2014高考题数列专项训练

合集下载

2014年高考数学(文)难题专项训练(2)数列(含答案)

2014年高考数学(文)难题专项训练(2)数列(含答案)

【冲击高分系列】2014年高考数学(文)难题专项训练:数列1.(2013年四川成都市高新区高三4月月考,10,5分)若数列满足,则当取最小值时的值为()A. 或B.C.D. 或2.(2013年湖北七市高三4月联考,9,5分) 如右图,一单位正方体形积木,平放于桌面上,并且在其上方放置若干个小正方体形积木摆成塔形,其中上面正方体中下底面的四个顶点是下面相邻正方体中上底面各边的中点,如果所有正方体暴露在外面部分的面积之和超过8.8,则正方体的个数至少是()A. 6B. 7C. 8D. 103.(2013年北京海淀区高三第二次模拟,8,5分) 若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为. 已知¥数列满足,则下列结论中错误的是()A. 若,则可以取3个不同的值B. 若,则数列是周期为的数列C. 且,存在,是周期为的数列D. 且,数列是周期数列4.(2013湖北黄冈市高三三月质量检测,9,5分)等差数列前项和为,已知则()A. B.C. D.5. (2012浙江绍兴一中高三十月月考,7,3分)已知定义在R上的函数f(x),g(x)满足,且,,若有穷数列()的前n项和等于,则n等于()A.4B.5C.6D.76. (2012北京东城区高三模拟,8,5分)定义:已知数列则的值为()7.(2012河南省毕业班模拟,11,5分)已知F 1,F2分别是双曲线(a>0,b>0)的左、右焦点,P为双曲线上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是()A.2B.3C.4D.58.(2009江西, 8, 5分) 数列{a n}的通项a n=n2·, 其前n项和为S n, 则S30为()A. 470B. 490C. 495D. 5109.(2013年河南十所名校高三第二次联考,16,5分) 设数列是等差数列,数列是等比数列,记数列{},{}的前n项和分别为,. 若a5=b5,a6=b6,且S7-S5=4(T6-T4),则=____________.10.(2013年广东省广州市高三4月综合测试,13,5分)数列的项是由1或2构成,且首项为1,在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则;.11. (2012北京海淀区高三11月月考,14,5分)数列中,如果存在,使得“且”成立(其中,),则称为的一个峰值.(Ⅰ)若,则的峰值为;(Ⅱ)若,且不存在峰值,则实数的取值范围是.12. (2012安徽合肥高三第二次检测,14,5分)设函数的最大值和最小值分别为和,且,13.(2012河南高三模拟,16,5分)某数表中的数按一定规律排列,如下表所示,从左至右以及从上到下都是无限四川分记为不超过实数的最大整数例如设为正整数数列n满足x1=a,x n+1=(n∈N*). 现有下列命题:①当a=5时,数列{x n}的前3项依次为5,3,2;②对数列{x n}都存在正整数k,当n≥k时总有x n=x k;③当n≥1时,x n>-1;④对某个正整数k,若x k+1≥x k,则x k=[].其中的真命题有. (写出所有真命题的编号)15.(2008江苏, 10, 5分) 将全体正整数排成一个三角形数阵:12 345 6789101112131415………………根据以上排列规律, 数阵中第n(n≥3) 行的从左至右的第3个数是.16.(2009湖南, 15, 5分) 将正△ABC分割成n2(n≥2, n∈N*) 个全等的小正三角形(图1, 图2分别给出了n=2, 3的情形) , 在每个三角形的顶点各放置一个数, 使位于△ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时) 都分别依次成等差数列. 若顶点A、B、C处的三个数互不相同且和为1, 记所有顶点上的数之和为f(n) , 则有f(2) =2, f(3) =, …, f(n) =.图1图217.(2011湖南, 16, 5分) 对于n∈N*, 将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+a k-1×21+a k×20, 当i=0时, a i=1, 当1≤i≤k时, a i为0或1. 记I(n) 为上述表示中a i为0的个数(例如:1=1×20, 4=1×22+0×21+0×20, 故I(1) =0, I(4) =2) ,则(1) I(12) =;(2) 2I(n) =.18.(2011江苏, 13, 5分) 设1=a1≤a2≤…≤a7, 其中a1, a3, a5, a7成公比为q的等比数列, a2, a4, a6成公差为1的等差数列, 则q的最小值是.19.(2009上海, 12, 4分) 已知函数f(x) =sin x+tan x. 项数为27的等差数列{a n}满足a n∈, 且公差d≠0. 若f(a1) +f(a2) +…+f(a27) =0, 则当k=时, f(a k) =0.20.(2007湖南, 15, 5分) 将杨辉三角中的奇数换成1, 偶数换成0, 得到如图所示的0-1三角数表. 从上往下数, 第1次全行的数都为1的是第1行, 第2次全行的数都为1的是第3行, …, 第n次全行的数都为1的是第行;第61行中1的个数是.第1行1 1第2行10 1第3行111 1第4行1000 1第5行11001 1………………………………………21.(2008北京, 14, 5分) 某校数学课外小组在坐标纸上, 为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k, y k) 处, 其中x1=1, y1=1, 当k≥2时,T(a) 表示非负实数a的整数部分, 例如T(2. 6) =2, T(0. 2) =0. 按此方案, 第6棵树种植点的坐标应为;第2 008棵树种植点的坐标应为.22.(2009湖北, 15, 5分) 已知数列{a n}满足:a1=m(m为正整数) , a n+1=若a6=1, 则m所有可能的取值为.23.(2010湖南, 15, 5分) 若数列{a n}满足:对任意的n∈N*, 只有有限个正整数m使得a m<n成立, 记这样的m 的个数为(a n) *, 则得到一个新数列{(a n) *}. 例如, 若数列{a n}是1, 2, 3, …, n, …, 则数列{(a n) *}是0, 1, 2, …, n-1, …. 已知对任意的n∈N*, a n=n2, 则(a5) *=, ((a n) *) *=.24.(2013安徽省皖南八校高三第三次联合考试21,14分)已知S n为数列{a n}的前n项和,a1=a,=ka n+1且常数k满足0< |k|< 1.Sn(I) 求数列{a n}的通项公式;(II) 对于每一个正整数m, 若将数列中的三项a m+1,a m+2,a m+3按从小到大的顺序调整后,均可构成等差数列,且记公差为d m,试求k的值及相应d m的表达式(用含m的式子表示) ;(III) 记数列{d m} (这里d m是(2) 中的d m的前m项和为T m=d1+d2+…+d m. 问是否存在a, 使得T m< 90对恒成立?若存在,求出a的最大值; 若不存在,请说明理由.25.(2013年安徽省皖南八校高三第三次联考,20,13分)已知椭圆为椭圆的两个焦点,为椭圆上任意一点,且构成等差数列,点到直线的距离为3。

