分式与分式方程知识点总结

合集下载

2023八年级数学上册第十二章分式和分式方程12

2023八年级数学上册第十二章分式和分式方程12
5
10
= -1的解为x=4.
+1 +1
(1)⑤
6
12
⑥+1=+1-1的解为x=5.

2
(2)第n个方程:+1=+1-1的解为x=n-1.
验证:方程两边同乘x+1,得n=2n-(x+1),
解得x=n-1.
经检验,x=n-1是原分式方程的解.
一题练透
分式方程的解与字母参数
−3
1
已知关于x的分式方程 −2 +1=2−.
答案
4.a≥1且a≠2
方程两边同乘x-1,得a-2=x-1,解得x=a-1,由方程的解为非负数,得a-1≥0,
解得a≥1,因为x≠1,所以a-1≠1,所以a≠2,所以a的取值范围是a≥1且a≠2.
2−
−2+
5. [2021达州中考]若分式方程 −1 -4= +1 的解为整数,则整数a=
−2 16
依题意,令+2- 2 −4=1,
方程两边同乘(x+2)(x-2),
得(x-2)2-16=(x+2)(x-2),
解得x=-2.
检验:当x=-2时,(x+2)(x-2)=0.
所以x=-2不是原分式方程的解,
所以原分式方程无解,
−2 16
所以不存在数x,使得式子+2- 2 −4的值等于1.
答案
7.解:(1)方程两边同乘(x+2)(x+1),
得x(x+1)-(x+2)=(x+2)(x+1),
化简,得x2-2=x2+3x+2,
4
解得x=-3.

八上数学第十五章知识点总结

八上数学第十五章知识点总结

八上数学第十五章知识点总结一、分式的概念。

1. 分式的定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(x)/(x + 1),(1)/(x)等都是分式,而(3)/(5)不是分式,因为分母5是常数,不含有字母。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是B≠0。

例如对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,该分式有意义。

3. 分式的值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

比如对于分式(x - 1)/(x+1),当x - 1 = 0(即x = 1)且x+1≠0(x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 基本性质。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

例如(2x)/(3y)=(2x×2)/(3y×2)=(4x)/(6y)。

2. 约分。

- 把一个分式的分子与分母的公因式约去,叫做分式的约分。

例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。

- 最简分式:分子与分母没有公因式的分式叫做最简分式。

像(x + 1)/(x^2+1)就是最简分式。

3. 通分。

- 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

通分的关键是确定最简公分母。

例如对于分式(1)/(x)和(1)/(x + 1),最简公分母是x(x + 1),通分后分别为(x+1)/(x(x + 1))和(x)/(x(x + 1))。

三、分式的运算。

1. 分式的乘除。

- 分式的乘法法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母。

即(A)/(B)·(C)/(D)=(A· C)/(B· D)。

分式及分式方程知识点总结

分式及分式方程知识点总结

分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。

分式可以表示为 a/b,其中 a 是分子,b 是分母。

分式可以是一个整数、一个小数、或者是两个整数的比值。

分式可以用于表示实际问题中的比例、率、百分比等。

在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。

在处理分式时,有几个关键概念和知识点需要了解。

一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。

可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。

二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。

三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。

解分式方程的关键是找到合适的方法将方程转化为整式方程。

1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。

3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。

需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。

四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。

2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

分式与分式方程辅导讲义

分式与分式方程辅导讲义

分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。

知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。

字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。

知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。

在分数中,分子表示被分割的数量,分母表示将整体划分的份数。

掌握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中起到至关重要的作用。

1. 分式的基本运算在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相除四种基本运算法则。

首先,当分式的分母相同的时候,可以直接将分子相加或相减。

例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。

其次,当分式的分母不同但可以化为相同分母的时候,可以通过找到最小公倍数,将分数化为相同的分母之后再进行运算。

例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。

另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。

例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。

2. 分式方程的解分式方程是由分式构成的方程,它的未知数通常出现在分数的分子或分母中。

解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。

解分式方程的基本步骤如下:(1) 消去分母。

通过将方程两边同乘以分母的最小公倍数,可以将方程中的分母消除,形成原方程的等效方程。

例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以2x(x+1),得到 2(x+1) + 2x = x(x+1)。

(2) 解一元方程。

将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。

对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。

(3) 验证解的可行性。

将得到的解代入原方程进行验证,确保解的可行性。

对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +1/3 = 1/2,等式成立。

因此, x = 2 是原方程的解。

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。

分式的一般形式为a/b,其中a为分子,b为分母。

分式也可以是带有字母的表达式。

1.分式的定义:分式表示两个数的比。

分子表示比的被除数,分母表示比的除数。

2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。

②分式的约定:分式的分母不能为0,即b≠0。

③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。

④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。

⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。

⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。

⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。

例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。

(2)解整式方程:使用解整式方程的方法解方程。

(3)检验解:将求得的解代入原分式方程,检验是否满足。

2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。

(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。

3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。

(2)变量的取值范围:要满足约束条件。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。

2. 有理表达式(Rational Expression):包含分式的代数表达式。

二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。

例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。

例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。

2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。

3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。

例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。

四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。

2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。

3. 高次分式方程:含有未知数的最高次数大于一的分式方程。

五、解分式方程的步骤1. 确定最简公分母。

2. 去分母,将分式方程转化为整式方程。

3. 解整式方程,求得未知数的值。

4. 检验解的有效性。

5. 写出最终解。

六、应用题1. 理解题意,找出等量关系。

2. 列出分式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式与分式方程知识点总结
分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。

分式可以表示为a/b的形式,其中a为分子,b为分母。

分式的乘法和除法的法则:
1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。

即(a/b)*(c/d)=(a*c)/(b*d)。

2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分
式乘法法则进行运算。

即(a/b)/(c/d)=(a*d)/(b*c)。

分式的加法和减法的法则:
1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行加法运算。


a/b+c/d=(a*d+b*c)/(b*d)。

2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行减法运算。

即a/b-
c/d=(a*d-b*c)/(b*d)。

分式的化简:
将分式化简为最简形式的步骤如下:
1. 如果分子和分母有相同的公因子,可以约分掉。

即a/b =
(a/gcd(a,b)) / (b/gcd(a,b))。

2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简
为整数。

即a/b=a/b,其中a能整除b。

3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以
使用因式分解后的形式来化简分式。

分式方程是包含一个或多个分式的方程。

求解分式方程的一般步骤如下:
1.将方程两边的分式通过相乘分母的方法,化简为有理式。

2.对于有理式的方程,可以通过解方程的方法求出x的值。

3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不
满足,则该方程无解。

在求解分式方程时,需要注意以下几个问题:
1.分母不能为0,需要排除分母为0的解。

2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,
避免出现无意义的解。

3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。

1.分式可以用来表示比例关系,如速度、密度和浓度等。

2.在物理学中,分式可以用来表示物理量之间的关系,如加速度等。

3.在经济学中,分式可以用来表示价格、成本等经济指标之间的关系。

4.在工程学中,分式可以用来表示电路中的电流、电压和电阻之间的
关系。

5.在数学建模中,分式可以用来表示一些复杂问题的解决方法,如概率、统计等。

总结:分式是一种重要的数学表示方法,在数学和其他学科中都有广泛的应用。

我们需要掌握分式的运算规则和化简方法,以及如何求解分式方程。

在实际应用中,要注意排除无效解和特殊情况,正确解读和使用分式的含义。

相关文档
最新文档