非平稳随机信号处理

合集下载

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

卡尔曼滤波处理非平稳信号

卡尔曼滤波处理非平稳信号

卡尔曼滤波处理非平稳信号卡尔曼滤波是一种常用的信号处理方法,它可以有效地处理非平稳信号。

非平稳信号是指信号的统计特性随时间变化的信号,例如噪声、振动等。

卡尔曼滤波通过对信号进行预测和校正,可以减小噪声的影响,提高信号的精度和稳定性。

卡尔曼滤波的基本思想是利用系统的状态方程和观测方程,对系统的状态进行估计和预测。

在卡尔曼滤波中,系统的状态被表示为一个向量,包含系统的各个状态变量。

观测方程用于描述系统的输出,即观测量。

卡尔曼滤波通过对系统状态的预测和校正,不断更新状态向量,从而实现对信号的滤波和估计。

卡尔曼滤波的核心是卡尔曼滤波器,它由两个部分组成:预测器和校正器。

预测器用于预测系统的状态,校正器用于校正预测值。

在预测器中,系统的状态被表示为一个高斯分布,预测器利用系统的状态方程和噪声模型,对状态向量进行预测。

在校正器中,利用观测方程和噪声模型,对预测值进行校正,得到最终的状态估计值。

卡尔曼滤波的优点在于它可以处理非线性系统和非高斯噪声。

在非线性系统中,卡尔曼滤波通过线性化系统模型,将非线性问题转化为线性问题,从而实现对非线性系统的处理。

在非高斯噪声中,卡尔曼滤波通过对噪声进行建模,将非高斯噪声转化为高斯噪声,从而实现对非高斯噪声的处理。

卡尔曼滤波在实际应用中有广泛的应用,例如航空航天、导航、控制等领域。

在航空航天领域中,卡尔曼滤波被广泛应用于导弹制导、飞行控制等方面。

在导航领域中,卡尔曼滤波被应用于GPS定位、惯性导航等方面。

在控制领域中,卡尔曼滤波被应用于自适应控制、模型预测控制等方面。

总之,卡尔曼滤波是一种有效的信号处理方法,可以处理非平稳信号,提高信号的精度和稳定性。

卡尔曼滤波在实际应用中有广泛的应用,是一种非常重要的信号处理技术。

随机信号分析与处理

随机信号分析与处理

一、基本概念1、随机过程随机信号是非确定性信号,不能用确定的数学关系式来描述,不能预测它未来任何瞬时的精确值,任一次观测值只代表在其变动范围内可能产生的结果之一,但其值的变动服从统计规律。

随机信号的描述必须采用概率和统计学的方法。

对随机信号按时间历程所作的各次长时间观测记录称为样本函数,记作x(t)。

在有限时间区间上的样本函数称为样本记录。

在同一试验条件下,全部样本函数的集合(总体)就是随机过程,以{x(t)}表示,即2、随机信号类型3、平稳随机过程平稳随机过程就是统计特征参数不随时间变化而改变的随机过程。

例如,对某一随机过程的全部样本函数的集合选取不同的时间t进行计算,得出的统计参数都相同,则称这样的随机过程为平稳随机过程,否则就是非平稳随机过程。

如采样记录的均值不随时间变化4、各态历经随机过程若从平稳随机过程中任取一样本函数,如果该单一样本在长时间内的平均统计参数(时间平均)和所有样本函数在某一时刻的平均统计参数(集合平均)是一致的,则称这样的平稳随机过程为各态历经随机过程。