高考数学--数列练习题

高考数学--数列练习题

则 { an} 的前 n 项和 Sn ( )
A. n(n 1)
B. n(n 1)
n(n 1)
C.
2
n( n 1)
D.2Biblioteka 3、【 2014 高考重庆卷文第 2 题】 在等差数列 { an} 中, a1 2, a3 a5 10 ,则 a7 ( )
A.5
B.8
C. 1 0
D.14
1 4、( 14 新课标 2)数列 a n 满足 a n 1= 1 a n , a2 =2,则 a1 =_________.
21、( 13新课标 1本小题满分 12分)
已知等差数列{ an}的前 n项和 Sn满足 S3=0,S5 =-5.
(Ⅰ)求{ an}的通项公式;
(Ⅱ)求数列
的前 n项和
22、【 2014 高考安徽卷文第】 数列 { an} 满足 a1 1,nan 1 (n 1)an n(n 1), n N ( 1) 证明:数列 { an} 是等差数列; n
( 2) 设 bn 3n an ,求数列 { bn} 的前 n 项和 Sn
3
23、( 14 新课标 1) . 已知 an 是递增的等差数列, a2, a4 是方程 x2 5 x 6 0 的根。
(I )求 an 的通项公式;
( II )求数列
an 2n
的前 n 项和 .
24、( 14 湖南本小题满分 12 分)
项 Sn =


( A) n n 1
( B) n n 1
nn 1
( C)
(D)
2
nn 1 2
13、【 2014 高考大纲卷文】 设等比数列 { an} 的前 n 项和为 Sn,若 S2=3,S4=15,则 S6=(

2014高考数列真题汇编

2014高考数列真题汇编

2014高考数列真题汇编一、选择题1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( )A .30B .40C .60D .802.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于 ( )A .7B .8C .15D .163.等比数列{a n }中,a 1=512,公比q =-12,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n ,则Πn 中最大的是 ( )A .Π11B .Π10C .Π9D .Π84.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n 5.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2,n ∈N *),则这个数列的 第10项等于 ( ) A.1210 B.129 C.110 D.156.数列{a n }中,a 1=1,a n 、a n +1是方程x 2-(2n +1)x +1b n=0的两个根,则数列{b n }的前 n 项和S n = ( )A.12n +1B.1n +1C.n 2n +1D.n n +1二、填空题7.数列{a n }的构成法则如下:a 1=1,如果a n -2为自然数且该自然数之前未出现过,则 用递推公式a n +1=a n -2,否则用递推公式a n +1=3a n ,则a 6=________.8.已知数列{a n }满足a n +1a n=n +2n (n ∈N *),且a 1=1,则a n =________. 9.如图,它满足:(1)第n 行首尾两数均为n ;(2)图中的递推关系类似杨辉三角,则第n (n ≥2)行的第2个数是________.10.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1的前n 项和的公式是________.三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列, b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n的值.12.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N *都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.(1)求a 3,a 5; (2)设b n =a 2n +1-a 2n -1(n ∈N *),证明:{b n }是等差数列;13.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.14.在等比数列{a n }中,a 2=3,a 5=81.(1)求a n ; (2)设b n =log 3a n ,求数列{b n }的前n 项和S n .15.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式. (2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.16. 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.17. 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.18. 已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根.(1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.。

全国卷数列高考题汇总附答案

全国卷数列高考题汇总附答案

数列专题高考真题(2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.(2014·II) 17.(本小题满分12分) 已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明: .(2015·I)(17)(本小题满分12分)为数列的前项和.已知,(Ⅰ)求的通项公式:(Ⅱ)设 ,求数列的前项和。

(2015·I I)(4)等比数列满足,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列前9项的和为27,,则(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列满足的最大值为__________。

