数的开方(复习)教案
数的开方复习)教案

数的开方复习教案教学目标:1. 理解数的开方的概念和性质;2. 掌握数的开方的基本运算法则;3. 能够运用数的开方解决实际问题。
教学内容:一、数的开方的概念和性质1. 引入数的开方概念,解释平方根、立方根等;2. 探讨数的开方的性质,如正数的开方是正数,负数的开方是负数等。
二、数的开方的基本运算法则1. 介绍数的开方的基本运算法则,如同底数幂的除法、乘法等;2. 通过例题讲解和练习,使学生熟练掌握这些法则。
三、数的开方在实际问题中的应用1. 引入实际问题,如计算面积、体积等;2. 演示如何运用数的开方解决这些实际问题;3. 学生练习解决类似问题。
四、数的开方与乘方的关系1. 探讨数的开方与乘方的关系,如平方根与平方的关系等;2. 通过例题和练习,使学生理解并能够运用这种关系。
五、数的开方在各数域中的应用1. 介绍数的开方在实数域中的应用,如物理、化学等;2. 引导学生思考数的开方在复数域中的应用。
1. 采用讲解和练习相结合的方式,让学生掌握数的开方的概念和性质;2. 通过例题和实际问题,引导学生运用数的开方解决实际问题;3. 提供充足的练习机会,帮助学生巩固数的开方的基本运算法则。
教学评估:1. 课堂练习:及时检查学生对数的开方的理解和掌握程度;2. 课后作业:布置相关的习题,巩固学生的学习成果;3. 单元测试:定期进行测试,评估学生对数的开方的掌握情况。
教学资源:1. 教学PPT:展示数的开方的概念、性质和运算法则;2. 练习题库:提供充足的练习题,供学生巩固学习内容;3. 实际问题案例:用于引导学生运用数的开方解决实际问题。
教学时间:1课时(45分钟)教学步骤:1. 引入:通过数轴或实物展示,引导学生回顾数的开方的概念和性质;2. 讲解:讲解数的开方的基本运算法则,并通过例题进行演示;3. 练习:学生练习解决一些数的开方的问题,教师进行指导和解答;4. 应用:引入实际问题,引导学生运用数的开方解决这些问题;扩展活动:1. 组织小组讨论,探讨数的开方在实际问题中的应用;2. 布置研究性学习任务,让学生深入研究数的开方在各数域中的应用。
九年级数学复习教案:数的开方及二次根式

1.掌握二次根式有意义的条件和基本性质()2=a (a ≥0).2.能用二次根式的性质=|a |来化简根式. 3.能识别最简二次根式、同类二次根式.4.能根据运算法则进行二次根式的加减乘除运算以及混合运算. 能识别最简二次根式、同类二次根式.能根据运算法则进行二次根式的加减乘除运算以及混合运算.一、学生自学1、平方根、算术平方根与立方根2、 二次根式 一般地,式子(﹥0)叫做二次根式.3、二次根式的性质4、二次根式的运算二、交流展示1、使有意义的x 的取值范围是( )A . x >31B . x >-31C . x ≥31D . x ≥-312、已知y =+-3,则2xy 的值为( )A . -15B . 15C . -215D . 2153、下列二次根式中,与是同类二次根式的是( )A .B .C .32D .234、下列运算正确的是( )A .=±5B . 4-=1C . ÷=9D . ·23=6 5、估计的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间三、拓展提高考点一、二次根式有意义的条件例1、若使2-x x +1有意义,则x 的取值范围是________. 考点二、二次根式的性质例2、把二次根式a a 1化简后,结果正确的是()A. B.- C.- D.考点三、最简二次根式与同类二次根式例3、下列二次根式中,最简二次根式是( )A. B. C. D.考点四、二次根式的化简与计算例4、(1)计算:(2)先化简,再求值:方法总结此类分式与根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母不含根号的数或者是最简根式.四、当堂检测1.16的平方根是___,-27的立方根是___,的算术平方根是___.2.化简:=,=,=,=. 3.下列根式中能与合并的二次根式为()A.B.C.D.4.当x______时,二次根式有意义;当x______时,代数式有意义.5.若a<1,化简-1等于()A.a-2 B.2-aC.a D.-a。
期中复习教案――第12章_数的开方(平方根与立方根)

期中复习教案――第12章_数的开方(平方根与立方根)第1章实数(平方根与立方根复习)教学目标:1、使学生掌握本章1、2节知识要点;2、灵活运用平方根与立方根有关知识解决相关问题。
