二元一次方程概念

合集下载

二元一次方程概念

二元一次方程概念

二元一次方程概念二元一次方程是数学中最重要的概念之一,它可以帮助我们研究和解决许多实际问题。

什么是二元一次方程?完全理解二元一次方程的概念,会帮助我们更好地解决实际问题。

二元一次方程概念的基本定义是:一元一次方程是由常数、变量和一次幂构成的数学关系,它表示一组数字之间的关系,也可以把它看作一条直线。

当然,一元一次方程也有更为抽象的定义,就像一元一次方程中的变量有时是一个抽象的概念,而不是一个明确的数字。

二元一次方程的概念可以用图形方式来表示。

它是一条直线,两个不同的变量以数字的形式显示。

这条直线能够把一组数据连接起来,我们可以用它来发现规律,从而得出结论。

二元一次方程的应用非常广泛,几乎在所有科学和技术领域中都有应用。

它可以帮助我们研究物理学,经济学,计算机科学,财务,医学,建筑等领域。

它也可以帮助我们研究社会科学,设计,文化,生物学等学科,探索它们之间的关系和联系。

二元一次方程也可以用来解决实际问题,其中最常见的例子是线性规划。

线性规划是一种优化技术,可以用来解决实际问题,例如优化产品生产成本,优化工资结构,改善质量管理等。

线性规划通常是以解决一组二元一次方程的形式来实现的,因此理解二元一次方程的概念对于使用线性规划的人来说是非常重要的。

此外,二元一次方程在科学研究和技术开发中也有重要作用。

例如,在研究细胞分裂机制时,我们可以使用二元一次方程来量化细胞的表现。

在对新材料进行设计时,也可以用它来模拟新材料的性能。

此外,由于它的灵活性,它在数据处理,模型的构建和设计领域中也被广泛使用。

总之,二元一次方程是一个重要的概念,它可以用来解决一些实际问题,也可以作为数学的基础,用于科学研究和技术开发。

因此,理解二元一次方程的概念对于掌握数学和解决实际问题来说是非常重要的。

七年级数学二元一次方程的概念

七年级数学二元一次方程的概念

中等难度题目解析
答案:x = -2, y = 7
中等难度题目:解方 程组
解析:通过代入法, 将一个方程的解代入 另一个方程,求解。
中等难度题目解析
x+y=6 答案:x = 2, y = 4 或 x = 4, y = 2
xy = 10
解析:通过因式分解法,将方程组化简为单一方程,再 求解。
高难度题目解析
的限制。
05
二元一次方程的解题技巧
观察法与试错法
要点一
观察法
通过观察方程的特点,尝试找出未知数的值或方程的解。 例如,观察方程中未知数的系数和常数项,尝试找出未知 数的值。
要点二
试错法
通过尝试不同的数值代入方程,观察方程是否成立,从而 找出未知数的值或方程的解。这种方法需要耐心和细心, 以免错过正确的解。
经济模型
在经济学中,经常需要建立各种经济 模型来预测市场趋势、分析经济数据 等。二元一次方程是构建和分析这些 模型的重要工具之一。
解决实际问题时的注意事项
实际问题的不确定性
在解决实际问题时,我们需要注意到问题的复杂性和不确定性。二元一次方程只能提供 近似解,而不能保证完全准确。因此,我们需要根据实际情况进行适当的调整和修正。
详细描述
图像法的基本思路是在平面直角坐标系中绘制二元一次方程所表示的直线,然后通过观察图形的交点 或切点来求解方程。这种方法的关键在于选择合适的坐标系和绘图方式,以直观地表示方程的解。
03
二元一次方程的应用
在生活中的实际应用
购物优惠
在购物时,商家经常会提供一些优惠活动,如“买一送一”或“满额减免”。通过二元一次方程,我们可以计算 出在满足一定条件下,如何购买商品才能获得最大优惠。

