a a +=,则10S =( )A .60B .80C .90D .100【答案】A 【分析】由题意,利用等差数列通项公式将两式化为基本量1,a d 的关系式,计算1,a d ,然后代入等差数列前n 项和公式计算. 【详解】由题意,数列{}n a 为等差数列,所以7163a a d =+=,4512716+=+=a a a d ,联立得,1a 15d 2==-,所以101091015(2)602⨯=⨯+⨯-=S . 故选:A2.(2021年全国高考甲卷数学(文)试题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( )A .7B .8C .9D .10【答案】A 【分析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案. 【详解】∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=, ∴641167S S =+=+=. 故选:A.3.(2021年全国高考甲卷数学(理)试题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B . 【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.5.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( ) A .2n –1 B .2–21–n C .2–2n –1 D .21–n –1【答案】B 【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前n 项和公式进行求解即可. 【详解】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩, 所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n nn n n S a ---==-.故选:B. 【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n 项和公式的应用,考查了数学运算能力.6.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块【答案】C 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列, 设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C 【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.7.(2021年浙江省高考数学试题)已知数列{}n a 满足)111,N 1nn na a n a *+=∈+.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A 【分析】 显然可知,10032S >,利用倒数法得到21111124n n n n a a a a +⎛⎫==-⎪⎪⎭,再放缩可得112n n a a +<,由累加法可得24(1)n a n ≥+,进而由11n n na a +=+113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】 因为)111,N 1nn n a a n a *+==∈+,所以0n a >,10032S >. 由2111111241n n n n n n n a a a a a a ++⎛⎫⇒==-⎪⎪+⎭ 21111122n n n n a a a a ++⎛⎫∴<⎪⎪⎭112n n a a +<11122nn n a -+≤+=,当且仅当1n =时取等号,12412(1)3111n n n n n n a n a a a n n a n ++∴≥∴=≤=+++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A . 【点睛】1,n n a a +24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.8.(2021年北京市高考数学试题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( )A .9B .10C .11D .12【答案】C 【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .9.(2020年北京市高考数学试卷)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项. 【详解】由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<<,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B. 【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.10.(2021·四川·内江市教育科学研究所一模(文))已知函数()f x 是R 上单调递减的奇函数,数列{}n a 为等差数列.若20a >,则()1f a +()()23f a f a +的值( ) A .恒为0 B .恒为正数C .恒为负数D .可正可负【答案】C 【分析】根据函数()f x 是R 上单调递减的奇函数,得到()00f =,0x >时,()0f x <,0x <时,()0f x >求解.【详解】因为函数()f x 是R 上单调递减的奇函数,所以()00f =,当0x >时,()0f x <,当0x <时,()0f x >, 因为数列{}n a 为等差数列,且20a >, 所以()20f a <,13220a a a +=>, 则13a a >-,所以()()13f a f a <-,即()()130f a f a +<, 所以()1f a +()()230f a f a +<, 故选:C11.(2019年浙江省高考数学试卷)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A 【分析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确. 【详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<,故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥, 且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>,故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =, 则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为1x =-或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2,同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为117x ±=同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A. 