(2016·II)(17)(本题满分12分)S n 为等差数列的前项和,且=1 ,=28 记,其中表示不超过的最大整数,如.(I )求,,;(II )求数列的前1 000项和.(2016·III)(12)定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列的前项和,其中(I )证明是等比数列,并求其通项公式;(II )若 ,求.(2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

2014年全国高考试卷数列部分汇编

2014年全国高考试卷数列部分汇编

2014年全国高考试卷数列部分汇编1. (2014安徽理12)数列{}n a 是等差数列,若135135a a a +++,,构成公比为q 的等比数列,则q =________. 【解析】1 设{}n a 的公差为d ,则315131225144a a d a a d +=++++=+++,,由题意可得23(3)a+=15(1)(5)a a ++.∴2111[(1)2(1)](1)[(1)4(1)]a d a a d +++=++++,∴2221111(1)4(1)(1)[2(1)](1)4(1)(1)a d a d a a d ++++++=++++, ∴1d =-,∴3131a a +=+,∴公比31311a qa +==+. 2. (2014安徽文12)如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12123567AA a A A a A A a ===,,…,,则7a =______________.【解析】 14由22BC =得112123222212AB a AA a A A a ==Þ==Þ==´=,由此可归纳出{}n a 是以12a =为首项,22为公比的等比数列,因此667121224a a q æö=´=´=ç÷ç÷èø.3. (2014安徽文18)数列{}n a 满足111(1)(1)n n a na n a n n n *+=,=+++,ÎN .⑴证明:数列n a n ìüíýîþ是等差数列;是等差数列;⑵设3nnnb a =×,求数列{}nb 的前n 项和nS .【解析】 ⑴ 由已知可得111n n a a n n +=++,即111n n a a n n+-=-. 所以n a n ìüíýîþ是以111a =为首项,1为公差的等差数列. ⑵ 由⑴得()111na n n n=+-×=,所以2n a n =. 从而3nn b n =×. 1231323333nn S n =×+×+×++×,①()23131323133n nn S n n +=×+×++-×+×.② A 1A 4A 3A 2第(12)题图ABC①-②得12123333n n n S n +-=+++-×()()1131312333132nn nn n n ++×--×-=-×=-..所以()121334nn n S +-×+=.评析 本题考查等差数列定义的应用,错位相减法求数列的前n 项和,解题时利用题⑴提示对递推关系进行变形是关键.4. (2014北京理5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的(”为递增数列的( ) A .充分而不必要条件 B .必要而不充分条件.必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件.既不充分也不必要条件 【解析】D 对于等比数列{}na ,若1q >,则当10a <时有{}na 为递减数列.故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D .5. (2014北京理12)若等差数列{}n a 满足7890a a a ++> ,7100a a +<,则当n =____时,{}n a 的前n 项和最大.最大.【解析】8 由等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是有80a >,890a a +<,故90a <.故87S S >,98S S <,8S 为{}n a 的前n 项和n S 中的最大值6. (2014北京文15)已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -为等比数列.为等比数列.⑴求数列{}n a 和{}n b 的通项公式;的通项公式; ⑵求数列{}n b 的前n 项和.项和.【解析】 ⑴ 设等差数列{}n a 的公差为d ,由题意得41123333a a d --===所以()()11312n a a n d n n =+-==,,.设等比数列{}n n b a -的公比为q ,由题意得344112012843b a qb a --===--,解得2q =. 所以()11112n n n n b a b a q ---=-=. 从而()13212n n b n n -=+=,, ⑵ 由⑴知()13212n nn b n n -=+=,,.数列{}3n 的前n 项和为()312n n +,数列{}12n -的前n 项和为1212112nn -=--×.所以,数列{}n b 的前n项和为()31212n n n ++-.7. (2014大纲理10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于(项和等于() A .6 B .5 C .4 D .3【解析】C8. (2014大纲理18)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤⑴求{}n a 的通项公式;的通项公式; ⑵设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S … 故4500a a ,厔于是10301040d d ++≥,≤ 解得10532d --≤≤. 因此3d =-.数列{}n a 的通项公式为133n a n =-.⑵ ()()1111331033103133n b n n n n æö==-ç÷----èø1.于是12n T b b =++…nb 1111111371047103103n n éùæöæöæö=-+-+-ç÷ç÷ç÷êú--èøèøèøëû…+ 111310310n æö=-ç÷-èø()10103n n =-.9. (2014大纲文8)设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31 B .32 C .63 D .64 【解析】C 10. (2014大纲文17)数列{}n a 满足12211222n n na a a a a ++===-+,, ⑴设1nn nb a a +=-,证明{}nb 是等差数列;是等差数列;⑵求{}n a 的通项公式.的通项公式.【解析】 ⑴ 由2122n n n a a a ++=-+得2112n n n n a a a a +++-=-+ 即12n n b b +=+又1211b a a =-=所以{}n b 是首项为1,公差为2的等差数列. ⑵ 由⑴得12(-1)n b n =+ 即+121n n a a n -=- 于是111()(21)nnk k k k aa k +==-=-åå所以211n a a n +-=,即211n a n a +=+.又11a =,所以{}n a 的通项公式为222n a n n =-+.11. (2014福建理3)等差数列{}n a 的前n 项和n S ,若13212a S ==,,则6a =( ) A .8B .10C .12D .14【解析】C12. (2014福建文17)在等比数列{}n a 中,25381a a ==,.⑴求n a ;⑵设3log n n b a =,求数列{}n b 的前n 项和n S .【解析】 本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查化归与转化思想.⑴ 设{}n a 公比为q ,依题意得141381a q a q =ìïí=ïî,, 解得113a q =ìí=î,.因此,13nn a -=.⑵ 因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()=22n nn b b n n S +-=.13. (2014广东理13)若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220l n l n l n a a a +++=__________.