2018年山东省潍坊市新华中学高三数学文联考试题含解析
精品解析:【全国市级联考】山东省潍坊市2018届高三第二次高考模拟考试 数学(文)试题(解析版)

潍坊市高考模拟考试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】C【解析】分析:求出集合中不等式的解集,再一一求得,,,即可.详解:∵集合∴∵集合∴,,,故选C.点睛:本题属于基本题,解答这类问题都是先根据集合的特点,利用不等式与函数的知识化简后,然后根据集合的运算法则求解.2. 如图,正方形内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率()A. B. C. D.【答案】C【解析】概率为几何概型,测度为面积,设正方形边长为2,则概率为:,选C.3. 下面四个命题中,正确的是()A. 若复数,则B. 若复数满足,则C. 若复数,满足,则或D. 若复数,满足,则,【答案】A【解析】分析:由复数的基本概念及基本运算性质逐一核对四个选项得答案.详解:对于A,若复数,则,故A正确;对于B,取,则,而,故B错误;对于C,取,,满足,但不满足或,故C错误;对于D,取,,满足,但不满足,,故D错误.故选A.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,复数的共轭复数为,模长为.4. 已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B. C. D.【答案】D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程.详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.5. 执行如图所示程序框图,则输出的结果为()A. -4B. 4C. -6D. 6【答案】B【解析】分析:根据已知中的程序框图可得,该程序的功能是计算并输出的值,模拟程序的运行过程,即可得答案.详解:模拟程序的运行可得:,.第1次执行循环后,,,满足循环条件;第2次执行循环后,,,满足循环条件;第3次执行循环后,,,满足循环条件;第4次执行循环后,,,不满足循环条件,退出循环,输出.故选B.点睛:本题考查的知识点是程序框图,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.6. 已知,,则()A. B. C. D.【答案】B【解析】分析:根据题设条件求得,根据同角三角函数的关系可求得,的值,然后展开两角差的余弦得答案.详解:∵,∴,即∵∴,∴故选B.点睛:本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦公式,同角三角函数的基本关系包括平方关系和商的关系,即和.7. 已知某个函数的部分图象如图所示,则这个函数解析式可能为()A. B. C. D.【答案】A【解析】分析:利用函数图象判断奇偶性与定义域,排除选项,然后利用函数的特殊值判断即可.详解:由函数的图象可知,该函数是奇函数,定义域为.对于A,,,满足奇函数与定义域的条件;对于B,,,是偶函数,排除B;对于C,,,满足奇函数与定义域的条件;对于D,,,不是奇函数,排除D;当时,对于A,,对于C,,排除C.故选A.点睛:本题考查函数的图象的判断,解析式的对应关系,这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除8. 若将函数的图象向右平移个单位长度后与函数的图象重合,则的最小值为()A. B. C. D.【答案】B【解析】分析:利用函数的图象变换规律,再结合诱导公式,即可求得的最小值.详解:将函数的图象向右平移个单位长度后得到函数的解析式为. ∵平移后得到的函数图象与函数的图象重合∴,即.∴当时,.故选B.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言,即图象要看“变量”起多大变化,而不是“角”变化多少.9. 已知函数,则()A. 在处取得最小值B. 有两个零点C. 的图象关于点对称D.【答案】D【解析】分析:求出函数的导数,解关于导函数的不等式,求出函数的单调区间,即可求得函数的最值,再根据当时,,当时,,即可判断零点个数,然后结合单调性即可判断函数值的大小.详解:∵函数∴函数的定义域为,且令,得,即函数在上为增函数;令,得,即函数在上为减函数.∴当时,函数,故排除A;当时,,当时,,故排除B;∵∴的图象不关于点对称,故排除C;∵∴故选D.点睛:本题考查了函数的单调性、最值问题,考查导数的应用,求函数的单调区间的步骤是:求出,在定义域内分别令求得的范围,可得函数的单调增区间,求得的范围,可得函数的单调减区间.学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...学§科§网...10. 在中,,,分别是角,,的对边,且,则=()A. B. C. D.【答案】C【解析】分析:由已知及正弦定理可得,结合余弦定理可得,由余弦定理解得,结合的范围,即可求得的值.详解:∵∴由正弦定理可得,即.∴由余弦定理可得,整理可得.∴∵∴故选C.点睛:本题主要考查了正弦定理,余弦定理的综合应用,解题时注意分析角的范围.对于余弦定理一定要熟记两种形式:(1);(2).另外,在解与三角形、三角函数有关的问题时,还要记住,,等特殊角的三角函数值,以便在解题中直接应用.11. 已知三棱柱,平面截此三棱柱,分别与,,,交于点,,,,且直线平面.有下列三个命题:①四边形是平行四边形;②平面平面;③若三棱柱是直棱柱,则平面平面.其中正确的命题为()A. ①②B. ①③C. ①②③D. ②③【答案】B【解析】分析:在①中,由,且,即可证明四边形是平行四边形;在②中,由直线与的位置关系可判断平面与平面平行或相交;在③中,若三棱柱是直棱柱,则平面,结合①,即可得证.详解:在三棱柱中,平面截此三棱柱,分别与,,,交于点,,,,且直线平面,则,且,所以四边形是平行四边形,故①正确;∵与不一定平行∴平面与平面平行或相交,故②错误;若三棱柱是直棱柱,则平面.∴平面又∵平面∴平面平面,故③正确.故选B.点睛:本题考查命题真假的判断,是中档题,解答时需注意空间中线线、线面、面面间的位置关系的合理运用.空间几何体的线面位置关系的判定与证明:①对于异面直线的判定,要熟记异面直线的概念(把不平行也不想交的两条直线称为异面直线);②对于异面位置关系的判定中,熟记线面平行于垂直、面面平行与垂直的定理是关键.12. 直线与抛物线交于,两点,为的焦点,若,则的值是()A. B. C. 1 D.【答案】B【解析】分析:由正弦定理将角化边可得,结合抛物线的性质可知为的中点,联立方程组消元,根据根与系数的关系求出点坐标,即可求出的值.详解:分别过,项抛物线的准线作垂线,垂足分别为,,则,.设直线与轴交于点,则.∵抛物线的方程为∴抛物线的准线方程为,即点在准线上.∵∴根据正弦定理可得∴∴,即为的中点.联立方程组,消去可得:.设,,则.∵为的中点∴,即.∵∴直线的斜率为故选B.点睛:本题考查直线与抛物线的位置关系及抛物线的性质的应用,对于直线与圆锥曲线的问题,通常通过联立直线方程与圆锥曲线方程的方程组,应用韦达定理,进而求解问题,故解答本题的关键是证出为的中点.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 一个几何体的三视图如图所示,则该几何体的外接球的体积为_________.【答案】【解析】分析:由三视图可知该几何体为一个四棱锥,从一个顶点出发的三条棱两两互相垂直,可将该四棱锥补成正方体,再去求解.详解:由三视图知该几何体为四棱锥,记作,如图所示:其中平面,,平面为边长为1的正方形,将此四棱锥补成正方体,易知正方体的体对角线即为外接球直径.∴外接球的直径为,即.∴该几何体的外接球的体积为故答案为.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解;(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.14. 在等腰中,,,点为边的中心,则__________.【答案】【解析】分析:根据等腰三角形的性质判断出,结合向量的加法运算,可得,再根据,即可求出.详解:∵点为边的中心∴,∵为等腰三角形,∴,即.∴∵∴∴故答案为.点睛:本题考查了向量的加法及向量的数量积运算,解题时要注意共线同向的向量数量积结果为正,共线反向的向量数量积结果为负.15. 设,满足约束条件,则的最大值为__________.【答案】5【解析】分析:根据约束条件作出平面区域,化为,从而结合图象,即可求得最大值.详解:由约束条件作出平面区域如图所示:化为,由,解得.由图可得,当直线经过点时,直线在轴上的截距最小,此时有最大值,即.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16. 设函数满足,当时,,则___________.【答案】【解析】分析:根据题设条件以及诱导公式的利用,可求得函数的周期,再根据当时,,即可求得的值.详解:∵∴,则.∴,即.∴函数的周期为∴∵时,∴故答案为.点睛:一般含有递推关系的函数问题,可以考虑函数的周期性的问题,常见的,,,都可以指出函数的周期为,在解题时注意使用上述结论.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等比数列的前项和为,,,是,的等差中项.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2)【解析】分析:(1)由是,的等差中项,推出,再根据数列是等比数列,即可求得公比,从而可得数列的通项公式;(2)根据(1)可得数列的通项公式,进而可得数列的通项公式,再根据裂项相消法求和,即可求得.详解:(1)∵是,的等差中项,∴∴,化简得,,设等比数列的公比为,则,∵,∴,∴,∴.(2)由(1)得:.设.∴.点睛:本题主要考查求等比数列的通项公式以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 如图,在平行六面体中,,,.