【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.12.(2021·河南·南阳中学高三阶段练习(文))数列{}n a 的通项cos sin 33n n n a n n ππ22⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,其前n 项和为n S ,则S 18为( )A .173B .174C .175D .176【答案】B 【分析】化简n a 可得22cos3n n a n π=,讨论n 取不同值时n a 的通项公式,并项求和. 【详解】22222cos sin cos sin cos33333n n n n n n a n n n n πππππ22⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当3n k =()k N *∈ 时,()233k a k =;31n k =-()k N *∈时,()231312k k a --=-;32n k =-()k N *∈时,()232322k k a --=-()()()223212333231592223k k kk k a a a k k ----++-=-+=-所以()()18166530912669174222S +⨯=+++-⨯=⨯-= 故选:B二、填空题13.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是________. 【答案】10 【分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【详解】 因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10. 【点睛】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.14.(2020年江苏省高考数学试卷)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 【答案】4 【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +. 【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:4 【点睛】11本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.15.(2021·陕西商洛·模拟预测(理))已知等比数列{}n a 的公比0q >,其前n 项和为n S ,且236,14S S ==,则数列2211log log nn a a +⎧⎫⎨⎬⋅⎩⎭的前2021项和为___________. 【答案】20212022【分析】根据等比数列的通项公式及前n 项和公式得到方程组,求出1a 和q ,即可得到n a ,从而得到2211log log n n a a +⋅,再利用裂项相消法求和即可; 【详解】解:因233212118,6a S S a q S a a q =-===+=,所以211143a q a a q =+,所以23440q q --=,得2q 或23-(舍去),所以12a =,故2n n a =. 因为2211111log log (1)1n n a a n n n n +==-⋅++, 所以20211111112021112232021202220222022T =-+-++-=-=. 故答案为:2021202216.(2021·上海嘉定·一模)已知集合{}*21,A x x n n ==-∈N ,{}*2,n B x x n ==∈N ,将A B 中的所有元素按从小到大的顺序排列构成一个数列{}n a ,设数列{}n a 的前n 项和为n S ,则使得1000n S >成立的最小的n 的值为_____________.【答案】36【分析】由题可得2n 为数列{}n a 的12n n -+项,且利用分组求和可得1112422n n n n S --++=+-,通过计算即得.【详解】由题意,对于数列{}n a 的项2n ,其前面的项1,3,5,…,21n A -∈,共有12n -项,232,2,2,,2n B ⋅⋅⋅∈,共有n 项,所以2n 为数列{}n a 的12n n -+项,且()()()()112112211221221222422n n n n n n S ---++⎡⎤=⨯-+⨯-+⋅⋅⋅+⨯-++++=+-⎣⎦.可算得612638-+=(项),3864a =,381150S =,试卷第12页,共12页因为3763a =,3661a =,3559a =,所以371086S =,361023S =,35962S =, 因此所求n 的最小值为36.故答案为:36.13。
2019数学(理科)高考题分类(高考真题+模拟题) 数列

D单元数列D1 数列的概念与简单表示法20.D1,D5,M2[2019·北京卷]已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a i1<a i2<…<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m<a n.(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n}的通项公式.20.解:(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q末项为a n0的一个递增子列为a r1,a r2,…,a rq-1,a n.由p<q,得a rp ≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为2×2×2×…×2⏟(m-1)个×1×1=2m-1<2m.与已知矛盾.最后证明:2m排在2m-3之后(m≥2且m为整数).假设存在2m(m≥2),使得2m排在2m-3之前,则{a n}的长度为m+1且末项为2m+1的递增子列的个数小于2m.与已知矛盾.综上,数列{a n}只可能为2,1,4,3,…,2m-3,2m,2m-1,….经验证,数列2,1,4,3,…,2m-3,2m,2m-1,…符合条件.