第五章分式与分式方程知识点总结

合集下载

分式的相关知识点总结

分式的相关知识点总结

分式的相关知识点总结一、分式的定义和性质1. 分式的定义分式是指两个整数或者两个代数式的比值的表示形式.一般为 a/b 的形式,其中 a 和 b 都是整数,b 不等于 0。

2. 分式的性质(1) 分式的分子和分母互质:如果分数 a/b 已经约分为最简分数,那么 a 和 b 一定是互质的,即它们的最大公因数是 1。

(2) 分母为 1 的分数:如果分数的分母为 1,那就是一个整数,可以简单地把它看作一个整数。

(3) 分式的相等:分数 a/b 和 c/d 相等,当且仅当 ad = bc。

两个分式相等时,它们表示的比值是相等的。

二、分式的运算1. 分式的加法和减法(1) 加法和减法的分母变换:对于不同分母的分数,需要将它们的分母变为相同的数,然后再进行加法或减法运算。

(2) 加法和减法的运算规则:对于相同的分母,直接将分子相加或相减,分母保持不变。

2. 分式的乘法和除法(1) 乘法法则:两个分式相乘时,分子与分子相乘,分母与分母相乘,即 (a/b) * (c/d) = (a*c)/(b*d)。

(2) 除法法则:两个分式相除时,分子与分母相乘,分母与分子相乘,即 (a/b) / (c/d) = (a*d)/(b*c)。

三、分式的化简1. 分式的约分分式约分是指将分子与分母的公因数约掉,使其成为最简分式.一般采用求最大公因数的方法进行约分。

2. 分式的通分不同分母的分数,通分是指将它们的分母都变为相同的数,通常采用最小公倍数的方法进行通分。

3. 分式的化简原则(1) 分式中的公因式可以约掉;(2) 同等分母的分式相加或相减时,只需对各分子分别进行加减。

四、分式的应用1. 代数方程中的应用在解代数方程时,常常会遇到分式方程,需要对其进行分式的加减乘除,并化简以便求解。

2. 几何问题中的应用在几何中,常常会涉及到对分式的加减乘除和化简操作,特别是在比例、相似三角形、面积等方面的计算中。

3. 物理问题中的应用在物理中,分式广泛应用于密度、速度、功率等问题的计算中,需要进行分式的加减乘除以及化简操作。

北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)

北师版八年级下册数学精品教学课件 第五章 分式与分式方程 第3课时 异分母分式的加减(2)

3
m
m3
3m
3
2m (m 3)
m 3m 3
m
m3
3m
3
从 1,-3,3 中任 选一个你喜欢的 m 值代入求值.
1. m3

m
=
1
时,原式
1 1
3
1 2
做一做
先化简,再求值: 1 x 1
x
2 2
,其中 1
x
2.
解:
1 x 1
2 x2 1
1 x 1
2 (x 1)(x 1)
(x 1)
2
(x 1)(x 1) (x 1)(x 1)
计算结果要化为最简分式或整式.
例解4:原计式算: (m1)2m22
2m
5 2m
m
5 ••232m3mm4mm;41
2
(m

2)(2 2m
m)
9 m2 • 2m 2
先算括号里的
2m 3m
加法,再算括
3 m3 m 22 m

号外的乘法
2m
3m
2m 3 2m 6.
注:当式子中出现整式时,把整式看成整体,并把
第五章 分 式
5.3 分式的加减法
第3课时 异分母分式的加减(2)
复习引入 1. 分式的乘除法则是什么?用字母表示出来:
b d bd a c ac
b d b c bc a c a d ad
2. 分式的加减法则是什么?用字母表示出来:
b d bc ad bc ad a c ac ac ac
异分母 通分 相加减 转化为
同分母 分母不变 相加减 转化为
分子 (整式) 相加减
2. 分式的混合运算法则 先算乘除,再算加减;如果有括号先算括号内的.