(1)证明:;(2)若,,求多面体的体积.【答案】(1)见解析;(2)40【解析】分析:(1)取中点,连接,,根据题设条件可推出,是正三角形,即可得证,从而可证平面,由此可证;(2)由题设知与都是边长为的正三角形,根据勾股定理可推出,从而可证平面,则是平行六面体的高,然后分别求出与,即可求得多面体的体积. 详解:(1)证明:取中点,连接,.∵∴∵在□中,∴又∵,则∴是正三角形∴∵平面,平面,∴平面∴.(2)由题设知与都是边长为的正三角形.∴∵,∴∴∵∴平面∴是平行六面体的高又∴,.∴,即几何体的体积为.点睛:求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决;②等积法:等积法包括等面积法和等体积法.19. “微信运动”是手机推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有位好友参与了“微信运动”,他随机选取了位微信好友(女人,男人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:5860 8520 7326 6798 7325 8430 3216 7453 11754 98608753 6450 7290 4850 10223 9763 7988 9176 6421 5980男性好友走路的步数情况可分为五个类别:步)(说明:“”表示大于等于,小于等于.下同),步),步),步),步及以),且三种类别人数比例为,将统计结果绘制如图所示的条形图.若某人一天的走路步数超过步被系统认定为“卫健型",否则被系统认定为“进步型”.(1)若以杨老师选取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信好友圈里参与“微信运动”的名好友中,每天走路步数在步的人数;(2)请根据选取的样本数据完成下面的列联表并据此判断能否有以上的把握认定“认定类型”与“性别”有关?(3)若从杨老师当天选取的步数大于10000的好友中按男女比例分层选取人进行身体状况调查,然后再从这位好友中选取人进行访谈,求至少有一位女性好友的概率.附:,【答案】(1)375;(2)见解析;(3)【解析】分析:(1)根据样本数据男性朋友类别设为人,结合三种类别人数比例为,即可求得,从而可得名好友中每天走路步数在步的人数;(2)根据所给数据得出列联表,计算观测值,与临界值比较即可得出结论;(3)根据分层抽样原理,利用列举法求出基本事件数,即可计算所求的概率值.详解:(1)在样本数据中,男性朋友类别设为人,则由题意可知,可知,故类别有人,类别有人,类别有人,走路步数在步的包括、两类别共计人;女性朋友走路步数在步共有人.用样本数据估计所有微信好友每日走路步数的概率分布,则:人.(2)根据题意在抽取的个样本数据的列联表:得:,故没有以上的把握认为认为“评定类型”与“性别”有关(3)在步数大于的好友中分层选取位好友,男性有:人,记为、、、,女性人记为;从这人中选取人,基本事件是,,,、、、、、、共种,这人中至少有一位女性好友的事件是,,,共种,故所求概率.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求,对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适应于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. 20. 已知平面上动点到点的距离与到直线的距离之比为,记动点的轨迹为曲线.(1)求曲线的方程;(2)设是曲线上的动点,直线的方程为.①设直线与圆交于不同两点,,求的取值范围;②求与动直线恒相切的定椭圆的方程;并探究:若是曲线:上的动点,是否存在直线:恒相切的定曲线?若存在,直接写出曲线的方程;若不存在,说明理由.【答案】(1);(2)见解析【解析】分析:(1)设设,根据动点到点的距离与到直线的距离之比为,建立方程,即可求得曲线的方程;(2)①先求出圆心到直线的距离,结合勾股定理可表示出,再根据及,即可求得的取值范围,从而可得的取值范围;②取,,直线的方程为,取,时,直线的方程为,根据椭圆对称性,猜想的方程为与直线相切,由此联立方程组,转化为恒成立,即可推出存在,若是曲线:上的动点,结合以上结论可得与直线相切的定曲线的方程为.详解:(1)设,由题意,得.整理,得,所以曲线的方程为.(2)①圆心到直线的距离∵直线于圆有两个不同交点,∴又∵∴由,得.又∵∴∴因此,,即的取值范围为.②当,时,直线的方程为;当,时,直线的方程为,根据椭圆对称性,猜想的方程为.下证:直线与相切,其中,即.由消去得:,即.∴恒成立,从而直线与椭圆:恒相切.若点是曲线:上的动点,则直线:与定曲线:恒相切.点睛:在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的方法,确定参数的取值范围.21. 已知函数(1)若曲线在点处的切线为,与轴的交点坐标为,求的值;(2)讨论的单调性.【答案】(1)或;(2)见解析【解析】分析:(1)对函数求导,再分别求出,,根据点斜式写出切线方程,然后根据与轴的交点坐标为,即可求得的值;(2)先对函数求导得,再对进行分类讨论,从而对的符号进行判断,进而可得函数的单调性.详解:(1).∴又∵∴切线方程为:令得.∴∴或.(2)=.当时,,,,为减函数,,,为增函数;当时,令,得,,令,则,当时,,为减函数,当时,,为增函数.∴∴(当且仅当时取“=”)∴当或时,为增函数,为减函数,为减函数.当时,在上为增函数.综上所述:时,在上为减函数,在上为增函数,或时,在上为减函数,在和上为增函数;时,在上为增函数.点睛:本题主要考查导数的几何意义以及利用导数研究函数的单调性的应用,属于中等题型,也是常考题.利用导数研究函数的单调性的一般步骤为:①确定函数的定义域;②求函数的导数;③若求单调区间(或证明单调性),只需在函数的定义域内解(或证明)不等式或即可.22. 在直角坐标系中,曲线的参数方程为,(为参数),为曲线上的动点,动点满足(且),点的轨迹为曲线.(1)求曲线的方程,并说明是什么曲线;(2)在以坐标原点为极点,以轴的正半轴为极轴的极坐标系中,点的极坐标为,射线与的异于极点的交点为,已知面积的最大值为,求的值.【答案】(1)见解析;(2)2【解析】分析:(1)设,,根据,推出,代入到,消去参数即可求得曲线的方程及其表示的轨迹;(2)法1:先求出点的直角坐标,再求出直线的普通方程,再根据题设条件设点坐标为,然后根据两点之间距离公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值;法2:将,代入,即可求得,再根据三角形面积公式及三角函数的图象与性质,结合面积的最大值为,即可求得的值.详解:(1)设,,由得.∴∵在上∴即(为参数),消去参数得.∴曲线是以为圆心,以为半径的圆.(2)法1:点的直角坐标为.∴直线的普通方程为,即.设点坐标为,则点到直线的距离. ∴当时,∴的最大值为∴.法2:将,代入并整理得:,令得.∴∴∴当时,取得最大值,依题意,∴.点睛:本题主要考查把参数方程转化为普通方程,在引进参数和消去参数的过程中,要注意保持范围的一致性;在参数方求最值问题中,将动点的参数坐标,根据题设条件列出三角函数式,借助于三角函数的图象与性质,即可求最值,注意求最值时,取得的条件能否成立.23. 已知.(1)若,求的取值范围;(2)已知,若使成立,求的取值范围.【答案】(1)或;(2)【解析】分析:(1)根据绝对值三角不等式,可得,求解即可得出的取值范围;(2)使成立等价于即成立,再构造,然后利用基本不等式即可求的取值范围.详解:(1)∵∴只需要∴或∴的取值范围为是或.(2)∵∴当时,∴不等式即∴,,令.∵∴(当时取“=”)∴∴.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论的思想,法二是运用数形结合的思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活使用.。
2018年山东省潍坊高三数学二模试卷(文科)Word版含解析

2018年山东省潍坊高三二模试卷(文科数学)一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁A)∩B等于()UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.66.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .升 B .升 C .升 D .升8.函数y=a |x|与y=sinax (a >0且a ≠1)在同一直角坐标系下的图象可能是( )A .B .C .D .9.三棱锥S ﹣ABC 的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB ⊥AC ,又SA=AB=AC=1,则球O 的表面积为( )A .B .C .3πD .12π10.设,若函数y=f (x )+k 的图象与x 轴恰有三个不同交点,则k的取值范围是( )A .(﹣2,1)B .[0,1]C .[﹣2,0)D .[﹣2,1)二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= .12.已知某几何体的三视图如图所示,则该几何体的体积为13.若x、y满足条件,则z=x+3y的最大值是.14.设a>0,b>0,若是4a和2b的等比中项,则的最小值为.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?17.已知=(2sinx ,sinx+cosx ),=(cosx ,sinx ﹣cosx ),函数f (x )=•.(Ⅰ)求函数f (x )的单调递减区间;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+a 2﹣c 2=ab ,若f (A )﹣m >0恒成立,求实数m 的取值范围.18.