所以a n={n+1,n为奇数, n-1,n为偶数.D2 等差数列及等差数列前n项和9.D2[2019·全国卷Ⅰ]记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=12n2-2n9.A[解析]设等差数列{a n}的公差为d,由题意有{4a1+4×32d=0,a1+4d=5,解得{a1=-3,d=2,所以a n=-3+(n-1)×2=2n-5,S n=-3n+n(n-1)2×2=n2-4n,对比选项可知只有A正确.19.D2,D3[2019·全国卷Ⅱ]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.19.解:(1)证明:由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n+1-b n+1)=4(a n -b n )+8,即a n+1-b n+1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n-1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n-12,b n =12[(a n +b n )-(a n -b n )]=12n -n+12.14.D2[2019·全国卷Ⅲ] 记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .14.4 [解析] 设数列{a n }的公差为d ,由题意得a 1+d=3a 1,即d=2a 1,则S 5=5a 1+5×42d=25a 1,S 10=10a 1+10×92d=100a 1,所以S 10S 5=100a 125a 1=4.10.D2[2019·北京卷] 设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .10.0 -10 [解析] 方法一:设等差数列{a n }的公差为d ,由已知可得{a 1+d =-3,5a 1+10d =-10,解得{a 1=-4,d =1,所以a 5=a 1+4d=-4+4×1=0,S n =-4n+12n (n-1)=12n 2-92n=12(n -92)2-818.因为n ∈N *,故当n=4或n=5时,S n 取得最小值-10.方法二:设等差数列{a n }的公差为d ,因为S 5=5(a 1+a 5)2=5a 3=-10,所以a 3=-2,又因为a 2=-3,所以d=a 3-a 2=1,所以a 1=a 2-d=-4,a 5=a 3+2d=0,S n =-4n+12n (n-1)=12n 2-92n=12(n -92)2-818.因为n ∈N *,故当n=4或n=5时,S n 取得最小值-10.8.D2[2019·江苏卷] 已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .8.16 [解析] 设数列{a n }的公差为d ,由S 9=9a 5=27,得a 5=3,从而3a 2+a 8=0,即3(a 5-3d )+(a 5+3d )=0,解得d=23a 5=2,所以S 8=S 9-a 9=S 9-(a 5+4d )=27-11=16.20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ), 当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1.设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N *.(i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1.(ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n ×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n )1-4-n =27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ), 解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +2√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2√n对任意n∈N*成立.D3 等比数列及等比数列前n项和14.D3[2019·全国卷Ⅰ]记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=.14.1213[解析]因为a42=a2a6=a6,所以a2=1,所以公比为a2a1=3,所以S5=13×(1-35)1-3=1213.21.D3,K6[2019·全国卷Ⅰ]为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.21.解:(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为X-101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ii)由(i)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=48-1p1.3,所以由于p8=1,故p1=348-1p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=44-1p13.=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为≈0.0039,此时得出错误结论的概率非常小,说明这种0.8时,认为甲药更有效的概率为p4=1257试验方案合理.19.D2,D3[2019·全国卷Ⅱ]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n-b n+4,4b n+1=3b n-a n-4.(1)证明:{a n+b n}是等比数列,{a n-b n}是等差数列;(2)求{a n}和{b n}的通项公式.19.解:(1)证明:由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1-b n+1)=4(a n-b n)+8,即a n+1-b n+1=a n-b n+2.又因为a1-b1=1,所以{a n-b n}是首项为1,公差为2的等差数列.