教学重难点:平方根与立方根的概念及应用。
教学过程:一、知识点归纳:1、平方根(1)平方根的意义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
a 的平方根记作:a 2±±或a 。
求一个数a 的平方根的运算叫做开平方.(2)平方根的性质①一个正数有两个平方根,它们互为相反数②0有一个平方根,它是0本身③负数没有平方根。
(3)平方和开平方互为逆运算;2、算术平方根(1)算术平方根的意义:非负数a 的正的平方根。
一个非负数a 的平方根用符号表示为:“a ”,读作:“根号a ”,其中a 叫做被开方数(2)算术平方根的性质①正数a 的算术平方根是一个正数;②0的算术平方根是0;③负数没有算术平方根。
重要性质:a a =2,())0(2≥=a a a3、立方根(1)立方根的意义如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫三次方根)。
如果x3=a ,则x 叫做a 的立方根。
记作:3a x = ,读作“三次根号a ” 求一个数的立方根的运算叫做开立方。
(2)立方根的性质①一个正数有一个正的立方根,即若a>0,则03>a ②一个负数有一个负的立方根,即若a<0,则03(3)立方与开立方互为逆运算。
二、典型例题:例1、x 为何值时,下列代数式有意义。
(1)x 23+ (2)x x -+-22 (3)32+x (4)131-x (5)11-+x x (6)2)1(--x 例2、已知2a-1的算术平方根是3,3a+b-1的平方根是4±,求a+2b 的平方根。
例3、若x 、y 都是实数,且233+-+-=x x y ,求x+3y 的平方根。
例4、如果b a b a M -++=3是a+b+3的算术平方根,322+-+=b a b a N 是a+2b 的立方根,求M -N 的立方根。
初中数学数的开方教案

教案:数的开方教学目标:1. 理解开方的概念,掌握开方运算的基本方法。
2. 能够熟练运用数的开方解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 开方的概念和基本方法。
2. 运用开方解决实际问题。
教学难点:1. 理解并掌握开方的运算规律。
2. 解决实际问题时灵活运用开方。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入平方根的概念,让学生回顾平方根的定义和性质。
2. 提问:平方根的相反数是什么?二、数的开方概念(10分钟)1. 介绍开方的概念,解释开方是平方根的相反运算。
2. 举例说明开方的运算方法,如计算√9 的过程。
3. 强调开方的符号“√”,并讲解如何读写开方运算。
三、开方的运算规律(15分钟)1. 引导学生观察和总结开方的运算规律,如√(a×b) = √a × √b。
2. 通过示例演示和练习,让学生掌握乘法和除法运算与开方的结合。
3. 讲解开方运算的优先级,即先算乘方,再算乘除,最后算加减。
四、运用开方解决实际问题(10分钟)1. 提供一些实际问题,如计算物体的体积、面积等,让学生运用开方解决。
2. 引导学生思考如何将实际问题转化为开方运算问题。
3. 通过示例和练习,让学生熟练运用开方解决实际问题。
五、巩固练习(10分钟)1. 布置一些练习题,让学生独立完成,巩固开方的运算方法。
2. 提供解答和解析,让学生理解和掌握解题思路。
六、总结和反思(5分钟)1. 让学生总结数的开方的主要内容和运算规律。
2. 提问学生是否还有疑问,解答学生的疑问。
3. 强调开方在实际问题中的应用,鼓励学生灵活运用开方解决实际问题。
教学延伸:1. 进一步学习分数的平方根和根号的乘除法。
2. 探索开方在几何和物理等领域的应用。
教学反思:本节课通过讲解和练习,让学生掌握了数的开方的基本概念和运算方法,并能够运用开方解决实际问题。
在教学过程中,注意引导学生观察和总结开方的运算规律,并通过示例和练习让学生熟练运用开方。
数的开方复习课教学设计