二元一次方程的概念

二元一次方程的概念

二元一次方程的概念
二元一次方程的概念
二元一次方程是基础数学中非常重要的方程形式,它由一个变量和一
个常量组成,可以表达一般形式的等式。

a和b分别代表未知量和常量,x代表未知数,“=”号表示等式的意思,二元一次方程的一般形式如下:ax + b = 0。

例如:2x - 3 = 0,其中2x代表未知数,-3代表常量,这就是一个典型的二元一次方程。

我们可以通过求解来计算出该方程的解。

解答是x = 3/2。

解决二元一次方程的关键在于找出相应系数的关系,在实际问题中,
系数往往是连续的,而不是分散的,所以对于同一个二元一次方程,
如果找出其中的系数是有秩序的,那么就可以通过简单的加减乘除来
求解出它的解。

二元一次方程的求解是数学的一个基础知识点,了解二元一次方程的
结构,建立二元一次方程的思维框架,使用简单的四则运算方法,正
确求出二元一次方程的解,都需要学生不断加强相关知识的学习,做
到真正掌握数学解决问题的能力。

初一数学二元一次方程知识点总结

初一数学二元一次方程知识点总结

初一数学二元一次方程知识点总结一、二元一次方程的概念。

1. 定义。

- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

例如:x + y=5,其中x、y是未知数,方程中x的次数是1,y的次数也是1,并且整个方程是整式方程。

2. 二元一次方程的一般形式。

- 一般形式为ax + by=c(a、b、c是常数,a≠0,b≠0)。

例如2x - 3y = 8就是这种形式,这里a = 2,b=-3,c = 8。

二、二元一次方程组的概念。

1. 定义。

- 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

例如x + y=3 2x - y = 1就是一个二元一次方程组。

2. 二元一次方程组的解。

- 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

例如对于方程组x + y=3 2x - y = 1,通过求解可得x=(4)/(3),y=(5)/(3),((4)/(3),(5)/(3))就是这个方程组的解,即把x=(4)/(3),y=(5)/(3)代入方程组中的两个方程都成立。