(2)由(1)知,a n+b n=12n-1,a n-b n=2n-1,所以a n=12[(a n+b n)+(a n-b n)]=12n+n-12,b n=12[(a n+b n)-(a n-b n)]=12n-n+12.5.D3[2019·全国卷Ⅲ]已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.25.C[解析]设数列{a n}的公比为q,由题知a1>0,q>0且q≠1,则{a1(1-q4)1-q=15,a1q4=3a1q2+4a1,解得{a1=1,q=2,所以a3=a1q2=4.9.D3,L1[2019·全国卷Ⅲ]执行图1-3的程序框图,如果输入的ε为0.01,则输出s的值等于()图1-3A .2-124B .2-125C .2-126D .2-1279.C [解析] x=1,s=0,s=0+1=1,x=12,12>0.01;s=1+12,x=14,14>0.01;s=1+12+14,x=18,18>0.01;s=1+12+14+18,x=116,116>0.01;s=1+12+14+18+116,x=132,132>0.01;s=1+12+14+18+116+132,x=164,164>0.01;s=1+12+14+18+116+132+164,x=1128,1128<0.01,输出s=1+12+14+18+116+132+164=1×[1-(12)7]1-12=2-126.20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ), 当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1. 设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式;(ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n)1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ), 解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.D4 数列求和20.D2、D3、D4[2019·江苏卷] 定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”. (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n-2bn+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M -数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k+1,求m的最大值.20.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由{a 2a 4=a 5,a 3-4a 2+4a 1=0,得{a 12q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得{a 1=1,q =2.因此数列{a n }为“M -数列”. (2)①因为1S n=2b n-2bn+1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n=2b n-2bn+1,得S n =b nb n+12(b n+1-b n ),当n ≥2时,由b n =S n -S n-1,得b n =b n b n+12(b n+1-b n )-b n -1b n2(b n -b n -1),整理得b n+1+b n-1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *).②由①知,b k =k ,k ∈N *.因为数列{c n }为“M -数列”,设公比为q ,所以c 1=1,q>0. 因为c k ≤b k ≤c k+1,所以q k-1≤k ≤q k ,其中k=1,2,3,…,m. 当k=1时,有q ≥1;当k=2,3,…,m 时,有lnkk ≤ln q ≤lnkk -1. 设f (x )=lnxx (x>1),则f'(x )=1-lnxx 2. 令f'(x )=0,得x=e .列表如下:x (1,e)e (e,+∞)f'(x ) +0 -f (x )↗极大值↘因为ln22=ln86<ln96=ln33,所以f (k )max =f (3)=ln33.取q=√33,当k=1,2,3,4,5时,lnkk ≤ln q ,即k ≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.19.D2,D3,D4[2019·天津卷] 设{a n }是等差数列,{b n }是等比数列,已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. (i)求数列{a 2n (c 2n -1)}的通项公式; (ii)求∑i=12na i c i (n ∈N *).19.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2,故a n =4+(n-1)×3=3n+1,b n =6×2n-1=3×2n . 所以,{a n }的通项公式为a n =3n+1,{b n }的通项公式为b n =3×2n . (2)(i)a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. (ii)∑i=12na i c i =∑i=12n[a i +a i (c i -1)]=∑i=12na i +∑i=1na 2i (c 2i -1)=[2n×4+2n (2n -1)2×3]+∑i=1n(9×4i -1) =(3×22n-1+5×2n-1)+9×4(1-4n)1-4-n=27×22n-1+5×2n-1-n-12(n ∈N *).20.D2,D3,D4,M3[2019·浙江卷] 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式;(2)记c n =√an 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.20.解:(1)设数列{a n }的公差为d ,由题意得a 1+2d=4,a 1+3d=3a 1+3d , 解得a 1=0,d=2, 从而a n =2n-2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n+1+b n ,S n+2+b n 成等比数列得(S n+1+b n )2=(S n +b n )(S n+2+b n ),解得b n =1d (S n+12-S n S n+2), 所以b n =n 2+n ,n ∈N *.(2)c n =√a n 2b n=√2n -22n(n+1)=√n -1n(n+1),n ∈N *.我们用数学归纳法证明.①当n=1时,c 1=0<2,不等式成立;②假设n=k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k .那么,当n=k+1时,c 1+c 2+…+c k +c k+1<2√k +√k(k+1)(k+2)<2√k +√1k+1<2√k +√k+1+√k= 2√k +2(√k +1-√k )=2√k +1, 即当n=k+1时不等式也成立.根据①和②,不等式c 1+c 2+…+c n <2√n 对任意n ∈N *成立.D5 单元综合20.D1,D5,M2[2019·北京卷] 已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a i 1<a i 2<…<a i m ,则称新数列a i 1,a i 2,…,a i m 为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列.