【解析】50. 由等比数列性质可知,51202193189121011e a a a a a a a a a a =====,可求得1220120219912l n l n l n l n l n l n l n 10550a a a a a a a a a a a +++=++++=´=. 14. (2014广东理19) 设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ÎN ,且315S =.⑴求1a ,2a ,3a 的值;的值;⑵求数列{}n a 的通项公式.的通项公式.【解析】 ⑴ 取2n =得到23420S a =-,又233315S S a a =-=-,于是3342015a a -=-,得37a =取1n =得到11227a S a ==-,又1322158a a a a =--=-, 于是22212785,3a a a a -=-Þ==;⑵ 猜测21na n =+,用归纳法证明:1°1n =时,显然成立;2°假设n k =时,成立,即21k a k =+;3°由22111(1)23432234232k k k k k k S ka k k k ka k k a k +++-=--Þ+×=--Þ=+; 故结论成立,即21n a n =+.15. (2014广东文13)等比数列{}n a 的各项均为正数,且154a a =,则2122232425l og l o g l o g l o g l o g a a a a a ++++=_____.【解析】5. 16. (2014广东文19)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足满足222(3)3()0n n S n n S n n n *-+--+=ÎN ,.⑴求1a 的值;的值;⑵求数列{}n a 的通项公式;的通项公式;⑶证明:对一切正整数n ,有()()()112211111113nna a a a a a+++<+++. 【解析】 ⑴ ∵()()222330n n S n n S n n -+--+=,∴令1n =,得21160a a +-=,解得12a =得13a =-. 又0na >,∴12a =.⑵ 由()()222330n n S n n S n n -+--+=,得()()230n n S n n S éù-++=ëû, 又0n a >,所以30n S +≠,所以2n S n n =+,所以当2n ≥时,()221112n n n a S S n n n n n -éù=-=+--+-=ëû,又由⑴知,12a =,符合上式.所以2n a n =.⑶ 由⑵知,()()111221n n a a n n =++, 所以()()()1122111111n n a a a a a a ++++++… ()1112345221n n =+++´´+…()()11112335572121n n <++++´´´-+…111111116235572121n n éùæöæöæö<+-+-++-ç÷ç÷ç÷êú-+èøèøèøëû… 111162321n æö=+-ç÷+èø11116233<+´=17. (2014湖北理18文19)已知等差数列{}n a 满足:12a =,且125a a a ,,成等比数列.成等比数列.⑴求数列{}n a 的通项公式.的通项公式.⑵记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?若存在,求n 的最小值;若不存在,说明理由.小值;若不存在,说明理由.【解析】 ⑴ 设数列{}n a 的公差为d ,依题意,2224d d ++,,成等比数列,故有 2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =.当0d =时,2na =;当4d =时,2(1)442n a n n =+-×=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-. ⑵ 当2na =时,2nS n =.显然260800n n +<,此时不存在正整数n ,使得60800n S n >+成立.当42na n =-时,[]22(42)22n n n S n +-==.令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60nS n >+800成立,n 的最小值为41.综上,当2na =时,不存在满足题意的n ;当42na n =-时,存在满足题意的n ,其最小值为41.18. (2014湖南理20)已知数列{}n a 满足111||n n n a a a p +=-=,,*n ÎN .⑴若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值;的值;⑵若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.的通项公式. 【解析】 ⑴ 因为数列{}n a 为递增数列,所以10n n a a +-≥,则11n nn n n n a a p a a p ++-=Þ-=,分别令12n =,可得22132a a p a a p -=-=,22311a p a p p Þ=+=++,, 因为12323a a a ,,成等差数列, 所以21343a a a =+()()224113130p p p p p Þ+=+++Þ-=13p Þ=或0, 当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =.⑵ 由题可得122122212121111222n n n n n n n n n a a a a a a +-++-+-=Þ-=-=,, 因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22222122212121n nn n n n n n a a a a a a a a +-++-+-<-ìÞ->-í<î, 又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=, 同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n nn a a +-=-,则当2n m =()*m ÎN 时,21324322123211111,2222m m m a a a a a a a a ---=-=--=-=,,,,这21m -个等式相加可得2113212422111111222222m m m a a --æöæö-=+++-+++ç÷ç÷èøèø212222111111111224224113321144m m m ----×-×=-=+×--22141332m m a -Þ=+×. 当21n m =+时,2132432122321111,2222m m m a a a a a a a a +-=-=--=-=-,,,,这2m 个等式相加可得2111321242111111222222m m m a a +-æöæö-=+++-+++ç÷ç÷èøèø2122211111111224224113321144m m m--×-×=-=-×-- 21241332m m a +=-×,当0m =时,11a =符合,故212241332m m a --=-×综上()1141332nn n a --=+×. 19. (2014湖南文16)已知数列{}n a 的前n 项和22n n n S n *+=ÎN ,.⑴求数列{}n a 的通项公式;的通项公式;⑵设()21nna n nb a =+-,求数列{}n b 的前2n 项和.项和.【解析】 ⑴ 当1n =时,111a S ==;当2n ≥时,()()2211122n n n n n n n aS Sn--+-+=-=-=. 故数列{}n a 的通项公式为n a n =. ⑵ 由⑴知,()21nn nb n =+-,记数列{}n b 的前2n 项和为2nT ,则()()122222212342nn T n =++++-+-+-+.记122222nA =+++,12342B n =-+-+-+,则()2212122212nn A +-==--,()()()1234212B n n n=-++-+++--+=éùëû. 故数列{}n b 的前2n 项和21222n n T A B n +=+=+-.20. (2014江苏理7)在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值为_____.