三、二元一次方程组的解法。

1. 代入消元法。

- 步骤:- 从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来。

例如对于方程组x + y=3 2x - y = 1,由方程x + y=3可得x = 3 - y。

- 将变形后的式子代入另一个方程,消去一个未知数,得到一个一元一次方程。

把x = 3 - y代入2x - y = 1,得到2(3 - y)-y = 1。

- 解这个一元一次方程,求出一个未知数的值。

解2(3 - y)-y = 1,6-2y -y=1,- 3y=-5,y=(5)/(3)。

- 将求得的这个未知数的值代入变形后的式子,求出另一个未知数的值。

把y=(5)/(3)代入x = 3 - y,得x=(4)/(3)。

2. 加减消元法。

- 步骤:- 当方程组中两个方程的同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

二元一次定义

二元一次定义

二元一次定义二元一次方程是一个非常重要的数学概念,也是初中数学学习的基础之一。

它定义为一个未知量的二次方和一个一次方系数的代数方程,常常用来解决现实中的各种问题。

下面我们就一步步来了解它的定义。

1. 二元一次方程的表达式二元一次方程的表达式通常可以写成:ax^2 + bx + c = 0。

其中,a,b和c都是已知的实数,而未知量x是一个变量。

a是二次方系数,b是一次方系数,c是常数项。

2. 求解二元一次方程的方法求解二元一次方程的方法有好几种,其中最基本的方法是通过配方法将方程式整理成标准的形式,然后使用平方根式求解方程。

具体分为以下几个步骤:- 将方程式中的系数a通分,使其成为一个完全平方的形式。

例如,若a=2,则通分后变成2(x+b/2a)^2-C/2a=0。

- 将方程式中的常数项c移至方程式的右边,使等式左侧成为一个完全平方的形式。

例如,2(x+b/2a)^2=C/2a。

- 求出等左侧的平方根,这样方程就被转化成+-x=d的形式。

此时就能够解出x的两个根,分别是d和-d。

3. 举例说明如果我们想要解决一个问题,比如“有一个三角形,其中两边长度分别为3和4,而它们之间的夹角是60度,那么第三边长是多少呢?”。

我们可以用二元一次方程来解决它。

设第三边长度为x,那么根据余弦定理,可以得到下面的方程式:3^2 + 4^2 - 2×3×4cos60° = x^2这个方程式就是一个二元一次方程,其中a=1,b=0,c=-7,我们可以将它转化为标准形式:x^2 - 7 = 0然后使用平方根式求解方程,得到:x = ±√7因为x必须是正数,所以最终的答案是:x = √7通过这个例子,我们可以看到二元一次方程在解决实际问题中的重要性和应用广泛性。

它不仅是初中数学学习的基础,也是数学领域里面不可或缺的概念之一。

第一节 二元一次方程(组)的相关概念-学而思培优

第一节 二元一次方程(组)的相关概念-学而思培优

第一节二元一次方程(组)的相关概念-学而思培优一、课标导航二、核心纲要1.二元一次方程1) 二元一次方程的概念二元一次方程是指含有两个未知数,且未知数的项的最高次数是1的整式方程。

判定一个方程是二元一次方程必须同时满足三个条件:①方程两边的代数式都是整式——整式方程;②含有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”。

2) 二元一次方程的一般形式二元一次方程的一般形式为:ax+by+c=0(a≠0,b≠0)。

3) 二元一次方程的解使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般情况下,一个二元一次方程有无数个解。