数的开方复习课教学目的:1.使学生理解一个数的平方根、算术平方根及立方根的意义;2.理解无理数和实数的意义;3.熟练地求出一个正数的平方根、算术平方根和实数的立方根;4.会对实数分类以及进行实数的近似计算.教学重点:平方根、算术平方根、实数的概念及其计算.教学难点:算术平方根、实数的综合运算和代数与几何的综合运用.教学过程:新课引入:复习基本概念1.什么叫一个数a的平方根?怎样表示?什么叫数a的算术平方根?怎么表示?其中a可以分别表示什么数?2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?3.任何实数都有平方根吗?都有立方根吗?4.什么叫无理数?什么叫实数?实数与数轴的点有什么关系?答:1.如果一个数的平方等于a,这个数就叫做a的平方根,表示为 a,数a的非负的平方根叫做算术平方根,表示为a,其中a≥0.2.如果一个数的立方等于a,这个数就叫做a的立方根,表示为3a,其中a为任意实数.3.正数和0有平方根,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.任何实数都有一个立方根.4.无限不循环小数叫做无理数.有理数和无理数统称为实数.实数与数轴上的点一一对应.讲解新课例题精选例1 a为何值时,下列各式有意义?(1)2a ; (2)a -; (3)2+a ; (4)31-a ; (5)a +a -; (6)312a a +. 分析 要判断a 为何值时各式有意义,首先要弄清各式都表示什么,成立的条件是什么.(1),(2),(3)式都表示算术平方根,(5)为两个算术平方根的和,各式被开方数都应为非负数,(4),(6)都表示立方根.任何实数都可以进行开立方根运算,但应注意,当被开方数是分数时,分数的分母不能为0.解 (1)∵ a 为任何实数时,a 2≥0,∴a 为任意实数时,2a 有意义.(2)∵ 要使a -有意义,必须使-a ≥0,即a ≤0, ∴当a ≤0时, a -有意义.(3)∵要使2+a 有意义,必须使a+2≥0,即a ≥-2,所以当a ≥-2时,2+a 有意义;(4)∵31-a 有意义,a -1可取任意实数,即a 为任意实数,所以当a 为任意实数时, 31-a 有意义;(5)∵要使a 有意义,必须使a ≥0,; 要使a -有意义,必须使-a ≥0,即a ≤0,∴要使a +a -有意义,a 必须等于0.因此仅当a=0时,a +a -有意义; (6)∵ aa 12+是分式,当a ≠0时有意义,∴当a ≠0时,312a a +有意义. 例2 计算:(1)求5的算术平方根与2的平方根之和;(保留三位有效数字) (2) |2-5|-|5+2|;(精确到0.01) (3) |a -π|+|2-a|(2<a<π).(精确到0.01)上列各题是进行实数运算.问:计算各式的思路和方法是什么?答:根据各题的要求分别取其近似值,转化为有理数进行计算.含有绝对值的式应先根据实数绝对值的意义去掉绝对值的符号,再进行计算.解(1) ∵5的算术平方根为5,2的平方根为±2,∴5的算术平方根与2的平方根之和为5±2.又因为5≈2.235,2≈1.414,所以5+2≈2.236+1.414=3.655-2≈2.236-1.414≈0.82(2)因为2<5,所以2-5<0,所以|2-5|-|5+2|=5-2-5-2=-22≈-2⨯1.414≈-2.83.(4)因为2<a<π,所以|a-π|=-(a-π)= π-a,|2-a|=-(2-a)=a-2因此|a-π|+|2-a|=π-a+ a-2=π-2=3.142-1.414=1.73.说明:1.例2中的有关运算实际是进行实数运算,有理数的运算律和运算性质,在实数范围内仍然成立.2.无理数的运算,可以转化为用相应的(或题目指定)近似有限小数进行,有的题可根据问题的要求取其近似值,转化成有理数进行运算.例3 (1)如图,已知正方形ABCD的面积是4a2,E,F,G,H分别是正方形四条边的中点,依次连结E,F,G,H得到一个正方形.求这个正方形的边长(用带根号的数表示)(2)当a=4时,正方形EFGH的边长是多少?(精确到0.01)分析:为求正方形EFGH的边长,首先应求出正方形ABCD的边长.由地正方形的面积等于它的一边的平方,所以它的一条边是面积的算术平方根.已知E,F,G,H是正方形ABCD各边的中点,所以BF=BE.再在直角三角形EBF 中,用勾股定理可求出EF的长.解 (1)在正方形ABCD 中,AB=BC=CD=DA,∠A=∠B=∠C=∠D=90︒,因为正方形ABCD 的面积=AB 2,所以AB 2=4a 2因为4a 2>0,a>0,所以AB=24a =2a .同理,BC=2a .因为E 是AB 中点,F 是BC 中点,所以BE=21AB=a,BF=21BC=a . 在RtΔ EBF 中,EF 2=BE 2+BF 2=a 2+a 2=2a 2,所以EF=22a =2a(a>0)(2)当a=4时,EF=42≈4⨯1.414=5.66.随堂练习 P 163 T1,2,3,5,9,10,11,12,13 B 组 T1,2,3小结:1.在解答有关被开方数是字母的式子是否有意义的问题,要根据所涉及的概念的意义去考虑,如例1中的(1),(2),(3),(5)各式表示算术平方根,因此被开方数必须是非负数,从这个意义去考虑使式子有意义的字母的取值范围。