【解析】 4设公比为q (0)q >,则由8642a a a =+得266622a a q a q =+,解得22q =,故4624a a q ==21. (2014江苏理20)设数列{}n a 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”. ⑴若数列{}n a 的前n 项和*2()n nS n =ÎN ,证明:{}n a 是“H 数列”; ⑵设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值;的值;⑶证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}nc ,使得n n n a b c =+成立.成立.【解析】 ⑴ 当2n ≥时,111222n n n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ³时,1n n S a += ∴{}n a 是“H 数列”⑵1(1)(1)22n n n n n S na d n d --=+=+ 对*n "ÎN ,*m $ÎN 使n m S a =,即(1)1(1)2n n dn m d -+=+-取2n =得1(1)d m d +=-,12md =+∵0d <,∴2m <,又*m ÎN ,∴1m =,∴1d =- ⑶ 设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对*n "ÎN ,11n n b b a +-=-1(1)()n c n a d =-+,对*n "ÎN ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}n b 、{}n c 为等差数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =;当2n =时1m = 当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,*m ÎN 因此对n ",都可找到*m ÎN ,使n m T b =成立,即{}n b 为H 数列 {}n c 的前n 项和1(1)()2n n n R a d -=+,令1(1)()m n c m a d R =-+=,则(1)12n n m -=+ ∵对*n "ÎN ,(1)n n -是非负偶数,∴*m ÎN即对*n "ÎN ,都可找到*m ÎN ,使得n m R c =成立,即{}n c 为H 数列因此命题得证22. (2014江西理17)已知首项都是1的两个数列{}n a ,{}n b *0n b n ¹ÎN ,,满足11120n n n n n n a b a b b b +++-+=.⑴令n n na cb =,求数列{}nc 的通项公式;的通项公式;⑵若13n n b -=,求数列{}n a 的前n 项和n S .【解析】 ⑴ 因为()*111200n n n n n n n a ba b b b b n +++-+=¹ÎN ,, 所以112n n n na ab b ++-=,即12n nc c +-= 所以数列{}n c 是以1为首项,2为公差的等差数列. 故21nc n =-.⑵ 由13n nb -=知()1213n n n n a c b n -==-,于是数列{}n a 的前n 项和()0121133353213n n S n -=×+×+×++-×…. ()()12131333233213n n n S n n -=×+×+-×+-×…+. 相减得()()()1212123332132223n n nn S n n --=+×++--×=---…+, 所以()131nn S n =-+.23. (2014江西文13)在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,取最大值,则则d 的取值范围_________. 【解析】 718æö--ç÷èø, 24. (2014江西文17) 已知数列{}n a 的前n 项和232n n nS n *-=ÎN ,. ⑴求数列{}n a 的通项公式;的通项公式;⑵证明:对任意1n >,都有m *ÎN ,使得1n m a a a ,,成等比数列.成等比数列.【解析】 ⑴ 由232n n nS -=得111a S ==,当2n ≥时,132n n n a S S n -=-=-.所以数列{}na 的通项公式为32na n =-.⑵ 要使1n m a a a ,,成等比数列,只需要21n m a a a =×,即()()232132n m-=×-,即2342m n n =-+,而因此时m *ÎN ,且m n >,所以对任意的1n >,都存在m *ÎN ,使得1n m a a a ,,成等比数列.25. (2014辽宁理8文9) 设等差数列{}n a 的公差为d .若数列{}12n a a 为递减数列,则()为递减数列,则()A .0d <B .0d >C .10a d <D .10a d >【解析】C 26. (2014山东理19)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124S S S ,,成等比数列.⑴求数列{}n a 的通项公式;的通项公式;⑵令114(1)n n n n n b a a -+=-,求数列{}n b 的前n 项和n T . 【解析】 ⑴ 1121412S S 246d a a d S a d ===+=+,,,124S S S ,,成等比数列,2214S S S \=解得1121n a a n =\=-,⑵111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+ 当n 为偶数时,111111111(1)()()()()3355723212121nT n n n n =+-+++-++-+---+1212121n nT n n \=-=++ 当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+12212121n n T n n +\=+=++2212221n n n n T n n n ìïï+\=í+ï+î,为偶数,为奇数27. (2014山东文19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.的等比中项.⑴求数列{}na 的通项公式;的通项公式;⑵设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .【解析】 ⑴ 由题意知{}n a 为等差数列,设1(1)n a a n d =+-,2a 为1a 与4a 的等比中项2214a a a \=´且()()2111103a a d a a d ¹Þ+=+,2d =解得:12a =()2122n a n n \=+-´=.⑵ 由⑴知:2n a n =,∴()()121n n n b a n n +==+①当n 为偶数时:()()()()()()()()()()2122334+1213435+11224262+22246+222222n T n n n n n n n nn n n=-´+´-´++=´-++-++--++éùëû=´+´+´+´=´++++×+=´=②当n 为奇数时:()()()()()()()()()()()()()21223341213435+(1)21224262+(1)212246+111212122122n T n n n n n n n n n n n n n n n n n n n =-´+´-´+-+=´-++-++---+-+éùëû=´+´+´+-´-+=´+++--+-+-×++=´-+=-综上:2221222n n n n T n n n ì++-ïï=í+ïïî为为数,奇数,偶.28. (2014陕西文8) 原命题为“若12n n n a aa ++<,+n N ∈”,则{}n a 为递减数列,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( ) A .真,真,真.真,真,真 B .假,假,真.假,假,真 C .真,真,假.真,真,假 D .假,假,假.假,假,假【解析】A 29. (2014上海理23)已知数列{}n a 满足1133n n n a a a +≤≤,*n ÎN ,11a =。

