一元一次方程应用题行程问题 ppt课件
合集下载
一元一次方程解行程问题1ppt课件

示(
卡车行驶)的路,程70X+65X表示(
)。
相距路程
数
学
练一练(1)
填空:
(2)师徒二人同时加工一批零件,徒弟每天加工12个, 师傅每天加工20个,两人一同做了α天。12α表示 (徒弟加工的个数),20α表示( 师傅加工的个数),这批零 件一共有( 12a+20)a 个。数学练一来自(2)只列方程不计算:
数 学
复习引入
例题
巩固练习
小结
数
学
复习引入
1、用含有字母的式子表示数量关系。
(1)每筐梨重x千克,5筐梨重多少千克? 10筐梨重多少千克?
(2)修路队每天修路x米.10天修路多少米? 20天修路多少米?
(3)一列火车每时行x千米,4时行多少千米? 12时行多少千米?
数
学
复习引入
2、根据条件叙述的顺序,找出数量间的 相等关系。
⑴南通和南京相距325千米。两辆汽车分别从南通 和南京同时出发,相对而行。从南京开出的汽车每 小时行68千米,从南通开出的汽车每小时行62千米。 经过多长时间,这两辆汽车在途中相遇?
⑵甲乙两个工程队共同铺铁路,甲队每天铺70米。 乙队每天铺64米。铺了多少天后,甲队比乙队多 铺36米?
数 学
列方程解应用题
你行吗?
⑴两艘军舰从相距609千米的两个港口同时相 对开出。一艘军舰每小时行42千米,另一艘 军舰每小时行45千米。经过几小时两艘军舰 相遇?
数 学
列方程解应用题
你行吗?
(2)甲、乙两艘轮船同时从一个码头向相反方 向开出,甲船每小时行23. 5千米,乙船每小 时行21.5千米。航行几小时后两船相距315千 米?
数 学
一元一次方程的应用-行程问题(公开课)PPT课件

-
13
解:设两车x小时相遇,由题意得。 60x+40x=600 X=6
答:两车6小时可以相遇,可以救治张叔叔。
-
10
若明明以每小时4千米的速度行驶上学, 哥哥半小时后发现明明忘了作业,,就骑车 以每小时8千米追赶,问哥哥需要多长时间才 可以送到作业?
解:设哥哥要X小时才可以送到作业 由题意得: 8X = 4X + 4×0.5
西安(慢车)
(快车)武汉
慢车路程+快车路程=相距路程
相遇问题:同时出发
-
4
西安站和武汉站相距1500千米,一列 慢车从西安开出,速度为68千米/时,一 列快车从武汉开出,速度为85千米/时, 若两车相向而行,慢车先开0.5小时,快 车行使几小时后两车相遇?
西安(慢车)
(快车)武汉
(慢车先行路程+慢车后行路程)+快车路程=相距路程
追及问题:同地不同时
-
7
敌军从距离我军7千米的驻地开 始逃跑,我军发现后立即追击,速度 是敌军的1.5倍,结果2.5小时后追上, 敌军的速度是多少?
-
8
追及问题的等量关系:
同地不同时出发: 被追者走的路程=追赶者走的路程
被追者先走的路程 被追者后走的路程
追上
追赶者走的路程
同时不同地出发:
被追者的路程+两者互相间隔的路程=追赶者的路程
X = 0.5
答:哥哥要0.5小时才可以- 把作业送到。
11
精讲 例题
分
析
例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米。 (1)若两车同时相向 而行,请问B车行了多 长时间后两车相距80千 米?
一元一次方程的应用(行程问题)ppt课件