如图,底面是等腰梯形的四棱锥E ﹣ABCD 中,EA ⊥平面ABCD ,AB ∥CD ,AB=2CD ,∠ABC=.(Ⅰ)设F 为EA 的中点,证明:DF ∥平面EBC ;(Ⅱ)若AE=AB=2,求三棱锥B ﹣CDE 的体积.19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n .20.已知函数f(x)=x3﹣x﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.21.已知双曲线C: =1的焦距为3,其中一条渐近线的方程为x﹣y=0.以双曲线C的实轴为长轴,虚轴为短轴的椭圆记为E,过原点O的动直线与椭圆E交于A、B两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P满足|PA|=|PB|,求证为定值.2018年山东省潍坊高三数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共l0小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A.(1,1)B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【考点】复数的基本概念;复数代数形式的乘除运算.【分析】把已知等式两边同时乘以,然后利用复数的除法运算化简,则答案可求.【解答】解:由z(1+i)=2i,得.∴在复平面内z对应的点的坐标是(1,1).故选:A.A)∩B等于()2.设全集U=R,集合A={x|2x>1},B={x|﹣1≤x≤5},则(∁UA.[﹣1,0)B.(0,5] C.[﹣1,0] D.[0,5]【考点】交、并、补集的混合运算.【分析】求出A中不等式的解集确定出A,根据全集U=R求出A的补集,找出A补集与B的交集即可.【解答】解:由A中的不等式变形得:2x>1=20,得到x>0,∴A=(0,+∞),∵全集U=R,∴∁A=(﹣∞,0],U∵B=[﹣1,5],A)∩B=[﹣1,0].∴(∁U故选:C.3.已知命题p、q,“¬p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据复合命题真假之间的关系,以及充分条件和必要条件的定义进行判断即可.【解答】解:若¬p为真,则p且假命题,则p∧q为假成立,当q为假命题时,满足p∧q为假,但p真假不确定,∴¬p为真不一定成立,∴“¬p为真”是“p∧q为假”的充分不必要条件.故选:A.4.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x﹣2)2+(y±2)2=3 B.C.(x﹣2)2+(y±2)2=4 D.【考点】圆的标准方程.【分析】由已知圆C经过(1,0),(3,0)两点,且与y轴相切.可得圆心在直线x=2上,且半径长为2.设圆的方程为(x﹣2)2+(y﹣b)2=4.将点(1,0)代入方程即可解得.从而得到圆C的方程.【解答】解:∵圆C经过(1,0),(3,0)两点,∴圆心在直线x=2上.可设圆心C(2,b).又∵圆C与y轴相切,∴半径r=2.∴圆C的方程为(x﹣2)2+(y﹣b)2=4.∵圆C经过点(1,0),∴(1﹣2)2+b2=4.∴b2=3.∴.∴圆C的方程为.故选:D.5.执行如图所示的程序框图,则输出的k的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,输出结果.【解答】解:模拟执行程序,可得:k=1,s=1,第1次执行循环体,s=1,不满足条件s>15,第2次执行循环体,k=2,s=2,不满足条件s>15,第3次执行循环体,k=3,s=6,不满足条件s>15,第4次执行循环体,k=4;s=15,不满足条件s>15,第5次执行循环体,k=5;s=31,满足条件s>31,退出循环,此时k=5.故选:C.6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.21【考点】系统抽样方法.【分析】根据系统抽样的定义即可得到结论.【解答】解:∵高三某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本,∴样本组距为56÷4=14,则5+14=19,即样本中还有一个学生的编号为19,故选:C.7.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A.升B.升C.升D.升【考点】等比数列的通项公式.【分析】设此等差数列为{an },公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,可得4a1+6d=3,3a1+21d=4,联立解出即可得出.【解答】解:设此等差数列为{an},公差d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,联立解得a1=,d=.∴a5=+4×=.故选:C.8.函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合函数图象的对折变换法则和正弦型函数的伸缩变换,分当a>1时和当0<a<1时两种情况,分析两个函数的图象,比照后,可得答案.【解答】解:当a>1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:当0<a<1时,函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象为:比照后,发现D满足第一种情况,故选D9.三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,则球O的表面积为()A.B.C.3π D.12π【考点】球的体积和表面积.【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC的外接球的表面积.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R=.球的表面积为:4πR2=4π•()2=3π.故选:C.10.设,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是()A.(﹣2,1)B.[0,1] C.[﹣2,0)D.[﹣2,1)【考点】函数的图象.【分析】作出函数y=f(x)的图象,由题意可得,函数y=f(x)与y=﹣k的图象有3个交点,结合图象求得结果..【解答】解:设,画出y=f(x)和y=﹣k的图象,如图所示:由图象得:﹣2≤k<1函数y=f(x)与y=﹣k的图象有3个交点,即函数y=f(x)+k的图象与x轴恰有三个公共点;故选:D二、填空题:本大题共5小题,每小题5分,共25分.11.已知角α的顶点与原点重合,始边与x轴的正半轴重合,终边上一点的坐标为(3,4),则cos2α= ﹣.【考点】任意角的三角函数的定义;二倍角的余弦.【分析】根据任意角的三角函数的定义求得cosα=的值,再利用二倍角公式cos2α=2cos2α﹣1,计算求得结果.【解答】解:由题意可得,x=3、y=4、r=5,∴cosα==,∴cos2α=2cos2α﹣1=﹣,故答案为:﹣.12.已知某几何体的三视图如图所示,则该几何体的体积为12【考点】由三视图求面积、体积.【分析】由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,把数据代入棱柱的体积公式计算.【解答】解:由三视图知几何体为三棱柱,且三棱柱的高为4,底面是直角三角形,且直角三角形的两直角边长分别为3,2,∴几何体的体积V=×3×2×4=12.故答案为:12.13.若x、y满足条件,则z=x+3y的最大值是11 .【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x+3y得y=,平移直线y=,当直线y=经过点A时,对应的直线的截距最大,此时z也最大,由,解得,即A(2,3),此时z=2+3×3=11,故答案为:1114.设a>0,b>0,若是4a和2b的等比中项,则的最小值为2.【考点】基本不等式;等比数列的通项公式.【分析】是4a和2b的等比中项,可得4a•2b=,2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:是4a和2b的等比中项,∴4a•2b=,∴2a+b=1.又a>0,b>0,则=(2a+b)=5++≥5+2×=9,当且仅当a=b=时取等号.则的最小值为2.故答案为:2.15.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是.【考点】抛物线的简单性质.【分析】直线y=k(x+1)(k>0)恒过定点P(﹣1,0),由此推导出|OB|=|AF|,由此能求出点B的坐标,从而能求出k的值.【解答】解:设抛物线C:y2=4x的准线为l:x=﹣1直线y=k(x+1)(k>0)恒过定点P(﹣1,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为,∴点B的坐标为B(,),把B(,)代入直线l:y=k(x+1)(k>0),解得k=.故答案为.三、解答题:本大题共6小题,共75分.应写出证明过程或演算步骤.16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?【考点】几何概型;列举法计算基本事件数及事件发生的概率.【分析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到.【解答】解:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积π•R2,阴影部分的面积为,则在甲商场中奖的概率为:;如果顾客去乙商场,记3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3)(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种,摸到的是2个红球有(b1,b2),(b1,b3),(b2,b3),共3种,则在乙商场中奖的概率为:P2=,又P1<P2,则购买该商品的顾客在乙商场中奖的可能性大.17.