2014全国各地高考真题 ——数列专题及答案解析

2014全国各地高考真题 ——数列专题及答案解析

2014全国各地高考数列真题山东:(19) (本小题满分12分)在等差数列{}n a 中,已知公差为2,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;(II )设(1)2n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .(19)解:(I )由题意知2111()(3)a d a a d +=+, 即2111(2)(6)a a a +=+, 解得12a =,所以数列{}n a 的通项公式为2n a n =. (II )由题意知(1)2(1)n n n b a n n +==+.所以122334(1)(1)n n T n n =-⨯+⨯-⨯++-⨯+. 因为12(1)n n b b n +-=+. 可得,当n 为偶数时,12341()()()n n n T b b b b b b -=-++-+++-+48122n =++++(42)22nn += (2)2n n +=当n 为奇数时,1()n n n T T b -=+-(1)(1)(1)2n n n n -+=-+2(1)2n +=-所以2(1),2(2)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数,为偶数. 上海:23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围; (2)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值, 以及m 取最小值时相应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.23.解:(1)由题得,263[3,6]933x x x x ⎧≤≤⎪⎪⇒∈⎨⎪≤≤⎪⎩ (文科)(2)∵1133n n n a a a +≤≤,且数列{}n a 是等比数列,11a =,∴11133n n n q q q --≤≤,∴111()03(3)0n n q q q q --⎧-≥⎪⎨⎪-≤⎩,∴1[,3]3q ∈。