(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为a m 0,长度为q 的递增子列的末项的最小值为a n 0.若p<q ,求证:a m 0<a n 0.(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s-1,且长度为s 末项为2s-1的递增子列恰有2s-1个(s=1,2,…),求数列{a n }的通项公式.20.解:(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q 末项为a n 0的一个递增子列为a r 1,a r 2,…,a r q -1,a n 0.由p<q,得a rp ≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为2×2×2×…×2⏟(m-1)个×1×1=2m-1<2m.与已知矛盾.最后证明:2m排在2m-3之后(m≥2且m为整数).假设存在2m(m≥2),使得2m排在2m-3之前,则{a n}的长度为m+1且末项为2m+1的递增子列的个数小于2m.与已知矛盾.综上,数列{a n}只可能为2,1,4,3,…,2m-3,2m,2m-1,….经验证,数列2,1,4,3,…,2m-3,2m,2m-1,…符合条件.所以a n={n+1,n为奇数, n-1,n为偶数.10.D5[2019·浙江卷]设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=12时,a10>10B.当b=14时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>1010.A[解析]a2=a2+b≥b,a n+1=a n2+b,所以当b越大时,a10越大.四个选项中A中的b最大,当b=12时,a n+1=a n2+12,所以a2≥12,a3≥34,a4≥1716,a5≥417256>32,a6>114,a7>12916>8,a8>64,所以a10>a9>a8>10.故选A.9.[2019·南昌模拟]已知数列{a n}的前n项和为S n,a1=-8,且(3n-5)a n+1=(3n-2)a n-9n2+21n-10,则a n=()A.-4nB.3n-5C.(3n-5)(5-n)D.5-n9.C[解析]∵(3n-5)a n+1=(3n-2)a n-9n2+21n-10,∴(3n-5)a n+1=(3n-2)a n-(9n2-21n+10),即(3n-5)a n+1=(3n-2)a n-(3n-5)(3n-2),∵n∈N*,∴a n+13n-2=a n3n-5-1,∴数列{a n3n-5}为等差数列,其首项为a13-5=4,公差d=-1,∴a n3n-5=4-(n-1)=5-n,∴a n=(3n-5)(5-n),故选C.3.[2019·山东淄博模拟]已知在等比数列{a n}中,a1=2,且a1,a2,a3-2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=1a n+2log2a n-1,求数列{b n}的前n项和S n.3.解:(1)设等比数列{a n }的公比为q.∵a 1,a 2,a 3-2成等差数列,a 1=2, ∴2a 2=a 1+(a 3-2)=2+(a 3-2)=a 3, ∴q=a3a 2=2,∴a n =a 1q n-1=2n (n ∈N *).(2)b n =1a n+2log 2a n -1=(12)n +2log 22n -1=(12)n +2n-1,则S n =(12+1)+[(12)2+3]+[(12)3+5]+…+[(12)n+(2n -1)]=12+(12)2+(12)3+…+(12)n +[1+3+5+…+(2n-1)]=12[1-(12)n]1-12+n ·[1+(2n -1)]2=n 2-(12)n+1(n ∈N *).6.[2019·河北石家庄质检] 已知{a n }是首项为1的等比数列,各项均为正数,且a 2+a 3=12. (1)求数列{a n }的通项公式; (2)设b n =1(n+2)log3a n+1,求数列{b n }的前n 项和S n .6.解:(1)设数列{a n }的公比为q , 由a 2+a 3=12得q+q 2=12, 解得q=3或q=-4,因为数列{a n }的各项都为正数,所以q>0,所以q=3,所以a n =3n-1. (2)由(1)知b n =1(n+2)log3a n+1=1n(n+2)=12(1n -1n+2),∴S n =12×1-13+12-14+…+1n -1-1n+1+1n -1n+2=34-2n+32(n+1)(n+2).。
2019年高考数学数列小题练习集(一)

A. 2017 2018
B. 2017 1009
C. 2018 2019
D. 4036 2019
20. 已知 1 i n b0 2 i 0 b1 2 i b2 2 i 2
bn 2 i n ( n 2,i 为虚
数单位),又数列 an 满足:当 n 1时, a1
2 ;当 n
2 , an 为 b2
2
i
2
的虚部,
2
若数列
的前 n 项和为 Sn ,则 S2018 ( )
x、 y R ,且 y> 0),则数列 { zn} 的前 2019 项的和为(
)
1
A.
3i
22
13
B.
i
22
C . 1 3i
D . 1 3i
4. 等比数列 { an} 的前 n 项和 Sn 3n t ,则 t a3 的值为
A. 1
B.
-1
C. 17
D. 18
5. 设函数 f ( x) 2x cos x , { an} 是公差为 8 的等差数列,
1
2an,0 an
1
2 ,若 a1
2an 1, an 1
2
6 ,则 a2020 的值为 ( )
7
B. 4
C. 5
D. 6
7
7
7
9. 设正项等比数列 { an} 的前 n 项和为 Sn,且 S20 210 1 S10 ,则数列 { an} 的公比为 ( )
A.4
B.2
C.1
D. 1
2
10. 已知数列 an 满足 a1 1 , an 1 an
1
a2017 等于 (
2019年高考试题汇编:数列