显然,各态历经随机过程必定是平稳随机过程,但是平稳随机过程不一定是各态历经的。

各态历经随机过程是随机过程中比较重要的一种,因为根据单个样本函数的时间平均可以描述整个随机过程的统计特性,从而简化了信号的分析和处理。

但是要判断随机过程是否各态历经的随机过程是相当困难的。

一般的做法是,先假定平稳随机过程是各态历经的,然后再根据测定的特性返回到实际中分析和检验原假定是否合理。

由大量事实证明,一般工程上遇到的平稳随机过程大多数是各态历经随机过程。

虽然有的不一定是严格的各态历经过程,但在精度许可的范围内,也可以当作各态历经随机过程来处理。

事实上,一般的随机过程需要足够多的样本(理论上应为无限多)才能描述它,而要进行大量的观测来获取足够多的样本函数是非常困难或做不到的。

在测试工作中常以一个或几个有限长度的样本记录来推断整个随机过程,以其时间平均来估计集合平均。

非平稳信号分析的技术现状与方法研究

非平稳信号分析的技术现状与方法研究

格式No1—2D目次前言 (1)第一章故障信号的非平稳性 (2)第二章非平稳信号常用的处理方法 (4)2.1 非平稳信号的处理方法 (4)2.1.1 分段或选段傅里叶变换 (5)2.1.2 加Hanning窗转速跟踪分析 (5)2.1.3 短时傅立叶变换 (5)2.1.4 小波变换 (6)2.2 Wigner-Ville分布 (7)2.3 奇异值分解方法 (8)2.3.1 基于奇异值分解的故障诊断技术现状 (9)2.3.2 提取突变信息的奇异值分解方法 (10)2.3.3 提取突变信息的改进奇异值分解方法 (11)2.3.4 模拟信号提取结果及与改进前的比较 (14)2.4 局部均值分解 (16)2.5 数学形态学 (19)2.6 分数Fourier变换 (23)2.6.1 Fourier变换简介 (23)2.6.2分数阶Fourier变换的应用 (24)第三章常用非平稳信号处理方法的比较 (26)3.1 Fourier变换、短时Fourier变换和小波变换的比较 (26)3.2 小波变换与奇异值分解方法的比较 (27)3.3 奇异值技术与改进奇异值技术之间的比较 (31)3.3.1 J103型模型试验器动静件较重碰摩振动信号 (32)3.3.2 柔性转子实验台动静件碰摩振动信号 (34)3.4 EMD方法与LMD方法的比较 (36)第四章结论 (39)前言本报告主要是研究非平稳信号的特性及其在发动机典型故障诊断中的应用特点,从而对不同故障的引起的非平稳性信号处理方法进行选择,并加以改进,达到应用于工程实际的目的。

第一章故障信号的非平稳性设备或工程系统在运行中产生的各种信息、被诊断结构系统在激励作用下产生的各种信息,由传感器变换为信号输出。

信号中包含有丰富的用来作为故障诊断依据的各种特性参数,同时还伴随着各种各样的噪声,并多半以随机的形式出现。

因此为了对系统进行故障诊断,就需要从这些信号中提取出诊断所需的特性参数和确定它的特性曲线。

现代信号处理

现代信号处理

时频分析摘要:随着信息传递速度的提高,信号处理技术要求也在不断提高。

从信号频域可以观测信号特点,但是对于自然中的非平稳信号,仅仅频域观测不能反映信号频率在时间轴上的变化,由此提出了时频分析技术,可以产生时间与频率的联合函数,方便观测信号频率在时间轴上的变化。

在现有的时频分析技术中较为常见的算法有短时傅里叶变换、WVD、线性调频小波等。

本文介绍了以上几种常见的算法和时频分析的相关应用。

关键词:信号处理非平稳信号时频分析一.整体概况在传统的信号处理领域,基于 Fourier 变换的信号频域表示及其能量的频域分布揭示了信号在频域的特征,它们在传统的信号分析与处理的发展史上发挥了极其重要的作用。

但是,Fourier 变换是一种整体变换,即对信号的表征要么完全在时域,要么完全在频域,作为频域表示的功率谱并不能告诉我们其中某种频率分量出现在什么时候及其变化情况。

然而,在许多实际应用场合,信号是非平稳的,其统计量(如相关函数、功率谱等)是时变函数。

这时,只了解信号在时域或频域的全局特性是远远不够的,最希望得到的乃是信号频谱随时间变化的情况。

为此,需要使用时间和频率的联合函数来表示信号,这种表示简称为信号的时频表示。

时频分析的主要研究对象是非平稳信号或时变信号,主要的任务是描述信号的频谱含量是怎样随时间变化的。

时频分析是当今信号处理领域的一个主要研究热点,它的研究始于20世纪40年代,为了得到信号的时变频谱特性,许多学者提出了各种形式的时频分布函数,从短时傅立叶变换到 Cohen 类,各类分布多达几十种。