【精品】数的开方复习华师大版课件

【精品】数的开方复习华师大版课件一、教学内容本节课我们将复习华师大版七年级下册数学教材中“数的开方”章节。
详细内容包括:理解开方的概念,掌握开方的运算规则,运用开方解决实际问题,以及了解平方根和算术平方根的性质。
二、教学目标1. 理解并掌握开方的定义及运算规则。
2. 能够准确计算各种数的平方根和算术平方根。
3. 能够运用开方的知识解决实际问题,提高解决问题的能力。
三、教学难点与重点重点:开方的定义及运算规则,平方根和算术平方根的计算。
难点:运用开方解决实际问题,理解平方根和算术平方根的性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、计算器。
五、教学过程1. 实践情景引入(5分钟)通过展示生活中涉及开方的实际问题,让学生感受开方运算在实际中的应用。
2. 知识回顾(10分钟)引导学生回顾开方的定义、运算规则以及平方根和算术平方根的计算方法。
3. 例题讲解(20分钟)讲解教材中典型例题,强调解题思路和关键步骤。
4. 随堂练习(15分钟)让学生独立完成练习题,巩固所学知识。
5. 答疑环节(10分钟)针对学生在练习中遇到的问题进行解答,帮助学生巩固知识点。
六、板书设计1. 开方的定义及运算规则。
2. 平方根和算术平方根的计算方法。
3. 典型例题及解题思路。
七、作业设计1. 作业题目:(2)教材课后习题第1、2、3题。
答案:(1)平方根:2的平方根为±√2,3的平方根为±√3,4的平方根为±2,5的平方根为±√5,6的平方根为±√6,7的平方根为±√7,8的平方根为±2√2,9的平方根为±3。
算术平方根:2的算术平方根为√2,3的算术平方根为√3,4的算术平方根为2,5的算术平方根为√5,6的算术平方根为√6,7的算术平方根为√7,8的算术平方根为2√2,9的算术平方根为3。
(2)教材课后习题答案略。
数的开方复习教案

数的开方复习教案一、知识点:1、平方根:如果一个数的平方等于a ,那么这个数叫做a 的平方根。
正数a 有两个平方根,它们互为相反数,记作±a ,a 称为被开方数.0的平方根只有一个,就是0,记作0=0.负数没有平方根。
2、算术平方根:正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a ”.性质: ①正数有一个正的算术平方根。
②0的算术平方根是0 ③负数没有平方根,当然也没有算术平方根。
(4)a 的双重非负性 ①首先,a 要有意义,首先被开方数必须是一个非负数。
②其次,a 表示一个非数的算术平方根,它的值不可能是一个负数,即它的值是一个非负数。
综上: a 中 a ≥0 a ≥0 (5)初中所学的三类非负数 ⅰ:绝对值非负即|a|≥0 ⅱ:偶次方非负即a 偶次≥0 ⅲ:算术平方根非负即当a ≥0时 a ≥03、开平方:求一个非负数的平方根的运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根.4、立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根。
任何数(正数、负数或零)都有一个立方根.数a 的立方根,记作3a ,读作“三次根号a ”,a 称为被开方数,3称为根指数。
5、开立方:求一个数的立方根的运算,叫做开立方。
6、无理数:无限不循环小数叫做无理数。
7、实数:有理数与无理数统称为实数。