2014高考数学综合训练数列

2014高考数学综合训练数列

2014高考数学综合训练:数列一、选择题(每小题5分,共40分)1.公比为2的等比数列{a n }的各项都是正数,且a 4a 10=16,则a 6=( ) A .1 B .2 C .4 D .82.已知等差数列{a n }的前n 项和为S n ,且S 3=6,则5a 1+a 7的值为( ) A .12 B .10 C .24 D .63.{a n }为首项为正数的递增等差数列,其前n 项和为S n ,则点(n ,S n )所在的抛物线可能为( )图Z4-14.已知在等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9=( ) A .2 B .4 C .8 D .165.已知{a n }为等差数列,若a 3+a 4+a 8=9,则S 9=( ) A .24 B .27 C .15 D .546.已知等比数列{a n }满足a 1=2,a 3a 5=4a 26,则a 3的值为( ) A.12B .1C .2 D.147.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( ) A .S m >0且S m +1<0 B .S m <0且S m +1>0 C .S m >0且S m +1>0 D .S m <0且S m +1<08.已知函数f (x )是R 上的单调递增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( )A .恒为正数B .恒为负数C .恒为0D .可以为正数也可以为负数二、填空题(每小题5分,共20分)9.在等比数列{a n }中,a 1+a 2=20,a 3+a 4=40,则a 5+a 6等于________.10.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则b 2a 1+a 2的值为________.11.如图Z4-2所示的图形由小正方形组成,请观察图①至图④的规律,并依此规律,得第n 个图形中小正方形的个数是________.图Z4-212.在数列{a n }中,a 1=1,a 2=2,若当整数n >1时,S n +1+S n -1=2(S n +S 1)恒成立,则S 15=________.三、解答题(共40分)13.(13分)已知等比数列{a n }的所有项均为正数,首项a 1=1,且a 4,3a 3,a 5成等差数列. (1)求数列{a n }的通项公式;(2)数列{a n +1-λa n }的前n 项和为S n ,若S n =2n -1(n ∈N *),求实数λ的值.14.(13分)数列{a n }的前n 项和为S n =2a n -2,数列{b n }是首项为a 1,公差不为零的等差数列,且b 1,b 3,b 11成等比数列.(1)求数列{a n }与{b n }的通项公式;(2)求证:b 1a 1+b 2a 2+b 3a 3+…+b na n<5.15.(14分)已知n ∈N *,数列{d n }满足d n =3+(-1)n 2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n .又知数列{b n }中,b 1=2,且对任意正整数m ,n ,b m n =b nm .(1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,…,第a n 项删去后,剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2013项和T 2013.1.B [解析] 根据等比数列性质a 4a 10=a 27=16,又数列各项均为正数,故a 7=4,所以a 6=a 72=2.2.A [解析] 设公差为d ,则S 3=3a 1+3d =6,即a 1+d =2,所以5a 1+a 7=6a 1+6d =12. 3.D [解析] 当n ≥1时{a n }单调递增且各项之和大于零,当n =0时S n 等于零,结合选项只能是D.4.C [解析] 由于数列{a n }为等比数列,所以a 3a 11=a 27=4a 7,即得a 7=4,也即b 7=4.由于数列{b n }是等差数列,所以b 5+b 9=2b 7=8.5.B [解析] 设等差数列{a n }的公差为d ,则a 3+a 4+a 8=9⇒3a 1+12d =9⇒a 1+4d =3⇒a 5=3,S 9=9a 5=27.6.B [解析] 根据等比数列性质a 3a 5=a 24,由此得a 4=±2a 6,即a 6=±12a 4,但a 6=a 4q 2,所以只能q 2=12,所以a 3=a 1q 2=1.7.A [解析] 由题意,得-a m <a 1<-a m +1⇔⎩⎪⎨⎪⎧a 1+a m >0,a 1+a m +1<0,显然,易得S m =a 1+a m2·m >0,S m +1=a 1+a m +12·(m +1)<0.8.A [解析] 根据函数性质得x ≥0时,f (x )≥0.设等差数列{a n }的公差为d ,则f (a 1)=f (a 3-2d ),f (a 5)=f (a 3+2d ),所以f (a 1)+f (a 5)=f (2d +a 3)-f (2d -a 3),由于a 3>0,所以2d +a 3>2d -a 3,所以f (2d +a 3)-f (2d -a 3)>0,所以f (a 1)+f (a 3)+f (a 5)>0.9.80 [解析] q 2=a 3+a 4a 1+a 2=2,a 5+a 6=(a 3+a 4)q 2=40×2=80.10.310[解析] 因为1,a 1,a 2,9是等差数列,所以a 1+a 2=1+9=10.因为1,b 1,b 2,b 3,9是等比数列,所以b 22=1×9=9.因为b 21=b 2>0,所以b 2=3,所以b 2a 1+a 2=310. 11.n (n +1)2[解析] a 1=1,a 2=3,a 3=6,a 4=10,所以a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,等式两边同时累加得a n -a 1=2+3+…+n ,即a n =1+2+…+n =n (n +1)2,所以第n 个图形中小正方形的个数是n (n +1)2. 12.211 [解析] 当n >1时,S n +1+S n -1=2(S n +S 1)可以化为(S n +1-S n )-(S n -S n -1)=2S 1=2,即n >1时,a n +1-a n =2,即数列{a n }从第二项开始组成公差为2的等差数列,所以S 15=a 1+(a 2+…+a 15)=1+2+282×14=211.13.解:(1)设数列{a n }的公比为q ,则由条件得q 3,3q 2,q 4成等差数列,所以6q 2=q 3+q 4,q ≠0,此方程即q 2+q -6=0,解得q =-3(舍去)或q =2,所以数列{a n }的通项公式是a n=2n -1.(2)a n +1-λa n =2n -λ·2n -1=(2-λ)·2n -1,显然λ=2不合题意,λ≠2时,数列{a n +1-λa n }的前n 项和为(2-λ)(1-2n )1-2=(2-λ)·(2n -1),与已知比较可得λ=1.14.解:(1)当n ≥2时,a n =S n -S n -1=(2a n -2)-(2a n -1-2)=2a n -2a n -1,得a n =2a n -1. 又由a 1=S 1=2a 1-2,得a 1=2,所以数列{a n }是以2为首项,2为公比的等比数列, 所以数列{a n }的通项公式为a n =2n .b 1=a 1=2,设公差为d ,则由b 1,b 3,b 11成等比数列,得(2+2d )2=2×(2+10d ),解得d =0(舍去)或d =3,所以数列{b n }的通项公式为b n =3n -1.(2)证明:令T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n =221+522+823+…+3n -12n ,①2T n =2+521+822+…+3n -12n -1,②②-①得T n =2+321+322+…+32n -1-3n -12n ,所以T n =2+32⎝⎛⎭⎫1-12n -11-12-3n -12n =5-3n +52n ,又3n +52n >0,故T n <5.15.解:(1)∵d n =3+(-1)n 2,∴a n =d 1+d 2+d 3+…+d 2n =3×2n2=3n .又由题知,令m =1时,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n,若b n =2n ,则b m n =2nm ,b n m =2mn ,所以b m n =b nm 恒成立;若b n ≠2n ,当m =1时,b m n =b n m 不成立,所以b n =2n.(2)由题知将数列{b n }中的第3项、第6项、第9项…删去后构成的新数列{c n }中的奇数项与偶数项仍成等比数列,首项分别是b 1=2,b 2=4,公比均是8,T 2013=(c 1+c 3+c 5+…+c 2013)+(c 2+c 4+c 6+…+c 2012) =2×(1-81 007)1-8+4×(1-81 006)1-8=20×81 006-67.。

2014高考数学(理)二轮专题升级训练:解答题专项训练 数列(含答案解析)

2014高考数学(理)二轮专题升级训练:解答题专项训练 数列(含答案解析)