如今时频分析已经得到了许多有价值的成果,这些成果已在工程、物理、天文学、化学、地球物理学、生物学、医学和数学等领域得到了广泛应用。

时频分析在信号处理领域显示出了巨大的潜力,吸引着越来越多的人去研究并利用它。

1.1基本思想时频分布让我们能够同时观察一个讯号在时域和频域上的相关资讯,而时频分析就是在分析时频分布。

传统上,我们常用傅里叶变换来观察一个讯号的频谱。

生医医学信号处理总结

生医医学信号处理总结

第一章概述●我们可以把生命信号概括分为二大类:化学信息物理信息化学信息是指组成人体的有机物在发生变化时所给出的信息,它属于生物化学所研究的范畴。

物理信息是指人体各器官运动时所产生的信息。

物理信息所表现出来的信号又可分为电信号和非电信号两大类。

●人体电信号,如体表心电(ECG)信号、脑电(EEG)、肌电(EMG)、眼电(EOG)、胃电(EGG)等在临床上取得了不同程度的应用。

把磁场信号也可归为人体电信号。

●人体非电信号,如体温、血压、心音、心输出量及肺潮气量等,通过相应的传感器,即可转变成电信号。

●电信号是最便于检测、提取和处理的信号。

上述信号是由人体自发生产的,称为“主动性”信号。

●另外,还有一种“被动性”信号,即人体在外界施加某种刺激或某种物质时所产生的信号。

如诱发响应信号,即是在刺激下所产生的电信号,在超声波及X 射线作用下所产生的人体各部位的超声图象、X 射线图象等也是一种被动信号。

●我们这里所研究的生物医学信号主要是上述的包括主动的、被动的、电的和非电的人体物理信息。

生物医学信号的主要特点●1.信号弱2.噪声强3.频率范围一般较低4.随机性强采用相干平均技术已成功提取诱发脑电、希氏束电和心室晚电位等微弱信号;在体表心电和脑电检测中采用计算机进行多道信号同步处理并推求原始信号源的活动(逆问题);在心电、脑电、心音、肺音等信号的自动识别分析中应用了多种信号处理方法,如频域分析、小波分析、时频分析、非线性分析等进行特征提取与自动分类;在生理信号数据压缩和模式分类中引入了人工神经网络方法;在脑电、心电、神经电活动、图像分割处理、三维图像表面特征提取及建模等方面引入混沌与分形理论等,已取得了许多重要的研究成果并得到了广泛的临床应用。

数字信号处理技术主要是通过计算机算法进行数值计算,与传统的模拟信号处理相比,具有如下特点:(1)算法灵活,易于改变处理方法(2)运算精确(3)抗干扰性强(4)容易实现复杂运算此外,数字系统还具有设备尺寸小,造价低,便于大规模集成,便于实现多维信号处理等突出优点。

自适应滤波及信号处理

自适应滤波及信号处理

自适应信号处理自适应信号处理是信号与信息处理领域的重要分支和组成部分,自20世纪五六十年代出现以来,自适应信号处理的理论和技术受到了学术界和许多应用领域的普遍重视。

它的研究的内容是以信号与信息自适应处理为主线,包括自适应滤波检测理论和自适应技术应用两大部分。

自适应滤波理论和技术是统计信号处理和非平稳随机信号处理的主要内容,它可以在无需先验知识的条件下,通过自学习适应或跟踪外部环境的非平稳随机变化,并最终逼近维纳滤波和卡尔曼滤波的最佳滤波性能。

因而,自适应滤波器不但可以用来检测确定性信号,而且可以检测平稳的或非平稳的随机信号。

自适应技术应用包括自适应谱线增强与谱估计方法、自适应噪声干扰抵消技术、自适应均衡技术、自适应阵列处理与波束形成以及自适应神经网络信号处理等内容。

自适应信号处理技术在通信、雷达、声纳、图像处理、地震勘探、工业技术和生物医学等领域有着极其广泛的应用。

其中,通信技术的许多最新进展,都与自适应信号处理密切相关,尽管新的信号处理理论和方法层出不穷,但是自适应信号处理仍然以其算法简单、易于实现和无须统计先验知识等独特的优点,成为许多理论与工程实际问题的首选解决方案之一。

近年来,随着超大规模集成电路技术和计算机技术的迅速发展,出现了许多性能优异的高速信号处理专用芯片和高性能的通用计算机,为信号处理,特别是自适应滤波器的发展和应用提供了重要的物质基础。