已知=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+a2﹣c2=ab,若f(A)﹣m>0恒成立,求实数m的取值范围.【考点】余弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.【分析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,化简函数,利用正弦函数的单调递减区间,求函数f(x)的单调递减区间.(Ⅱ)由已知利用余弦定理可求cosC,由范围C∈(0,π),可求C的值,由题意2sin(2A﹣)>m恒成立,由A∈(0,),可求sin(2A﹣)∈(﹣,1],进而可得m的范围.【解答】解:(Ⅰ)∵=(2sinx,sinx+cosx),=(cosx,sinx﹣cosx),函数f(x)=•.∴f(x)=sin2x+sin2x﹣cos2x=2sin(2x﹣),∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,∴函数f(x)的单调递减区间为:[kπ+,kπ+],k∈Z.(Ⅱ)∵b2+a2﹣c2=ab,∴cosC===,由C∈(0,π),可得:C=,∵f(A)﹣m=2sin(2A﹣)﹣m>0恒成立,即:2sin(2A﹣)>m恒成立,∵A∈(0,),2A﹣∈(﹣,),∴sin(2A﹣)∈(﹣,1],可得:m≤﹣1.18.如图,底面是等腰梯形的四棱锥E﹣ABCD中,EA⊥平面ABCD,AB∥CD,AB=2CD,∠ABC=.(Ⅰ)设F为EA的中点,证明:DF∥平面EBC;(Ⅱ)若AE=AB=2,求三棱锥B﹣CDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)取EB的中点G,连接FG,CG,利用F为EA的中点,证明四边形CDFG为平行四边形,即可证明:DF∥平面EBC;(Ⅱ)等腰梯形ABCD中,作CH⊥AB于H,求出点B到CD的距离,即可求三棱锥B﹣CDE的体积.【解答】(Ⅰ)证明:取EB的中点G,连接FG,CG,∵F为EA的中点,∴FG∥AB,FG=AB,∵AB∥CD,AB=2CD,∴FG∥CD,FG=CD,∴四边形CDFG为平行四边形,∴DF∥CG,∵DF⊄平面EBC,CG⊂平面EBC,∴DF∥平面EBC;(Ⅱ)解:等腰梯形ABCD中,作CH⊥AB于H,则BH=,在Rt△BHC中,∠ABC=60°,则CH=tan60°=,即点C到AB的距离d=,则点B到CD的距离为,∵EA⊥平面ACD,∴三棱锥B﹣CDE的体积为V==.E﹣BDC19.已知数列{a n }的前n 项和,数列{b n }满足3n ﹣1b n =a 2n ﹣1(I )求a n ,b n ;(Ⅱ)设T n 为数列{b n }的前n 项和,求T n . 【考点】数列的求和;数列递推式.【分析】(Ⅰ)当n ≥2时利用a n =S n ﹣S n ﹣1计算即得结论,再代入得到b n =,(Ⅱ)通过错位相减法即可求出前n 项和. 【解答】解:(Ⅰ)∵S n =n 2+2n ,∴当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣(n ﹣1)2﹣2(n ﹣1)=2n+1(n ≥2), 又∵S 1=1+2=3即a 1=1满足上式, ∴数列{a n }的通项公式a n =2n+1; ∴3n ﹣1b n =a 2n ﹣1=2(2n ﹣1)+1=4n ﹣1,∴b n =,(Ⅱ)T n =+++…++,∴T n =+++…++,∴T n =3+4(++…+)﹣=3+4•﹣=5﹣∴T n =﹣20.已知函数f (x )=x 3﹣x ﹣.(Ⅰ)判断的单调性;(Ⅱ)求函数y=f (x )的零点的个数;(Ⅲ)令g (x )=+lnx ,若函数y=g (x )在(0,)内有极值,求实数a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(Ⅰ)化简,并求导数,注意定义域:(0,+∞),求出单调区间;(Ⅱ)运用零点存在定理说明在(1,2)内有零点,再说明f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)对g (x )化简,并求出导数,整理合并,再设出h (x )=x 2﹣(2+a )x+1,说明h (x )=0的两个根,有一个在(0,)内,另一个大于e ,由于h (0)=1,通过h ()>0解出a 即可.【解答】解:(Ⅰ)设φ(x )==x 2﹣1﹣(x >0),则φ'(x )=2x+>0,∴φ(x )在(0,+∞)上单调递增;(Ⅱ)∵φ(1)=﹣1<0,φ(2)=3﹣>0,且φ(x )在(0,+∞)上单调递增,∴φ(x )在(1,2)内有零点,又f (x )=x 3﹣x ﹣=x•φ(x ),显然x=0为f (x )的一个零点,∴f (x )在(0,+∞)上有且只有两个零点;(Ⅲ)g (x )=+lnx=lnx+,则g'(x )==,设h (x )=x 2﹣(2+a )x+1,则h (x )=0有两个不同的根x 1,x 2,且有一根在(0,)内,不妨设0<x 1<,由于x 1x 2=1,即x 2>e ,由于h (0)=1,故只需h ()<0即可,即﹣(2+a )+1<0,解得a >e+﹣2,∴实数a 的取值范围是(e+﹣2,+∞).21.已知双曲线C :=1的焦距为3,其中一条渐近线的方程为x ﹣y=0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A 、B 两点. (Ⅰ)求椭圆E 的方程;(Ⅱ)若点P 为椭圆的左顶点,,求|的取值范围;(Ⅲ)若点P 满足|PA|=|PB|,求证为定值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知条件推导出,,由此能求出椭圆E 的方程.(Ⅱ)由已知条件知P (﹣,0),设G (x 0,y 0),由,推导出G (﹣,0),由此能求出的取值范围.(Ⅲ)由|PA|=|PB|,知P 在线段AB 垂直平分线上,由椭圆的对称性知A ,B 关于原点对称,由此能够证明为定值.【解答】(Ⅰ)解:∵双曲线C : =1的焦距为3,∴c=,∴,①∵一条渐近线的方程为x ﹣y=0,∴,②由①②解得a 2=3,b 2=,∴椭圆E 的方程为.(Ⅱ)解:∵点P 为椭圆的左顶点,∴P (﹣,0),设G (x 0,y 0),由,得(x 0+,y 0)=2(﹣x 0,﹣y 0),∴,解得,∴G(﹣,0),设A(x1,y1),则B(﹣x1,﹣y1),||2+||2=()2++(x1﹣)2+=2+2+=2+3﹣x+=+,又∵x1∈[﹣,],∴∈[0,3],∴,∴的取值范围是[].(Ⅲ)证明:由|PA|=|PB|,知P在线段AB垂直平分线上,由椭圆的对称性知A,B关于原点对称,①若A、B在椭圆的短轴顶点上,则点P在椭圆的长轴顶点上,此时==2()=2.②当点A,B,P不是椭圆的顶点时,设直线l的方程为y=kx(k≠0),则直线OP的方程为y=﹣,设A(x1,y1),由,解得,,∴|OA|2+|OB|2==,用﹣代换k,得|OP|2=,∴==2,综上所述: =2.。
最新-山东省潍坊市三县2018届高三数学18月联考试题 文

潍坊三县联合阶段性检测数学(文)试题一、选择题(把正确答案涂到答题卡上,每题5分,共60分)1.定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )(A )0 (B )6 (C )12 (D )18 2. 三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则c o s B =( )A .14 B .4C .34 D .33.“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 4. 某几何体的三视图如图所示,则它的体积是( )A .283π-B .83π-C .82π-D .23π 5. 设复数7sin ,34iz i iθ+=-+其中i 为虚数单位,R θ∈,则z 的取值范围是( )A.⎡⎣B.⎤⎦C.D.⎡⎣6. P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.9B.8C.7D.67. 已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是 ( ) (A )21 (B )20 (C )19 (D ) 18 8. 设,,是任意的非零平面向量,且相互不共线,则①0)()(=⋅-a <③b a c a c b )()(-⋅不与c 垂直④)23)(23(b a b a -=-+ 中,是真命题的有( )A.①②B.②③C.④D.②④9.若对,),0,(0R x a ∈∃-∞∈∀使a x a ≤0cos 成立,则0cos x 6π⎛⎫-= ⎪⎝⎭( )A.21 B.23 C.21- D.23- 10.若直线y x b =+与曲线3y =-有公共点,则b 的取值范围是( )A.[1-1+B.[1C.[1-1+11. 已知0x 是函数1()21f x x x=+-的一个零点,若()101,x x ∈,()20,x x ∈+∞,则( ) (A )()()120,0f x f x << (B )()()120,0f x f x <>(C )()()120,0f x f x >< (D )()()120,0f x f x >>12. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是(A)80 (B) 85 (C) 90 (D)95 二、填空题:本大题共4个小题,每小题4分,共计16分13. 过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = . 14. 已知向量a =(x-1,2),b =(4,y),若a b ⊥,则93xy+的最小值为 .15. 