专题升级训练解答题专项训练(数列)1。

设数列{a n}的前n项和S n满足2S n=a n+1—2n+1+1,n∈N*,且a1,a2+5,a3成等差数列。

(1)求a1的值;(2)求数列{a n}的通项公式。

2。

已知各项都不相等的等差数列{a n}的前6项和为60,且a6为a1和a21的等比中项。

(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n+1-b n=a n(n∈N*),且b1=3,求数列的前n 项和T n。

3。

已知数列{a n}是公差为正的等差数列,其前n项和为S n,点(n,S n)在抛物线y=x2+x上;各项都为正数的等比数列{b n}满足b1b3=,b5=。

(1)求数列{a n},{b n}的通项公式;(2)记C n=a n b n,求数列{C n}的前n项和T n。

4.已知S n是等比数列{a n}的前n项和,S4,S10,S7成等差数列. (1)求证:a3,a9,a6成等差数列;(2)若a1=1,求数列{}的前n项的积。

5。

已知数列{a n}满足:a1=1,a n+1=(1)求a2,a3;(2)设b n=a2n—2,n∈N*,求证:{b n}是等比数列,并求其通项公式;(3)在(2)的条件下,求数列{a n}前100项中的所有偶数项的和S.6。

已知数列{a n}(n∈N*)是首项为a,公比为q≠0的等比数列,S n 是数列{a n}的前n项和,已知12S3,S6,S12-S6成等比数列。

(1)当公比q取何值时,使得a1,2a7,3a4成等差数列;(2)在(1)的条件下,求T n=a1+2a4+3a7+…+na3n-2.7。

已知数列{a n}的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a1,a2,a4,a7,…构成等差数列{b n},S n是{b n}的前n 项和,且b1=a1=1,S5=15.(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成仅比为正数的等比数列,且公比相等,已知a9=16,求a50的值;(2)设T n=+…+,求T n.8.设数列{a n}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=a n·a n+2k成立,则称数列{a n}为“J K型”数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列专项训练1.已知}{n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n s 为}{n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .1102.数列}{n a 的首项为3,}{n b 为等差数列且)(1++∈-=N n a a b n n n .若12,2103=-=b b ,则=8aA .0B .3C .8D .113.设n s 为等差数列}{n a 的前n 项和,若11=a ,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .54.已知数列}{n a 的前n 项和n s 满足:n m n mS S S ++=,且1a =1.那么10a =A .1B .9C .10D .555.设n s 是等差数列}{n a ()n N *∈,的前n 项和,且11=a ,74=a ,则9S =__________ 6.在等差数列}{n a 中,3737a a +=,则2468a a a a +++=__________ 7.在等比数列}{n a 中,211=a ,44-=a ,则公比q=______________;12...n a a a +++=____________8.已知ABC ∆的一个内角为120o ,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________.1、设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-2、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35 3、设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A )3(B )4(C )5(D )64、如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•••…+7a = (A )14 (B) 21 (C) 28 (D) 355、设数列{}n a 的前n 项和2n S n =,则8a 的值为(A ) 15 (B) 16 (C) 49 (D )646、在等差数列{}n a 中,1910a a +=,则5a 的值为(A )5 (B )6 (C )8 (D )10 7、设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = (A)-11(B)-8 (C)5(D)118、在等比数列{}n a 中,201020078a a = ,则公比q 的值为 A. 2 B. 3 C. 4 D. 89、在等比数列{}n a 中,11a =,公比1q ≠.若51234m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )1210、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为(A )158或5 (B )3116或5 (C )3116 (D )15811、 已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为54,则5S =A .35 B.33 C.31 D.2912、已知数列{}n a 为等比数列,S n 是它的前n 项和,若1322a a a =且4a 与72a 的等差中项为45,则=5S (A )35 (B )33 (C )31 (D )2913、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 52 (B) 7 (C) 6 (D) 4214、已知各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a = (A) 52 (B) 7 (C) 6 (D) 4215、已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+A.12+B. 12-C. 322+ D 322-16、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于A .6B .7C .8D .917、设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = 。

18、已知数列{}n a 满足1133,2,n n a a a n +=-=则na n的最小值为__________. 19、在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a = .1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( ) A.21B. 22C. 2D.22.已知}{n a 为等差数列,,则等于 ( )A. -1B. 1C. 3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于 ( )A. 18B. 24C. 60D. 90 . 4.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于 ( )A .13B .35C .49D . 63 5.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 ( )A .1B 53C.- 2 D 36.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d= ( ) (A )-2 (B )-12 (C )12(D )2 7.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则69S S = ( )(A ) 2 (B )73(C ) 83 (D )38.等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。

若1a =1,则4s = (A )7 (B )8 (3)15 (4)169.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 19010.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m = (A )38 (B )20 (C )10 (D )9 .11.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n +C .2324n n+D .2n n +12.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 190 . 二、填空题1.设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 。

2.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .3.若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = ;前8项的和8S = .4.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a . 5.设等比数列{n a }的前n 项和为n s 。

若3614,1s s a ==,则4a = 6.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = . 7.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 8.等差数列{n a }前n 项和为n S 。

已知1m a -+1m a +-2m a =0,21m S -=38,则m=_______ 9.设等差数列{}n a 的前n 项和为n s ,若6312a s ==,则n a = . .10.等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S = .11.在数列{}n a 在中,542n a n =-,212n a a a an bn ++=+ ,*n N ∈,其中,a b 为常数,则ab =12.已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ___ _13.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = _________。

14.设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为__________。

15.设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .。

相关文档
最新文档