2.二元一次方程组1) 二元一次方程组的概念由几个一次方程组成并且含有两个未知数的方程组,叫做二元一次方程组。

二元一次方程组不一定由两个二元一次方程合在一起,方程可以超过两个,有的方程可以只有一个未知数。

例如:{2x=6.3x-y=1}也是二元一次方程组。

2) 二元一次方程组的解二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数。

三、全能突破基础演练1.下列方程是二元一次方程的是(。

)A.2x+y=1B.2x-y=1C.3x/y=2D.2x+3xy=52.在{1/x=2.2x-y=5.x=-1.x=2}各组数中,是方程2x-y=5的解是(。

)。

A.(2)(3)B.(1)(3)C.(3)(4)D.(1)(2)(4)3.方程3x+y=10的正整数解有(。

)组。

A.1组B.3组C.4组D.无数组4.二元一次方程组{3x-2y=3.x+2y=5}的解是(。

)。

A.{x=1.y=2}B.{x=2.y=3}C.{x=7/2.y=-3/2}D.{x=7.y=-15}5.请写出一个解为{x=1.y=-2}的二元一次方程。

6.下列方程组中,是二元一次方程组的是(。

)。

A.{x。

x+y=2.xy=2.x^2-1}B.{x。

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。

二元一次方程

二元一次方程

1.基本概念二元一次方程:方程中含有两个未知数,并且所含未知数的项的次数都是1.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程. 二元一次方程的一个解:适合一个二元一次方程的一组未知数的值.二元一次方程组的解:二元一次方程组中各个方程的公共解.2.二元一次方程组的解法:(1)代入消元法(简称“代入法” ):代入法的主要步骤:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元二次方程.(2)加减消元法(简称“加减法” ):加减法的主要步骤:通过两式相加(减)消去其中一个未知数,让二元一次方程组为一元一次方程求解.3.二元一次方程组的应用:利用二元一次方程组解决实际问题的过程:主要分为“鸡兔同笼”问题、“增收节支”问题、“数字问题”.列方程组解应用题的步骤:(1)设出未知数;(2)找出相等关系;(3)根据相等关系列方程组;(4)解方程组;(5)作答.一、选择题1.方程x+y=5的解有( )A .1个B .2个C .3个D .无数个2.下列方程组中,不是二元一次方程组的是( )A .112x y =⎧⎨-=⎩,B .13x y x y +=⎧⎨-=⎩,C .2104x y xy +=⎧⎨=⎩,D .21x y x y =⎧⎨-=⎩,3.解二元一次方程组的基本思路是( )A .代入法B .加减法C .代入法和加减法D .将二元一次方程组转化为一元一次方程4.方程5x+4y=17的一个解是( )A .13x y =⎧⎨=⎩, B .21x y =⎧⎨=⎩, C .32x y =⎧⎨=⎩, D .41x y =⎧⎨=⎩, 5.方程组5(1)210(2)x y x y +=⎧⎨+=⎩,,由②—①得 ( )A .3x=10B .x=5C .3x =-5D .x=-56.若关于x 、y 的方程2211a b a b x y -++-=是二元一次方程,那么a 、b 的值分别是( )A .1、0B .0、-1C .2、1D .2、-37.有一个两位数,它的十位数字与个位数字之和为5,则符合条件的两位数有 ( )A .4个B .5个C .6个D .7个8.若x :y=3:2,且3x+2y=13,则x 、y 的值分别为( )A .3、2B .2、3C .4、1D .1、49.若二元一次方程3x -y=7,2x+3y=1,y=kx -9有公共解,则k 的值为( )A .3B .-3C .-4D .410.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .()4921x y y x -=⎧⎪⎨=+⎪⎩,B .()4921x y y x +=⎧⎪⎨=+⎪⎩,C .()4921x y y x -=⎧⎪⎨=-⎪⎩,D .()4921x y y x +=⎧⎪⎨=-⎪⎩, 11.“五一”黄金周,某人民商场“女装部”推出“全部服装八折”.男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价x 元、男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为 ( )A .5800.80.85700x y x y +=⎧⎨+=⎩,B .7000.850.8580x y x y +=⎧⎨+=⎩, C .7000.80.85700580x y x y +=⎧⎨+=-⎩, D .7000.80.85580x y x y +=⎧⎨+=⎩, 12.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:“(1)班与(5)班得分比为6:5.”乙同学说:“(1)班得分比(5)班得分的2倍少40分.”若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A .65240x y x y =⎧⎨=-⎩,B .65240x y x y =⎧⎨=+⎩,C .56240x y x y =⎧⎨=+⎩,D .56240x y x y =⎧⎨=-⎩, 二、填空题13.在方程2x -y=1中,若x=-4,则y=________;若y=-3,则x=________.14.写出满足二元一次方程x+2y=9的一对整数解_____________.15.已知12x y =⎧⎨=⎩,是方程a x -3y=5的一个解,则a =____________.16.若x -y=5,则14-3x+3y=______________.17.若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,,则这个方程可以是_______.(只要求写出一个)18.方程组3520x y x y +=⎧⎨-=⎩,的解是____________. 19.若二元一次方程组23521x y x y +=⎧⎨-=⎩,的解是方程8x -2y=k 的解,则k=___________.20.若12x y =⎧⎨=⎩,和24x y =-⎧⎨=-⎩,都是某二元一次方程的解,则这个二元一次方程是_______.21.在y=kx+b 中,当x=1时,y=4:当x=2时,y=10,则k=______,b=________.22.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x ,十位数字为y ,则用代数式表示原两位数为_________,根据题意得方程组____________________________.⎧⎨⎩, 三、解答题23.解下列方程组:(1)4519323m n m n +=-⎧⎨-=⎩,; (2)32123x y x y ++==24.已知二元一次方程:(1)x+y=4;(2)2x -y=2;(3)x -2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这方程组的解.25.若关于x 、y 的二元一次方程组3522718x y x y m +=⎧⎨+=-⎩,的解x 、y 互为相反数,求m 的值.26.已知方程组44ax y -=⎧⎨⎩,(1)2x+by=14,(2)由于甲看错了方程①中的a 得到方程组的解为26x y =-⎧⎨=⎩,, 乙看错了方程②中的b 得到方程组的解为44.x y =-⎧⎨=-⎩,若按正确的a 、b 计算,求原方程组的解.二元一次方程组解应用题题型一、列二元一次方程组解决生产中的配套问题1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套题型二、列二元一次方程组解决行程问题2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档