设圆锥曲线r 的两个焦点分别为12,F F ,若曲线r 上存在点P 满足1122::4:3:2P F F F P F =,则曲线r 的离心率等于 16.已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是 三、解答题17.已知函数()2cossin 222x x x f x ⎫=∙-⎪⎭(1)设,22x ππ⎡⎤∈-⎢⎥⎣⎦,且()1f x =,求x 的值;(2)在ABC ∆中,1,()1AB f C =,且ABC ∆sin sin A B +的值.18.已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,AB=5. 点D 是AB 的中点, (I )求证:AC ⊥BC 1;(II )求证:AC 1//平面CDB 1;(III )求异面直线 AC 1与 B 1C 所成角的余弦值.20. 设函数2()ln f x x ax b x =++,曲线()y f x =过P (1,0),且在P 点处的切斜线率为2.(I )求a ,b 的值;(II )证明:()22f x x ≤-.21.如图,椭圆222:12x y C a +=的焦点在x 轴上,左右顶点分别为1,A A ,上顶点为B ,抛物线12,C C 分别以A,B 为焦点,其顶点均为坐标原点O ,1C 与2C 相交于直线y =上一点P.(1)求椭圆C 及抛物线12,C C 的方程;(2)若动直线l 与直线OP 垂直,且与椭圆C 交于不同的两点M,N ,已知点()Q ,求QM QN ∙的最小值.22.已知函数2()sin 2f x x b x =+-,()()2F x f x =+,且对于任意实数x ,恒有()()0F x F x --=. (1)求函数()f x 的解析式;(2)已知函数()()2(1)ln g x f x x a x =+++在区间()0,1上单调递减,求实数a 的取值范围; (3)函数()21()ln 1()2h x x f x k =+--有几个零点?(注:()'222ln(1)1xx x+=+)DCBAD ABDBC BC13.2; 14. 6 ; 15. 12或32; 16.(1)(4)17.(1)2()2sin cos 222x x x f x =-cos )sin x x +-=2cos 6x π⎛⎫+ ⎪⎝⎭由2cos 16x π⎛⎫++= ⎪⎝⎭,得1cos()62x π+=, 因为,22x ππ⎡⎤∈-⎢⎥⎣⎦, 所以2,633x πππ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦于是63x ππ+=-或63x ππ+=所以2x π=-或6π(2)因为()0,C π∈,由(1)知6C π=又因1sin 2ABCSab C =1sin 26ab π= 于是ab =由余弦定理得2212cos 6a b ab π=+-226a b =+- 所以227a b +=所以2a b +=由正弦定理得sin sin sin 12A B C a b c ===所以1sin sin ()12A B a b +=+= 18. (Ⅰ)由题设,2,21121213q a a q a a a a +=+=即 .012,021=--∴≠q q a.211-=∴或q(Ⅱ)若.2312)1(2,12nn n n n S q n +=⋅-+==则 当.02)2)(1(,21>+-==-≥-n n S b S n n n n 时 故.n n b S >若.49)21(2)1(2,212nn n n n S q n +-=--+=-=则 当,4)10)(1(,21---==-≥-n n S b S n n n n 时故对于.,11;,10;,92,n n n n n n b S n b S n b S n N n <≥==>≤≤∈+时当时当时当19. (I )直三棱柱ABC -A1B1C1,底面三边长AC=3,BC=4,AB=5, ∴ AC ⊥BC ,又因为 1CC ⊥面ABC 1CC AC ∴⊥ 又 1CC BC C ⋂= AC ∴⊥面11B BCC1B C ⊂面11B BCC ∴ AC ⊥BC 1;(II )设CB1与C1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC1的中点,∴ DE//AC1, ∵ DE ⊂平面CDB1,AC1⊄平面CDB1,∴ AC1//平面CDB1; (III )∵ DE//AC1,∴ ∠CED 为AC1与B1C 所成的角,在△CED 中,ED=21AC 1=25,CD=21AB=25,CE=21CB1=22,∴8cos 522CED ∠==⋅,∴ 异面直线 AC1与 B1C所成角的余弦值.20. (I )()12.bf x ax x '=++ 由已知条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即,解得1, 3.a b =-= (II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+ 设2()()(22)23ln ,g x f x x x x x =--=--+则 3(1)(23)()12.x x g x x x x -+'=--+=-01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即21. 解:(Ⅰ)由题意,A (a ,0),B (0,2),故抛物线C 1的方程可设为ax y 42=,C 2的方程为y x 242=………… 1分由⎪⎪⎩⎪⎪⎨⎧===xy y x ax y 224422 得)28,8(,4P a =………… 3分 所以椭圆C:121622=+y x ,抛物线C 1:,162x y =抛物线C 2:y x 242=…5分 (Ⅱ)由(Ⅰ)知,直线OP 的斜率为2,所以直线l 的斜率为22-设直线l 方程为b x y +-=22由⎪⎪⎩⎪⎪⎨⎧+-==+b x y y x 22121622,整理得0)168(28522=-+-b bx x ………… 6分 因为动直线l 与椭圆C 交于不同两点,所以0)168(2012822>--=∆b b 解得1010<<-b ………… 7分设M (11,y x )、N (22,y x ),则5168,52822121-==+b x x b x x 58)(2221)22)(22(2221212121-=++-=+-+-=b b x x b x x b x b x y y …8分 因为),2(),,2(2211y x QN y x QM +=+=所以2)(2),2)(,2(2121212211++++=++=⋅y y x x x x y x y x5141692-+=b b ………… 10分因为1010<<-b ,所以当98-=b 时,⋅取得最小值 其最小值等于938514)98(516)98(592-=--+-⨯………… 12分22.1时,函数有三个零点;(5)当k<1时函数有两个零点.。
高三数学-2018年潍坊市高三联考 精品

2018 年 潍 坊 市 高 三 联 考数 学 试 题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
共120分。
考试时间100分钟。
第I 卷(选择题 共50分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率 是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n p P C k P --=)1()(一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设P={3,4,5},Q={4,5,6,7},定义P ※Q=},|),{(Q b P a b a ∈∈,则P ※Q 中元素的个数为( )A .3B .4C .7D .122.已知向量||),15sin ,15(cos ),75sin ,75(cos b a b a -==那么的值是( )A .21 B .22 C .23 D .13.3221x e y -⋅=π的部分图象大致是 ( )clS 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 球的体积公式 334R V π=球其中R 表示球的半径4.给出下列四个命题: ①两个事件对立是这两个事件互斥的充分不必要条件; ②如果两个事件是相互独立事件,那么它们一定不是互斥事件;③若A 为一随机事件,则)()()(A P A P A A P ⋅=⋅;④设事件A ,B 的概率都大于零,若A+B 是必然事件,则A ,B 一定是对立事件. 其中正确的命题的个数是 ( ) A .1 B .2 C .3 D .4 5.已知直线a 、b 平面α、β,以下推理正确的是 ( )A .a b b a ⇒⎭⎬⎫⊥⊥α∥αB .a a ⇒⎭⎬⎫⊥βα∥αC .αβα⊥=⎭⎬⎫⊥a a D .αβα⊥⇒⎭⎬⎫⊥a a 6.已知函数x y a log =的图象与其反函数的图象有交点,且交点的横坐标为0x ,则有( )A .110>>x a 且B .10100<<<<x a 且C .1010<<>x a 且D .1100><<x a 且7.(理)已知函数⎪⎩⎪⎨⎧+>--+=11132)(2ax x x x x x f 在点1=x 处连续,则a 的值是( )A .2B .3C .-2D .-4(文)一个容量为20的样本数据,数据的分组及各组的频数如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4;(60,70),2. 则样本在区间(-∞,50)上的频率为 ( )A .0.5B .0.7C .0.25D .0.188.设F 1,F 2是双曲线1422=-y x 的两个焦点,点P 在双曲线上,且021=⋅PF PF , 则||||21PF PF ⋅的值等于 ( )A .2B .22C .4D .8∥β ∥β ∥β1≤x9.