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件

八年级数学北师大版初二下册--第五单元5.4《分式方程:第二课时--解分式方程》课件
分式方程 去分母 整式方程
知1-讲
解分式方程的一般步骤:
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程. (转化思想)
2、解这个整式方程. 3、检验 . 4、写出原方程的根.
例1 解方程
1 = 3. x- 2 x
解:方程两边都乘x(x-2),得x=3(x-2).
解这个方程,得x=3.
解得x=2.
检验:当x=2时,( x+2)( x-2)=0,
所以x=2是原方程的增根,即原方程无解.
易错总结:
分式方程转化为整式方程后,由于去分母使未 知数的取值范围发生了变化,有可能产生增根, 因此在解分式方程时一定要验根,如果不验根, 有可能误将x=2当成原分式方程的根.
2 易错小结
2.当k为何值时,关于x的方程
综上可知,当k<3且k≠-12时,原分式方程的
解为负数.
易错总结:
在解分式方程时,要注意出现未知数的取值使 原分式方程中的分式的分母为零,即产生增根 的情况.因此本题中要使方程的解为负数,除 了k<3外,还必须考虑原分式方程的分母不等 于0.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
2+ x-1
a 1-x
=4
的解为正数,且使关于y的不等式组
ìïïïíïïïî
y+2- y 32
2( y-a) £
> 0
1,
的解集为y<-2,则符合条件的所有整数a的和为
( A) A.10
B.12
C.14
D.16
知识点 3 分式方程的增根
议一议
在解方程
1x-
x= 2
12- x
2 时,小亮的解法如下:
方程两边都乘 x-2,得 1-x=-1-2(x-2 ).

第五章分式与知识点

第五章分式与知识点

第五章分式与知识点在数学的广袤天地中,分式是一个重要且有趣的概念。

它就像一座桥梁,连接着代数运算和实际问题,为我们解决各种数学难题提供了有力的工具。

分式,简单来说,就是形如 A/B 的式子,其中 A 和 B 都是整式,且 B 中含有字母。

这里要注意哦,分母 B 不能为零,否则这个式子就没有意义啦。

我们先来聊聊分式的基本性质。

它和分数的基本性质类似,分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。

这一性质可是分式运算的重要基础呢!比如,我们要对分式进行化简,就经常会用到它。

比如说,给定一个分式(2x)/(4x²) ,我们可以根据分式的基本性质,将分子分母同时除以2x ,得到1/(2x) ,这样就把分式化简了。

再来说说分式的约分和通分。

约分就是把分式的分子和分母中的公因式约去,让分式变得更简洁。

通分呢,则是把几个异分母的分式化为同分母的分式,方便进行加减运算。

举个例子,对于分式(x² 1)/(x + 1) ,我们可以因式分解分子为(x + 1)(x 1) ,然后约去分子分母的公因式(x + 1) ,得到 x 1 。

而如果要计算(1/2x) +(1/3x) ,就需要先通分,找到 2x 和 3x 的最小公倍数 6x ,将两个分式分别化为(3/6x) 和(2/6x) ,然后相加得到 5/6x 。