另外,信号处理理论和应用的发展,也为自适应滤波理论的进一步发展提供了必要的理论基础。

本章主要介绍目前应用较为广泛的自适应滤波理论与技术,包括维纳滤波、LMS滤波和卡尔曼滤波及其应用。

2.2 维纳滤波从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。

根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。

滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。

所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。

随机信号分析

随机信号分析

随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精确值的信号,也无法用实验的方法重复再现。

换言之,随机信号是指不能用确定性的时间函数来描述,只能用统计方法研究的信号。

其统计特性:概率分布函数、概率密度函数。

统计平均:均值、方差、相关。

随机信号分为平稳和非平稳两大类。

平稳随机信号又分为各态历经和非各态历经。

1) 各态历经信号——指无限个样本在某时刻所历经的状态,等同于某个样本在无限时间里所经历的状态的信号。

2) 平稳随机信号——其均值和相关不随时间变化。

注:各态历经信号一定是随机信号,反之不然。

工程上的随机信号通常都按各态历经平稳随机信号来处理。

仅在离散时间点上给出定义的随机信号称为离散时间随机信号,即随机信号序列。

平稳随机信号在时间上的无限的,故其能量是无限的,只能用功率谱密度来描述随机信号的频域特性。

1. 随机信号的数字特征 均值、均方值、方差若连续随机信号x(t)是各态历经的,则随机信号x(t)的均值可表示为:⎰→∞==TT x dt t x Tt x E 0)(1lim)]([μ均值描述了随机信号的静态分量(直流)。

随机信号x(t)的均方值表达式为:dt t x TTT x)(1lim22⎰→∞=ψ2xψ表示信号的强度或功率。

随机信号x(t)的均方根值表示为:⎰→∞=T T x dt t x T 02)(1limψ x ψ也是信号能量的一种描述。

随机信号x(t)的方差表达式为:⎰-==-→∞Tx T x x dx t x Tx E 0222])([1lim])[(μσμ2xσ是信号的幅值相对于均值分散程度的一种表示,也是信号纯波动分量(交流)大小的反映。

随机信号x(t)的均方差(标准差)可表示为⎰-=→∞T x T x dx t x T 02])([1limμσ 它和2x σ意义相同。

平稳随机过程统计特征的计算要求信号x(t)无限长,而实际上只能用一个样本即有限长序列来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《非平稳信号分析与处
理》
组长:戚伟世
讲课安排:
第一小组:(1-4节)
戚伟世胡春静望育梅喻小红宋卫林第二小组:(5-8节)
张闯程卫军孙纲黄平牧吕尧新冯瑞军
2 时频表示与时频分布
本章主要内容:讨论非平稳信号的时-频分析,包括分析的有关概念短时傅立叶变换、Wigner 分布及Cohen类分布。

重点是Wigner的性质、Wigner 分布的实现、Wigner分布中交叉项的行为及Cohen分布中核函数对交叉项的抑制等。

时频表示与时频分析的提出
分析与处理平稳信号最常用的数学工具是Fourier分析。

它建立了信号从时域到频域变换的桥梁。

它表征了信号从时域到频域的一种整体(全局)变换。

在许多实际应用中,信号大多是非平稳的,其统计量(如均值、相关函数、功率谱等)是时变的,这时采用传统的Fourier变换并不能反映信号频谱随时间变化的情况,需引入新的处理信号的数学工具,时频表示和时频分析是源于考虑信号的局部特性而引入的。

时频表示:用时间和频率的联合函数来表示信号,记作T(t,f)。

时频分析:能够描述信号的能量密度分布的时频表示称为时频分析,记作P(t,f)。

典型的线性时频表示有:短时Fourier变换、小波变化和Gabor变
换。

2.1 基本概念
1.传统的Fourier 变换及反变换:
S (f )=dt e t s tf j ⎰∞∞--π2)(
s (t )=⎰∞∞-df e f S tf j π2)(
2.解析信号与基带信号
⑴定义(解析信号):与实信号s (t )对应的解析信号(analytic signal )z (t )定义为z (t )=s (t )+j н[s (t )],其中н[s (t )]是s (t )的Hilbert 变换。

实函数的Hilbert 变换的性质:

x(t)= н[s(t)]
则有
s(t)=- н[x (t )]
s(t)=- н2
[x (t )]
⑵实的调频信号a (t )cos )(t φ对应的解析信号为 z (t )=a (t )cos )(t φ+j н[a (t )cos )(t φ]=A (t ))(t j e φ (2.1)
⑶任何一个实调幅-调频信号a (t )cos )(t φ的解析信号若满足一定的条件,就可写成式(2.1)所示的形式。

⑷实窄带高频信号s (t )=a (t )cos[2πf 0t+)(t φ]的解析信号为。

相关文档
最新文档