一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点亮方式增加舞台效果,要求设计者按照每次点亮时,必须有6只是关的,且相邻的灯不能同时被关掉,两端的灯必须点亮的要求进行设计,那么不同点亮方式的种数是 ( ) A .28 B .84 C .180 D .36010.一机器狗每秒钟前进或后退一步,程度设计师让机器狗以前进3步,然后再后退2步的规律移动. 如果将此机器狗放在数轴的原点,面向正的方向,以1步的距离为1单位长,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,那么下列结论中错误..的是( )A .P (3)=3B .P (5)=1C .P (101)=21D .P (118)<P (118)第II 卷(非选择题 共70分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 11.(理)设复数zi z 1,3那么+=等于 .(文)函数44313+-=x x y 单调减区间是 . 12.从4名男生和2名女生中选出3名代表,至少有一男一女的概率是 . 13.一个高中研究性学习小组对本地区2000年至2018年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.14.在空间中,已知平面α通过(3,0,0),(0,4,0)及z 轴上一点(0,0,a ). 如果平面xoy 与α平面所成的角为45°,那么a =.三、解答题:本大题共5小题;共54分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分10分) 设.|4|log |2|log .,12->+∈++=x x R x x x a a a 解不等式16.(本小题满分10分)高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.1已知每盘比赛双方胜出的概率均为.2(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少?17.(本小题满分10分)如图,在三棱锥P—ABC中,△ABC是正三角形,∠PCA=90°,D是PA的中点,二面角P—AC—B为120°,PC=2,AB=23. 取AC的中点O为坐标原点建立空间直角坐标系,如图所示,BD交z轴于点E.(II)求BD与底面ABC所成角的余弦值.18.(本小题满分12分)(理)王先生因病到医院求医,医生给开了处方药(片剂),要求每天早晚各服一片,已知该药片每片220毫克,他的肾脏每12小时从体内排出这种药的60%,并且如果这种药在他体内的残留量超过386毫克,就将产生副作用,请问:(I)王先生第一天上午8时第一次服药,则第二天早晨8时服完药时,药在他体内的残留量是多少?(II)如果王先生坚持长期服用此药,会不会产生副作用,为什么?(文)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元.(I)问第几年后开始获利?(II)若干年后,有两种处理方案:方案一:年平均获利最大时,以26万元出售该渔船;方案二:总纯收入获利最大时,以8万元出售该渔船.51 )问哪种方案合算?(注:取2.719.(本小题满分12分)(理)设函数)(x f 是定义在]1,0()0,1[ -上的奇函数,当)0,1[-∈x 时a xax x f (12)(2+=为实数). (I )当]1,0(∈x 时,求)(x f 的解析式;(II )若1->a ,试判断]1,0()(在x f 上的单调性,并证明你的结论; (III )是否存在a ,使得当)(,]1,0(x f x 时∈有最大值-6?(文)设函数)(x f 是定义在]1,0()0,1[ -上的偶函数,当)0,1[-∈x 时,a ax x x f ()(3-=为实数).(I )当]1,0(∈x 时,求)(x f 的解析式;(II )若3>a ,试判断]1,0()(在x f 上的单调性,并证明你的结论; (III )是否存在a ,使得当)(,]1,0(x f x 时∈有最大值1?数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DDCAC BBAAD二、填空题:本大题共4小题,每小题4分,共16分. 11.(理)i 101103+ (文)(-2,2) 12. 0.8 13. 85 14. 512三、解答题:本大题共5小题,共54分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分为10分)解:(1)当04,02,0110<->+<<-<<x x x a 时即.…………………………2分 故不等式可化简为.1,42<-<+x x x 解得又,01<<-x 故此时不等式的解为:.01<<-x ………………………………5分(2)当a >1时,即4,2,01≠-≠>-<x x x x 且则当或时, 不等式可变为|,4||2|->+x x 两边平方解得:.1>x 故此时不等式的解为:.41≠>x x 且综上(1)(2),原不等式解集为:),4()4,1()0,1(+∞- ……………………10分16.(本小题满分10分)解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 17.(本小题满分10分) 解:(I )∵O 是AC 中点,D 是AP 的中点,,21=∴ ∵∠PCA=90° ∴AC ⊥OD.又∵△ABC 为正三角形, ∴BO ⊥AC. ∴∠BOD 为二面角P —AC —B 的平面角, ∴∠BOD=120°,∵OB=Absin60°=3,∴点B 的坐标为(3,0,0)………………………………2分延长BO 至F 使OF ⊥BF ,则OF=ODcos60°=21,DF=ODsin60°=23,∴点D 的坐标为)23,0,21(-.……………………………………………………4分设点P 的坐标为(x ,y ,z ),⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==--=∴-=-∴=.3,3,1,3,03,1),3,(21)23,0,21(,21z y x z y x z y x∴点P 的坐标为(3,3,1-)………………………………………………6分 (II )∵ BD 在平面ABC 上的射影为BO ,∴∠OBD 为BD 与底面ABC 所成的角.………………………………………8分,13267,cos ).0,0,3(),23,0,27(=>=<-=-=∴ BD 与底面ABC 所成角的余弦值为.13267……………………………10分 18.(理)(本小题满分12分)解:(I )设第n 次服药后,药在他体内的残留量为n a 毫克,依题意,,4.1220%)601(220,220121⨯=-+==a a a ……………………………2分2.3434.02204.0220220%)601(220223=⨯+⨯+=-+=a a (毫克),第二天早晨是他第三次服药,故服药后药在体内的残留量为343.2(毫克)…5分 (II )依题意,%)601(2201-+=-n n a a ………………………………………………7分),4.01(311006.04.012204.014.01220)4.04.04.01(2202204.02204.02204.0220)4.0220(4.02204.0220121221n n n n n n n a a -⨯=-⨯=--⨯=++++=⨯++⨯+⨯+==++=+=----………10分若长期服药,药在体内的残留量为.386311006.04.01220lim lim <=-⨯=∞→∞→n n n n a ∴不会产生副作用.……………………………………………………………………12分(文)解:(I )由题知,每年的费用是以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为)(n f ,则98)]48(1612[50)(-++++-=n n n f984022-+-=n n 由题知获利即为,0)(>n f 由0984022>-+-n n , 得51105110+<<-n,,2.178.2*∈<<∴N n n 而故17,,5,4,3 =n .∴当n=3时,即第3年开始获利.……………………………………………………6分 (II )方案一:年平均收入).49(240)(nn n n f +-= ,1449249=⋅≥+nn n n 当且仅当n=7时取“=”1214240)(=⨯-≤∴nn f (万元),即第7年平均收益最大,总收益为 12×7+26=110(万元)………………………………………………………………9分 方案二:.102)10(298402)(22+--=-+-=n n n n f当n =10时,f (n )取最大值118,总收益为118+8=110(万元)……………………11分 比较上述两种方案,总收益均为110万元,而方案一中n=7,故选方案一…………12分 19.(本小题满分12分) (理)解:(I )设),0,1[],1,0(-∈-∈x x 则]1,0(,12)(,)(,12)(22∈-=∴+-=-x x ax x f x f x ax x f 是奇函数 ………3分 (II )),1(222)(33xa x a x f +=+=,01,11],1,0(,133>+≥∈->xa x x a]1,0()(.0)(在x f x f ∴>∴上是单调递增的.……………………………………7分 (III )当]1,0()(,1在时x f a ->单调递增, 256)1()(max -=⇒-==a f x f (不合题意,舍去) 当31,0)(,1ax x f a -=='-≤则,……………………………………………10分 如下表,]1,0(22226)1()(3∈=⇒-=⇒-=-=x a a f x f man ,∴存在]1,0()(,22在使x f a -=上有最大值-6………………………………12分(文)解:(I )设),0,1[],1,0(-∈-∈x x 则].1,0()(,)(,)(33∈+-=+-=-x axx x f x f ax x x f 为偶函数…………3分(II )),0,3[3]1,0(,3)(22-∈⇒∈+-='x x a x x f又]1,0()(,0)(,03,32在即x f x f x a a ∴>'>-∴>上为增函数.……………7分 (III )当.211)1()(,]1,0()(,3max =⇒=-==>a a f x f x f a 上是增函数在时 (不合题意,舍去)当.3,0)(,3)(,302ax x f x a x f a =='-='≤≤令时如下表:,13)3(3)(3=+-=∴a a a a x x f 处取最大值在 .134273<⇒<=⇒a ………………………………………………10分 当]1,0()(,]1,0()(,03)(,02在上单调递减在时x f x f x a x f a <-='<无最大值.∴存在]1,0()(,4273在使x f a =上有最大值1.…………………………………12分。