分式的乘除运算也是重要的一部分。

分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

例如,计算(2x/y) ×(3y/4x²) ,分子相乘得到 6xy ,分母相乘得到 4x²y ,约分后得到 3/(2x) 。

对于分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,再加减。

比如说,(2/x) +(3/x) =(5/x) ,而(1/x) (1/2x) =(2/2x) (1/2x) = 1/2x 。

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

八年级数学下册 第五章 分式与分式方程 5.1 认识分式(第1课时)课件

D .x 2 x
第十九页,共三十三页。
★★3.若式子(shì2
x
zi)
1
3y 1
的值.
无意义,求代数式(y+x)(y-x)+x2
解:∵式子 2 x 1无意义,∴3y-1=0,
3y 1
解得y= 1 ,原式=y2-x2+x2=y2= ( 1 ) 2= 1 .
3
39
第二十页,共三十三页。
知识点三 分式(fēnshì)的值(P109例1拓展) 【典例3】下列判断错误的是 ( D ) A.当a≠0时,分式 2有意义
解:(1)∵分式(fēnshì2) x 4 无意义,∴x-1=0,解得x=1.
x 1
(2)∵分式 2 x有 意4 义,∴x-1≠0,即x≠1.
x 1
(3)∵分式 2的x 值4为0,
x 1
∴ 2 x 解4 得0 x, =-2.
xபைடு நூலகம்
1
0,
第三十页,共三十三页。
【母题(mǔ tí)变式】
【变式一】当a取何值时,分式
第三页,共三十三页。
二、分式有无(yǒu wú)意义及值为0的条件
1.当分母 ___不__等__于__零时,分式有意义,即_____时B≠,分0式
A 有意义;
B
2.当分母__等__于__零_时,分式无意义,即____B时=0,分式
A
B
无意义;
第四页,共三十三页。
3.分式等于零的条件(tiáojiàn)有两个:①分子__等__于__零_____,②分 母____不__等__于__零___.
(2)求出这列分式的第2 019个分式除以第2 018个分式所得 的商.并回答把任意一个分式除以前面(qián mian)的一个分式, 你发现什么规律?用语言表示出来.

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

分式与分式方程辅导讲义

分式与分式方程辅导讲义

分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。

知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。

字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。

知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。

2. 有理表达式(Rational Expression):包含分式的代数表达式。

二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。

例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。

例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。

2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。

3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。

例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。

四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。

2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。

3. 高次分式方程:含有未知数的最高次数大于一的分式方程。

五、解分式方程的步骤1. 确定最简公分母。

2. 去分母,将分式方程转化为整式方程。

3. 解整式方程,求得未知数的值。

4. 检验解的有效性。

5. 写出最终解。

六、应用题1. 理解题意,找出等量关系。

2. 列出分式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章:分式与分式方程
5.1分式概念
一般地,用,A B 表示两个整式,A B ÷可以表示成
A B 的形式,如果B 中含有字母,那么称A B
为分式,其中A 称为分式的分子,B 称为分式的分母,对于任意一个分式,分母都不能为零.
例1, 下列各式中哪些是整式?哪些是分式?
211(1);;(3);(4);2242
b a b x xy x y a x ++-+- (2)
分式的基本性质 分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变. 这一性质可以用式子表示为:,(0)b b m b b m m a a m a a m
⋅÷==≠⋅÷. 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
例2, 化简下列分式 2225(1);;20xy a ab x y b ab
++ (2) 【在化简的结果中,如果分子和分母已没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或是整式.】
5.2分式的乘除法
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后在与被除式相乘. 这一法则可以用式子表示为:;b d bd b d b c bc a c ac a c a d ad
⋅=÷=⋅= . 例3, 计算
222
2244(1);(4);2x xy xy x xy y x y x y x y x y
+-+÷÷---+ (2)
5.3分式的加减法
同分母的分式相加减,分母不变,把分子相加减. 这一法则可以用式子表示为:b c b c a a a
±±=. 例4,计算
222(1);(2);(3);22a b x y m n n n a b b a x y y x n m n m n m ++++--------
根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分,
为了计算方便,异分母分式通分时,通常取最简单的公分母(最简公分母)作为它们的共同分母.
异分母分式的加减法法则是:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. 这一法则可以用式子表示为:;b d bc ad bc ad a c ac ac ac
±±=±= 例5,计算
22111(1);(2);(3);423332a b a a a x x a b --+---+
5.4分式方程
分母中含有未知数的方程叫做分式方程.
无理方程:根号内含有未知数的方程。

(无理方程又叫根式方程)
因为解分式方程可能产生增根,所以解分式方程必须检验.通常只需检验所得的根是否使原方程中分式的分母的值等于零就好了,如果使原方程中分式的分母的值等于零,则舍去此根.
【误区提醒 】
(1)去分母时漏乘整数项; (2)去分母时弄错符号; (3)换元出错; (4)忘记验根。

例7, 解方程
653121(1);(2)1;(3)2;1(1)4433x x y x x x x x y y +--=+==-++---- 4)。

相关文档
最新文档