8、实数与数轴上的点一一对应.二、知识点应用:1、49的平方根是 ,算术平方根是 .2、5是 的平方根,-9的平方根 .3、1是 的立方根,-1是 的立方根.4、-27的立方根是 ,0的立方根是 .5、若某数的一个平方根是2,则这个数是 ,它的另一个平方根是 .6、若某数的立方根是-3,则这个数是 .7、如果一个实数有且只有一个平方根,那么这个数是 .8、如果一个实数有且只有一个立方根,那么这个数是 .9、数轴上表示5-的点与原点的距离是________;10、2-的相反数是 ,3的倒数是 ,13-的相反数是 ;11、81的平方根是______,4的算术平方根是_______,12_______10_________,112561363=-=--,2224145-= ;13、若一个数的平方根是8±,则这个数的立方根是 ;14、当______m 时,m -3有意义;当______m 时,33-m 有意义;16、已知0)3(122=++-b a ,则=332ab ; 17、在实数0、3、6-、236.2、π、723、14.3中无理数的个数是( )A 、1B 、2C 、3D 、418、36的平方根是( )(A )6 (B )±6 (C )6 (D )6±19、一个数的平方根是它本身,则这个数的立方根是( ).(A ) 1 (B ) 0 (C ) -1 (D )1,-1或020、数3.14,2,π,0.323232…,71,9,21+中,无理数的个数为( ). (A )2个 (B )3个 (C )4个 (D )5个21、下列等式:①81161=,②()2233-=-,③()222=-,④3388-=-⑤416±=,⑥24-=-;正确的有13.已知212104a b ⎛⎫+++= ⎪⎝⎭,则a b =________.22、若一个正数的平方根分别是21a -和2a -+,则a = ,这个正数是23、若式子错误!未找到引用源。
华师大版八年级上册《第11章-数的开方》复习课教案

《第11章数的开方》复习课教案四川省眉山市东坡区东坡中学严光霞教学目标(核心素养):知识与技能:1、了解平方根、立方根的概念,会用平方运算求某些非负数的平方根、算术平方根;会用立方运算求某些数的立方根。
2、了解无理数和实数的概念,知道实数与数轴上的点一一对应。
3、会进行实数大小比较与运算,能估算无理数。
过程与方法:1、通过引导学生梳理本章知识,让学生建构本章的知识体系。
2、通过考点分析,错例剖析,培养学生观察、分析、比较和运用知识综合解决问题的能力,渗透分类、数形结合等数学思想和方法。
情感态度与价值观:通过复习课的教学,培养学生动脑、动手的良好习惯和勇于克服困难探索知识的信心和勇气。
教学重点:平方根、立方根的概念及性质的运用及实数的概念与运算,形成本章的知识体系。
教学难点:概念解析及解题思想方法的点拨。
教学过程:一、知识引领:(一)教师引导学生理清本章的知识脉络。
学段:小学初一初二初三、高中数:正数和0 有理数实数……运算:加、减、乘、除乘方开方……(二)教师引导学生回顾本章知识要点:知识要点:1、平方根与立方根:,其中a0。
= =、实数:(1)无理数: 叫无理数。
常见形式: 。
223.14157π-、这5个实数中,无理数有 。
(2)实数: 和 统称实数。
(31 实数2 实数3、 与数轴上的点一一对应。
4、有理数的相关概念与性质及运算在实数范围内仍然适用。
设计意图:通过教师引导学生回顾本章节知识要点,让学生理清本节的知识脉络,对知识加深理解。
二、考点分析:(一)求平方根与立方根例1、(1)9的平方根是 ,算术平方根是 , 278-的立方根是 。
(2)327-= ,()72--= 。
(3)()52-的平方根是 ,16的平方根是 ,±64的立方根是 。
例2、已知2a-1的平方根是±3,3a+b-1的立方根是2,则 a+2b= 。
(二)a 的非负性的运用()=+=++-+-z x ,z y x 、y 求若例033132。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的开方(复习)教案
八年级数学(上)教案
第十二章数的开
(复习)
教学目标:
1.掌握平方根、算术平方根、立方根的概念,正确理解平方根、算术平方根的联
系与区别。
2.会用平方、立方的概念求某些数的平方根和立方根,并会用根号表示。
从而理
解乘方与开方互为逆运算的关系。
3.了解无理数和实数的概念,知道实数的分类,建立实数与数轴上的点一一对应
的数学思想。
4.能估计某些无理数的大小,培养数感与估算能力。
5.会进行简单的实数运算,并能以此解决一些实际问题,提高应用能力和解决问
题的能力,从中体会数的运用价值。
教学重点:
平方根、立方根、实数的概念、性质及应用
教学难点:
综合解决问题的能力
教学过程:
一.出示课题、目标
今天我们一起来复习第12 章《数的开方》,
通过本节学习,同学们要完成以下几个目标:
上面的1.2.3.4.5
二.指导学生自学:
复习P1—P10, 时间(5分钟),结合下面提示:
1.什么叫一个数a的平方根?算术平方根?怎样表示?其中a可以表示什么数?