山东省潍坊市临朐新华中学2018-2019学年高二数学文联考试卷含解析

山东省潍坊市临朐新华中学2018-2019学年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下面几种推理中是演绎推理的序号为()A.由金、银、铜、铁可导电,猜想:金属都可导电;B.猜想数列的通项公式为;C.半径为圆的面积,则单位圆的面积;D.由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为.参考答案:C略2. 已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. C.D.2参考答案:B3. 已知复数z满足,则z=( )A. B. C. D.参考答案:D试题分析:由得,故选D.4. 已知定义在R上的奇函数满足,当时,,则()A. 2019B. 1C. 0D. -1参考答案:C【分析】根据题意推导出函数的对称性和周期性,可得出该函数的周期为,于是得出可得出答案。
【详解】函数是上的奇函数,则,,所以,函数的周期为,且,,,,,,,故选:C。
【点睛】本题考查抽象函数求值问题,求值要结合题中的基本性质和相应的等式进行推导出其他性质,对于自变量较大的函数值的求解,需要利用函数的周期性进行求解,考查逻辑推理能力与计算能力,属于中等题。
5. 现要制作一个圆锥形漏斗,其母线长为t,要使其体积最大,其高为()A..B..C...D..参考答案:B【考点】旋转体(圆柱、圆锥、圆台).【分析】设圆锥形漏斗的高为h,我们可以表示出底面半径r,进而得到圆锥体积的表达式,利用导数法,易得到体积取最大值时,高h与母线l之间的关系.【解答】解:设圆锥形漏斗的高为h,则圆锥的底面半径为,(0<h<t)则圆锥的体积V=?π(t2﹣h2)?h=﹣h3+h则V′=﹣πh2+,令V′=0则h=±t∵0<h<t∴当高h=t时,圆锥的体积取最大值,故选:B.6. 已知函数,则的解集是()A. [-1,2)B.(-1,2)C.(0,2]D. (0,2)参考答案:D【分析】作出函数的图象,结合图象即可得到结果.【详解】函数,作出其图像:若,则,或,解得:无解故解集:故选:D【点睛】本题考查分段函数的图像与性质,考查分类讨论与数形结合思想,属于中档题.7. 已知抛物线x2=2py(p>0)的准线经过点(﹣1,﹣1),则抛物线的焦点坐标为()A.(0,1)B.(0,2)C.(1,0)D.(2,0)参考答案:A【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用抛物线x2=2py(p>0)的准线经过点(﹣1,﹣1),求得=1,即可求出抛物线焦点坐标.【解答】解:∵抛物线x2=2py(p>0)的准线经过点(﹣1,﹣1),∴=1,∴该抛物线焦点坐标为(0,1).故选A.【点评】本题考查抛物线焦点坐标,考查抛物线的性质,比较基础.8. 若函数f(x)=x2+2x﹣3lnx+4a的极小值为﹣,则a的值为()A.﹣2 B.﹣1 C.﹣4 D.﹣3参考答案:B【考点】6D:利用导数研究函数的极值.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值,求出a的值即可.【解答】解:函数的定义域为:x>0;f′(x)=x+2﹣,令f′(x)>0,解得:1<x,令f′(x)<0,解得:0<x<1,故f(x)在(0,1)递减,在(1,+∞)递增,∴f(x)极小值=f(1)==,解得:a=﹣1,故选:B.9. 直线过点且与圆相切,则的斜率是()A.;B.;C. ;D..参考答案:D10. 阅读下图左边的流程图,若输入,则输出的结果是()A.2 B. 4 C.5 D. 6参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.参考答案:[4,+∞)或(﹣∞,0]【考点】等差数列的性质;基本不等式;等比数列的性质.【分析】由题意可知===++2.由此可知的取值范围.【解答】解:在等差数列中,a1+a2=x+y;在等比数列中,xy=b1?b2.∴===++2.当x?y>0时, +≥2,故≥4;当x?y<0时, +≤﹣2,故≤0.答案:[4,+∞)或(﹣∞,0]12. 已知点P在△ABC所在平面外,直线PA与AB、AC所成的角均为arcsin,且AB = AC =,BC =,则异面直线PA与BC的距离是。
【高三数学试题精选】潍坊市2018年高三数学上学期期中文科试题(有答案)

潍坊市2018年高三数学上学期期中文科试题(有答案)
5 潍坊市4D.4
2.
A.2B.-2c.6D.-6
3.
4.
5.若定义在R上的函数满足则对于任意的,都有
A.充分不必要条B.必要不充分条
c.充分必要条 D.既不充分也不必要条
6.已知函数,则的值为
7.,三角形的面积,则三角形外接圆的半径为
8.已知,若是的最小值,则的取值范围为
A.[-1,2] B.[-1,0] c.[1,2] D.[0,2]
9.已知
10.已知,符号表示不超过x的最大整数,若函数有且仅有3个零点,则的取值范围是()
第Ⅱ卷(共100分)
二、填空题本大题共5小题,每小题5分,共25分,把答案填在答案纸的相应位置上。
11.过曲线上点p处的切线平行于直线=3x+2,那么点P的坐标为______.。
(优辅资源)山东省潍坊市高三下学期一模考试数学(文)试题Word版含答案

山东省潍坊市2018届高三下学期一模考试数学(文)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A.1 D 2.)AC3.)A.1 D4.以是( )A. B . C .D5.2)A6.)A.26 B.32 C.40 D.467.)A.08.如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A9.对称.给出下面四个结论:图象关于原点对称;的最大值为1.其中正确的是()A.①② B.③④ C.①③ D.②④10.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的.则获得第一名的同学为()A.甲 B.乙 C.丙 D.丁11.则该椭圆的离心率为()A12.)A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.14.OP=15.162的动点,给出下列四个结论:2;其中所有正确结论的序号为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(1(2.18..(1)证明(2体的体积之比.19.某公司共有10条产品生产线,不超过5条生产线正常工作时,每条生产线每天纯利润为1100元,超过5条生产线正常工作时,超过的生产线每条每天纯利润为800元,原生产线利润保持不变.未开工的生产线每条每天的保养等各种费用共100元..(17700元时工作的生产线条数;(2)为保证新开的生产线正常工作,需对新开的生产线进行检测,现从该生产线上随机抽取100所示的频率分布直方图.以频率值作为概率估计值.评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;20.一动点.(1)求抛物线方程;(2.21.(1(2(3)..请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(1(2.23.选修4-5:不等式选讲(1.(2优质文档试卷答案一、选择题1-5:DCBDA 6-10:CBCCA 11、12:DB二、填空题①②④三、解答题17. (1(218.证明:(1)解:(2.:由(119.解:(18条生产线正常工作. (2∵不满足至少两个不等式成立,∴该生产线需检修.20.解:(1)由题意知(2221.解:(1.(2.1;(3.1或2....2,满足题意.22.解:(I )(223.解:(1(2解得。
高三数学-2018年潍坊市高三统一考试数学(文) 精品

2018年潍坊市高三统一考试数学试题(文史类)本试卷分I 卷(选择题)和第II 卷)(非选择题)两部分。
共150分。
考试时间120分钟。