2019年高考试题汇编:数列一.选择题1.(2019•浙江)设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=﹣2时,a10>10D.当b=﹣4时,a10>10 2.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n3.(2019•新课标Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.2二.填空题4.(2019•江苏)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.5.(2019•北京)设等差数列{a n}的前n项和为S n,若a2=﹣3,S5=﹣10,则a5=,S n的最小值为.6.(2019•新课标Ⅰ)记S n为等比数列{a n}的前n项和.若a1=,a42=a6,则S5=.7.(2019•新课标Ⅰ)记S n为等比数列{a n}的前n项和.若a1=1,S3=,则S4=.8.(2019•新课标Ⅲ)记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=.9.(2019•新课标Ⅲ)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则=.三.解答题10.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.11.(2019•新课标II)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.12.(2019•浙江)设等差数列{a n}的前n项和为S n,a3=4,a4=S3.数列{b n}满足:对每个n∈N*,S n+b n,S n+1+b n,S n+2+b n成等比数列.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=,n∈N*,证明:c1+c2+…+c n<2,n∈N*.13.(2019•新课标II)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列;(2)求{a n}和{b n}的通项公式.14.(2019•北京)设{a n}是等差数列,a1=﹣10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.15.(2019•天津)设{a n}是等差数列,{b n}是等比数列.已知a1=4,b1=6,b2=2a2﹣2,b3=2a3+4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{c n}满足c1=1,c n=其中k∈N*.(i)求数列{a(c﹣1)}的通项公式;(ii)求a i c i(n∈N*).16.(2019•天津)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).17.((2019•江苏)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M ﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.18.(2019•北京)已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a<a<…<a,则称新数列a,a,…,a为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n}的长度为p的递增子列的末项的最小值为a,长度为q的递增子列的末项的最小值为a.若p<q,求证:a<a;(Ⅲ)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s﹣1,且长度为s末项为2s﹣1的递增子列恰有2s﹣1个(s=1,2,…),求数列{a n}的通项公式.。
2019年高考数学试题及答案word版

2019年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为多少?A. 0B. 2C. 5D. 32. 已知等差数列{an}的首项a1=1,公差d=3,求该数列的第5项a5。
A. 13B. 16C. 19D. 223. 计算三角函数值:sin(π/6) + cos(π/3)。
A. 1B. √3/2C. √2D. 24. 已知圆C的方程为(x-2)^2 + (y+1)^2 = 9,求圆C的半径。
A. 1B. 2C. 3D. 45. 若直线l的方程为y=2x+3,且点P(1,2)在直线l上,则直线l的斜率是多少?A. 1/2B. 2C. 3D. 46. 已知复数z=3+4i,求|z|的值。
A. 5B. √7C. √13D. √257. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
A. 0B. 1/3C. 1D. 2/38. 已知向量a=(2, -1),b=(1, 3),求向量a与向量b的数量积。
A. 1B. 3C. 5D. 7二、填空题(本题共4小题,每小题4分,共16分。
)9. 若函数f(x)=x^3-6x^2+11x-6,求f'(x)。
________________。
10. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,且双曲线C的渐近线方程为y=±(b/a)x,求双曲线C的离心率e。
________________。
11. 计算二项式展开式(1+x)^5的第3项。
________________。
12. 已知抛物线y=x^2-4x+4,求抛物线的顶点坐标。
________________。
三、解答题(本题共3小题,共52分。
解答应写出文字说明、证明过程或演算步骤。
)13. (本题满分12分)已知函数f(x)=x^3-3x^2+2,求证f(x)在区间[1,2]上单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学数列小题练习集(一)1.已知数列{a n }的前n 项和为S n (S n ≠0),且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A.数列{a n }的前n 项和为S n =4nB. 数列{a n }的通项公式为14(1)n a n n =+C.数列{a n }为递增数列D. 数列1{}nS 为递增数列2.已知数列{}n a 满足:11a =,12nn n a a a +=+*()n N ∈.若()1121n n b n a λ+⎛⎫=-⋅+ ⎪⎝⎭*()n N ∈,1b λ=-,且数列{}nb 是单调递增数列,则实数λ的取值范围是( )A. 23λ>B.32λ>C.32λ<D.23λ<3.已知等比数列{z n }中,11z =,2z x yi=+,yix z +-=3(其中i 为虚数单位,x y R ∈、,且y >0),则数列{z n}的前2019项的和为( ) A .i 2321+ B .i 2321- C .i 31- D .i 31+4.等比数列{a n }的前n 项和3n n S t=+,则3t a +的值为A. 1B.-1C. 17D. 185.设函数()2cos f x x x =-,{}n a 是公差为8π的等差数列,125()()()5f a f a f a π++⋅⋅⋅+=,则2315[()]f a a a -= A .0 B .2116π C .218πD .21316π6.