2.什么叫一个数a的立方根?怎样表示?其中a可以表示什么数?
3.任何实数都有平方根吗?平方根有什么性质?任何实数都有立方根吗?立方根有什么性质?
4.什么叫无理数?常见的无理数有几种形式?你能举出来吗?
5.什么叫实数?实数如何分类?实数与数轴上的点有什么关系?
6.实数a的相反数、倒数、绝对值的意义、以及实数的运算法则、运算律与有理
数的一样吗?
三、学生自行复习,教师巡视指导。
1.学生自学,讨论
2.老师巡视
四、检查验收学习效果
教师点拨:
(一)知识要点:
1.平方根:若x2 = a, 则x叫做a的平方根.记作x = ±a(a≥0)
算术平方根:正数a的正的平方根;记作a(a≥0)
[注意]:当a≥0时,a≥0
性质:(1)正数有两个平方根,且互为相反数。
(2)零只有一个平方根。
(3)负数没有平方根。
(C )2.144.1-=- (D )2.144.1±=
3.若 ()2
27.0-=x ,则 x =( ) (A) -0.7 (B) ±0.7 (C) 0.7 (D) 0.49
4.36 的平方根是( )
(A )6 (B )±6 (C )6 (D )6±
5.下列语句正确的是( )
(A )如果一个数的立方根是它本身,那么这个数一定是零;
(B )一个数的立方根不是正数就是负数;
(C )负数没有立方根;
(D )一个数的立方根与这个数同号,零的立方根是零。
6、下列说法中,正确的是: ( )
(A )无限小数都是无理数
(B )带根号的数都是无理数
(C )循环小数是无理数
(D )无限不循环小数是无理数
7、与数轴上的点具有一一对应关系的是:( )
(A )无理数 (B )实数
(C )整数 (D )有理数
8、下列说法中,不正确的是: ( )
(A )绝对值最小的实数是0
(B )平方最小的实数是0
(C )算术平方根最小的实数是0
(D )立方根最小的实数是0
9、在 π , 7
1- ,3.14,()23-, 0.133, 2 各数中,无理数有………( ) A 、2个 B 、3个 C 、4个 D 、5个
填空题
(1)平方根是它本身的数是____.
(2)算术平方根是其本身的数是____.
(3)立方根是其本身的数是____.
(4)一个自然数的算术平方根是a ,那么下一个自然数的平方根是__________;立方根是_________.
(5) 64的平方根的立方根是_____
(6)当a___时,a - 有意义.
(7)3512 的立方根为
(8)若12-a 与|b+2|互为相反数,则a=__,b=__
(9)|3-π|=____.
五、典型例题
例1、若一个正数m 的平方根是3x-10 和 2x-5,求这个正数m 。
解:由题意得 3x ﹣10+2x ﹣5=0
解这个方程得:x=3
则3x ﹣10=﹣1
m=(- 1)2=1
例2、若y=9-a +a -9+7,求 a + y 的平方根及立方根
解:由题意得 a - 9≥0 且 9 - a ≥0
则a - 9=0
即a = 9
当a = 9时,y = 7 则a + y =16
所以a + y 的平方根为 4±,立方根为316
例3、已知△ABC 的三边为a 、b 、c ,且a 和b满足
()0522
=-+-b a ,求c 的取值范围。
解:由题意得 a – 2 = 0, b – 5 = 0
则 a=2 b=5
所以第三边c 的取值范围为:
3﹤c ﹤7
例4、若a 是30的整数部分,是17-的整数部分,求 a-b 的平方根。
解:∵25﹤30﹤36
∴ 25﹤30﹤36 即5 ﹤30﹤6 所以a=5
∵16﹤17﹤25
∴4﹤17﹤5
则 - 5﹤17-﹤- 4 所以b = - 4
∴a – b = 5 - ( - 4 ) = 9
a –
b 的平方根为±3
例5、(1)如图,已知正方形ABCD 的面积4a 2,E,F,G ,H 分别是正方形四条边的中点,依次连结E,F,G ,H 得到一个正方形.求这个正方形的边长
(2)当a=4时,正方形EFGH 的边长是多少? (用带根号的数表示)
[点拨]:在代数中解答几何题,是代数和几何的综合,是数和形的结合,在解答过程中要结合图形的几何性质,把论证和计算结合起来!
六、小结。
这节课你都学到了什么?
七、板书
八、作业:检测试卷。