第I 卷(选择题 共60分)如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是 P ,那么n 次独立重复试验中恰好发生k 次的 概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数)2(cos 2π+=x y 是( )A .最小正周期是π的偶函数B .最小正周期是π的奇函数C .最小正周期是2π的偶函数D .最小正周期是2π的奇函数 2.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 ( )A .01=+-y xB .0=-y xC .01=++y xD .0=+y x 3.函数x x y 33-=的单调递减区间是( )A .(-∞,0)B .(0,+∞)C .(-1,1)D .(-∞,-1),(1,+∞)4.如果平面的一条斜线和它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是( )正棱锥、圆锥的侧面积公式cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长,球的体积公式334R V π=球其中R 表示球的半径A .90°B .60°C .45°D .30° 5.已知直线α平面⊥l ,直线β平面⊂m ,给出下列命题( )①α∥m l ⊥⇒β; ②l ⇒⊥βα∥m ③l ∥βα⊥⇒m ④α⇒⊥m l ∥βA .①②③B .②③④C .②④D .①③6.已知a b a ,0,0>>、b 的等差中项是βαβα++=+=则且,1,1,21bb a a 的最小值是 ( )A .3B .4C .5D .6 7.已知O 、A 、B 三点的坐标分别为O (0,0),A (3,0),B (0,3),点P 在线段AB 上,且t t ⋅≤≤=则),10(的最大值为 ( )A .3B .6C .9D .128.设A 、B 是两个集合,定义}2|1||{},,|{≤+=∉∈=-x x M B x A x x B A 若且, ∈==αα|,sin ||{x x N R },则M -N=( )A .[-3,1]B .[-3,0)C .[0,1]D .[-3,0]9.如图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形 状为 ( )10.直线l 是双曲线)0,0(12222>>=-b a by a x 的右准线,以原点为圆心且过双曲线的顶点的圆,被直线l 分成弧长为2 : 1的两段圆弧,则该双曲线的离心率是( )A .2B .2C .26 D .511.在某次数学测验中,学号)4,3,2,1(=i i 的四位同学的考试成绩}98,96,93,92,90{)(∈i f , 且满足)4()3()2()1(f f f f <<<,则这四位同学的考试成绩的所有可能情况的种数为 ( )A .15种B .10种C .9种D .5种12.某书店发行一套教学辅导书,定价每套20元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省潍坊市新华中学高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.176参考答案:B2. 《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺参考答案:B【考点】等差数列的通项公式.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.3. 已知i是虚数单位,a,b∈R,且,则a+b=()(A)1 (B)-1 (C)-2(D)-3参考答案:D略4. 右图是一个几何体的三视图(左视图中的弧线是半网),则该几何体的表面积A.20+3πB.24+3πC.20+4πD.24+4π参考答案:A略5. 已知是虚数单位,若复数是纯虚数,则实数等于()A.2B.C.D.参考答案:A.试题分析:利用复数的运算法则化简复数,由纯虚数的定义知,,解得.故应选A.考点:复数的代数表示法及其几何意义.6. 当正整数集合A满足:“若x∈A,则10﹣x∈A”.则集合A中元素个数至多有()A.7 B.8 C.9 D.10参考答案:C【考点】15:集合的表示法.【分析】由x∈A,则10﹣x∈A可得:x>0,10﹣x>0,解得:0<x<10,x∈N*.若1∈A,则9∈A.同理可得:2,3,4,5,6,7,8,都属于集合A.即可得出.【解答】解:由x∈A,则10﹣x∈A可得:x>0,10﹣x>0,解得:0<x<10,x∈N*.若1∈A,则9∈A.同理可得:2,3,4,5,6,7,8,都属于集合A.因此集合A中元素个数至多有9个.故选:C.7.已知函数的最大值是4,最小值是0,最小正周期是,直线是其图象的一条对称轴,则下面各式中符合条件的解析式是()A. B.C. D.参考答案:B8. .已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的( )A. B.C. D.参考答案:C略9. 若(i为虚数单位),则z的共轭复数是A. B. C. D.参考答案:D10. 已知角的终边与单位圆交于,则()A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为 .参考答案:12. 下列使用类比推理所得结论正确的序号是______________(1)直线,若,则。
类推出:向量,若则(2)同一平面内,三条不同的直线,若,则。
类推出:空间中,三条不同的直线,若,则(3)任意则。
类比出:任意则(4)、以点为圆心,为半径的圆的方程是。
类推出:以点为球心,为半径的球的方程是参考答案:(4)13. 当时,不等式恒成立,则实数的取值范围是.参考答案:略14. 方程表示焦点在轴的椭圆时,实数的取值范围是____________参考答案:15. 直线y=x+3的倾斜角为▲参考答案:16. 已知等比数列{a n}的首项为a1,公比为q,前n项和为S n,记数列{log2a n}的前n项和为T n,若a1∈[,],且=9,则当n= 时,T n有最小值.参考答案:11【考点】等比数列的前n项和.【专题】方程思想;转化思想;数学模型法;等差数列与等比数列.【分析】利用等比数列的前n项和公式可得q,利用对数的运算性质及其等差数列的前n 项和公式可得T n,再利用二次函数的单调性即可得出.【解答】解:q=1不满足条件,舍去.∵=9,∴=1+q3=9,解得q=2.∴,log2a n=log2a1+(n﹣1).∴T n=nlog2a1+=+n,∵a1∈[,],∴log2a1∈[﹣log22016,﹣log21949],∴﹣=∈,∵1024=210<1949<2016<2048=211,∴>>>,∴当n=11时,T n取得最小值.故答案为:11.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质、不等式的性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.17. 已知曲线C:y=lnx﹣4x与直线x=1交于一点P,那么曲线C在点P处的切线方程是.参考答案:3x+y+1=0【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:由已知得y′=﹣4,所以当x=1时有y′=﹣3,即过点P的切线的斜率k=﹣3,又y=ln1﹣4=﹣4,故切点P(1,﹣4),所以点P处的切线方程为y+4=﹣3(x﹣1),即3x+y+1=0.故答案为3x+y+1=0.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.三、解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. (本小题满分12分)已知的图象为曲线,是曲线上的不同点,曲线在处的切线斜率均为.(1)若,函数的图象在点处的切线互相垂直,求的最小值;(2)若的方程为,求的值.参考答案:(1)当且仅当或时取最小值1(2)设上即将代入上式得得同理,且均满足方程故19. 如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证://平面;(2)求证:;(3)求三棱锥的体积.参考答案:解:(1)连结,在中,、分别为,的中点,则2)(3)且,,∴,即==略20. (本小题满分14分)已知函数(I)若函数f(x)在x=1处的切线与直线平行,求a的值:(II)求函数f(x)的单调区间;(Ⅲ)在(I)的条什下,若对职恒成立,求实数的取值范围.参考答案:(I) ;(II) 见解析;(Ⅲ)[-5,-1]21. 已知等差数列{a n}的公差不为零,且a3=5,a1,a2.a5成等比数列(I)求数列{a n}的通项公式:(II)若数列{b n}满足b1+2b2+4b3+…+2n﹣1b n=a n求数列{b n}的通项公式.参考答案:(I)设等差数列的公差为d由题意可得,∴解可得,∴=n+n(n﹣1)=n2 ----------6分(II)∵b1+2b2+4b3+…+2n﹣1b n=a n,∴b1+2b2+4b3+…+2n﹣1b n=a n,b1+2b2+4b3+…+2n b n+1=a n+1,两式相减可得,2n b n=2∴n=1时,b1=a1=1∴----------6分22. 浙江电视台2013年举办了“中国好声音”第二届大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班.下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”.(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;(Ⅱ)从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.参考答案:【考点】古典概型及其概率计算公式;茎叶图;极差、方差与标准差.【分析】(I)将甲乙两班的大众评审的支持票数从小到大排列,根据众数、中位数与极差的定义和解法分别进行计算,即可求出答案.(II)根据已知求出:①符合条件的情况数目,②全部情况的总数;二者的比值就是其发生的概率.【解答】解:(I)甲班的大众评审的支持票数:62,66,67,67,68,69,72,72,72,76,77,78,81,81,82,85,85,86,88,90.72出现了3次,出现的次数最多,故众数是72,从小到大排列最中间的两个数是76,77,则中位数是76.5.最大数为90,最小值为62,故极差为28,乙班的大众评审的支持票数:65,67,68,69,73,74,76,78,81,82,84,86,87,88,89,90,91,95,95,98.95出现了2次,出现的次数最多,故众数是95,从小到大排列最中间的数是82,84,则中位数是83.最大数为98,最小值为65,故极差为33,(II)共有6名选手进入决赛,其中有3名拥有“优先挑战权”.所有的基本事件共=20种,符合题意的基本事件有=9种,故随机抽出3名,其中恰有1名拥有“优先挑战权”的概率P=。