已知数列{a n }的前n 项和为S n ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-7.已知数列{a n }满足2(1)211131,log n n n a a a -++==+,则41a =A .-1B .-2C .-3D .1-log 3408.已知数列{a n }满足112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,若167a =,则2020a 的值为( )A.37B.47C.57D.679.设正项等比数列{a n }的前n 项和为S n ,且()10201021S S =+,则数列{a n }的公比为( ) A.4B.2C.1D.1210.已知数列{}n a 满足11a =,()()11112n n n a a n n ++-=-+,则数列(){}1nna -的前40项的和为( ) A .1920B .325462C .4184D .204111.已知正方形ABCD 的边长是a ,依次连接正方形ABCD 各边中点得到一个新的正方形,由此规律,依次得到一系列的正方形,如图所示.现有一只小虫从A 点出发,沿正方形的边逆时针方向爬行,如此下去,爬行了10条线段.设这10条线段的长度之和是S 10,则10(22)S -=A .3164aB .6164aC .3132aD .61128a12.数列{a n }满足a 1=1,且对于任意n ∈N +的都有a n +1 = a n + a 1 +n ,则201721111a a a +++ 等于 ( )A. 20172016B. 20174032C. 20182017D. 2018403413.已知数列{a n }满足:1+n a +n a =(n +1)cos2πn (n ≥2,n ∈N *), S n 是数列{a n }的前n 项和,若 2017S +m =1010,1a ·m >0,则ma 111+的最小值为( ) A.2B.2C.22D.2+214.数列{}n a 的通项公式1sin π12n n a n +⎛⎫=+⎪⎝⎭,前n 项和n S ,则2017S =( ) A .1232 B .3019 C .3025 D .432115.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驾马初日行九十七里,日减半里.良马先至齐,复还迎驽马.何日相逢,”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”现有三种说法:①驽马第九日走了93里路;②良马四日共走了930里路;③行驶5天后,良马和驽马相距615里. 那么,这3个说法里正确的个数为( ) A .0B .1C .2D .316.设数列{a n }的前n 项和为S n ,121n n a a n ++=+,且1350n S =.若22a <,则n 的最大值为( ) A .51 B .52C .53D .5417.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( ) A . a 1<a 3,a 2<a 4 B . a 1>a 3,a 2<a 4 C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 418.设等差数列{}n a 的前n 项和为n S ,已知335588(1)34,(1)32a a a a -+=-+=,则下列选项正确的是 A .125812,S a a => B .125824,S a a => C .125812,S a a =<D .125824,S a a =<19.己知数列{}n a 中,11a =,且对任意的,m n N *∈,都有m n m n a a a mn +=++,则201811i ia ==∑A .20172018B .20171009C .20182019D .4036201920.已知()()()()()nn ni b i b i b i b i +-+++-++-++-=+-2222122100 i n ,2≥(为虚数单位),又数列{}n a 满足:当1=n 时,21-=a ;当2≥n ,n a 为()222i b +-的虚部,若数列⎭⎬⎫⎩⎨⎧-n a 2的前n 项和为n S ,则=2018S ( ) A .20182017B .20172018C.20184035D .2017403321.已知数列{}n a 的前n 项和n S ,若1111,3n n a S a +==,则7a =( )A .74 B .534⨯C. 634⨯D .641+22.已知等差数列}{n a 的公差0≠d ,前n 项和为n S ,若对所有的)(*∈N n n ,都有10S S n ≥,则( ).A. 0≥n aB.0109<⋅a aC.172S S <D. 019≤S23.设实数b ,c ,d 成等差数列,且它们的和为9,如果实数a ,b ,c 构成公比不等于-1的等比数列,则a +b +c 的取值范围为( )A. (49,+∞)B. (-∞,49)C. [49,3)∪(3,+∞)D. (-∞,-3) ∪(-3, 49)24.已知数列{}n b 满足121,4,b b ==2221sin cos 22n n n n b b ππ+⎛⎫=++ ⎪⎝⎭,则该数列的前23 项的和为( ) A .4194 B .4195C .2046D .204725.等差数列{}n a 的前n 项和为n S ,若7S 为一个确定的常数,下列各式中也为确定常数的是( ) A .147a a a B .147a a a ++ C .18a aD .18a a +26.下列结论正确的是( ) A .若{}n a 为等比数列,n S 是{}n a 的前n 项和,则n S ,2n n S S -,32n n S S -是等比数列 B .若{}n a 为等比数列,n S 是{}n a 的前n 项和,则n S ,2n n S S -,32n n S S -是等差数列 C .若{}n a 为等比数列,“m n p q +=+”是“m n p q a a a a +=+”的充要条件D .满足1n na qa +=(*n N ∈,q 为常数的数列{}n a 为等比数列27.已知定义在[0,+∞)上的函数f (x )满足f (x )=2 f (x +2),当x ∈[0,2]时, f (x )=-2x 2+4x ,设f (x )在[2n -2,2n )上的最大值为a n(n ∈N *),且{a n }的前n 项和为S n ,则S n = A .2-121-nB .4-221-nC . 2-n21D . 4-121-n28.已知数列{a n }{n =1,2,3…,2015}为等差数列,圆C 1:x 2+y 2﹣4x ﹣4y =0,圆C 2:x 2+y 2﹣2a n x ﹣2a 2016﹣n y =0,若圆C 2平分圆C 1的周长,则{a n }的所有项的和为( ) A .2014 B .2015C .4028D .403029.已知数列{}n a 满足112a =,111n n a a +=-(n ∈N *),则使12100k a a a +++<成立的最大正整数k 的值为( ) A .198 B .199C.200D .20130.定义123nnp p p p ++++为n 个正数123,,,,n p p p p 的“均倒数”.若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12233410111111b b b b b b b b ++++=( )A .111B .109C . 1110D .121131.已知等差数列{}n a 的公差0d ≠,前n 项和为n S,则对正整数m ,下列四个结论中:(1) 232m m m m m S S S S S --、、成等差数列,也可能成等比数列; (2) 232m m m m m S S S S S --、、成等差数列,但不可能成等比数列;(3) 23m m m S S S 、、可能成等比数列,但不可能成等差数列; (4)23m m mS S S 、、不可能成等比数列,也不叫能成等差数列.正确的是( ) A.(1)(3) B.(1)(4)C.(2)(3)D.(2)(4)32.对于实数x ,[]x 表示不超过x 的最大整数. 已知正数数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1280111...S S S +++=( )A .2323140B .5241280C .2603140D .517128033.设S n 为数列{a n }的前n 项和,a 1=1,S n =2S n ﹣1+n ﹣2(n ≥2),则a 2017等于( ) A .22016﹣1B .22016+1C .22017﹣1D .22017+134.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{a n }是一个“2017积数列”,且a 1>1,则当其前n 项的乘积取最大值时n 的值为( ) A .1008B .1009C .1007或1008D .1008或100935.已知在各项为正数的等比数列{}n a 中,2a 与12a 的等比中项为4,则当5928a a +取最小值时,3a 等于( ) A .32 B .16C .8D .436.如图,已知点D 为ABC ∆的边BC 上一点,3BD DC =,nE (*n N ∈)为AC 边上的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,0n a >,11a =,则{}n a 的通项公式为( )A .1321n -⋅- B .21n-C .32n-D .1231n -⋅-37.已知数列{}n a 的前n 项和为n S ,若=n n S a 对任意的*n ∈N 都成立,则数列{}n a 为( )A .等差数列B .等比数列C. 既等差又等比数列D .既不等差又不等比数列38.已知等差数列{a n }的公差d 不为0,等比数列{b n }的公比q 是正有理数.若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q =( )A. 12B. 2C. 2或8D. 2,或1239.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第n 天所织布的尺数为n a ,则302842312931a a a a a a a a ++++++++ 的值为( )A.1615B.165C.1629D.163140.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N +),则S 100=( ) A .0B .1300C .2600D .260241.已知集合{}230123|222A x x a a a a =+⨯+⨯+⨯,其中{}0,1(0,1,2,3)k a k ∈=,且30a ≠,则A 中所有元素之和是().A .120B .112C .92D .8442.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(-∞,-1)∪(1,+∞)B .(-∞,0)∪(1,+∞)C .(1,+∞)D .(-1,0)43.已知数列1:A a ,2a ,,12(0,3)n n a a a a n <<<≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论:①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3B .2C .1D .044.若等差数列{a n }的公差为d ,前n 项和为S n ,记b n =n S n,则( )A .数列{b n }是等差数列,{b n }的公差也为dB .数列{b n }是等差数列,{b n }的公差为2dC .数列{a n +b n }是等差数列,{a n +b n }的公差为dD .数列{a n ﹣b n }是等差数列,{a n ﹣b n }的公差为2d45.设等差数列{}n a 的前项的和为n S ,若60a <,70a >,且76a a >,则( ) A .11120S S +< B .11120S S +> C.11120S S ⋅<D .11120S S ⋅>46.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列na 称为“斐波那契数列”,则2201620182017a a a 等于( )A .1B .-1C.2017D .-201747.已知{a n }是等差数列,{b n }是等比数列,且a 3=b 3=a ,a 6=b 6=b ,若a >b ,则下列正确的是( )A .若ab >0,则a 4>b 4B .若a 4>b 4,则ab >0C .若ab <0,则(a 4﹣b 4)(a 5﹣b 5)<0D .若(a 4﹣b 4)(a 5﹣b 5)<0,则ab <048.已知等比数列{a n }的公比是q ,首项a 1<0,前n 项和为S n ,设a 1,a 4,a 3﹣a 1成等差数列,若S k <5S k ﹣4,则正整数k 的最大值是( ) A .4B .5C .14D .1549.设{a n }是等差数列,S n 为其前n 项和.若正整数i ,j ,k ,l 满足i+l =j +k (i ≤j ≤k ≤l ),则( ) A .a i a l ≤a j a kB .a i a l ≥a j a kC .S i S l <S j S kD .S i S l ≥S j S k50.已知公差为d 的等差数列{a n }前n 项和为S n ,若有确定正整数n 0,对任意正整数m ,nS •mn S +0<0恒成立,则下列说法错误的是( )A .a 1•d <0B .|S n |有最小值C .0n a •10+na >0D .10+na •20+n a >0试卷答案1.D2.D3.D4.C5.D6.C7.C8.D9.B10.D由已知条件得到,,,左右两侧累加得到正好是数列的前40项的和,消去一些项,计算得到。