21
小组竞赛5分
1、一架飞机飞行两城之间,顺风时需要5小时30分钟,
逆风时需要6小时,已知风速为每小时24公里,
求两城之间的距离?
解:设两城之间距离为x 里/小时,逆风速为
公里,则顺风速为 x 公里/小时
x 5.5
公
6
依题意得: x 24 x 24
5.5
6
x=3168
答:两城之间的距离为3168公里
5米
棕色马路程= 黄色马路程+相隔距离
9
小明每天早上要在7:50之前赶到距家1000米的学校 。一天 , 小明以80米/分的速度出发 ,5分钟后, 小明的爸爸发现他忘 了带语文书 ,爸爸以180米/分的速度去追小明 ,并且在途中
追上了他 。 (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
+ A、B两地的路程=甲走的路程 乙走的路程
5
试一试 西安站和武汉站相距1500km,一列慢车
从西安开出,速度为65km/h,一列快车从武 汉开出,速度为85km/h,两车同时相向而行, 几小时相遇?
西安(慢车) 慢车路程
快车路程
(快车)武汉
慢车路程+快车路程=总路程
6
湘潭站和长沙站相距1500km,一列慢车从西安开 出,速度为65km/h,一列快车从武汉开出,速度为 85km/h,若两车相向而行,慢车先开30分钟,快车 行使几小时后两车相遇?
(2)追上小明时,距离学校还有多远?
解:(1)设爸爸追上小明用了x分钟,根据题
意,得
小明
180X=80X+80家×5
100X=400
X=4 因此, 爸爸追上小明用了4分钟爸爸
(2)因为180×4=720(米)
小组竞赛5分
1、一架飞机飞行两城之间,顺风时需要5小时30分钟,
逆风时需要6小时,已知风速为每小时24公里,
求两城之间的距离?
解:设两城之间距离为x 里/小时,逆风速为
公里,则顺风速为 x 公里/小时
x 5.5
公
6
依题意得: x 24 x 24
5.5
6
x=3168
答:两城之间的距离为3168公里
5米
棕色马路程= 黄色马路程+相隔距离
9
小明每天早上要在7:50之前赶到距家1000米的学校 。一天 , 小明以80米/分的速度出发 ,5分钟后, 小明的爸爸发现他忘 了带语文书 ,爸爸以180米/分的速度去追小明 ,并且在途中
追上了他 。 (1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
+ A、B两地的路程=甲走的路程 乙走的路程
5
试一试 西安站和武汉站相距1500km,一列慢车
从西安开出,速度为65km/h,一列快车从武 汉开出,速度为85km/h,两车同时相向而行, 几小时相遇?
西安(慢车) 慢车路程
快车路程
(快车)武汉
慢车路程+快车路程=总路程
6
湘潭站和长沙站相距1500km,一列慢车从西安开 出,速度为65km/h,一列快车从武汉开出,速度为 85km/h,若两车相向而行,慢车先开30分钟,快车 行使几小时后两车相遇?
(2)追上小明时,距离学校还有多远?
解:(1)设爸爸追上小明用了x分钟,根据题
意,得
小明
180X=80X+80家×5
100X=400
X=4 因此, 爸爸追上小明用了4分钟爸爸
(2)因为180×4=720(米)
北师大版(2024)数学七年级上册 5.3.3 一元一次方程应用--行程问题 (共23张PPT)

复习引入
小明和小华相距 100 米,他们同时出发,相向而行, 小明每秒走 3 米,小华每秒走 4 米,他们能相遇吗? 几秒钟可以相遇?
等量关系: 小明走的路程 + 小华走的路程 = 相距的路程
所用公式:路程 = 速度×时间
复习引入
这道题是小学做过的一种很常见的应用题:行程问题, 用到的数量关系主要有:
分析:本题等量关系:小明所走路程+爸爸所走路 程=全路程,但要注意小明比爸爸多走了 5 分钟, 所以小明所走的时间为(x+5)分钟,另外也要注意本 题单位的统一,2.9公里=2900米.
解:设小明爸爸出发 x 分钟后接到小明,如 图所示.
由题意,得200x+60(x+5)=2900, 解得 x=10. 答:小明爸爸从家出发 10 分钟后接到小明.
甲先跑 10 秒,乙开始跑,设乙 x 秒后追上甲,依题意列
方程得 ( B )
A. 6x = 4x
B. 6x = 4x + 40
C. 6x = 4x-40
D. 4x + 10 = 6x
课堂练习
2. 甲车在乙车前 500 千米,同时出发,速度分别为每
小时 40 千米和每小时 60 千米,多少小时后,乙车追
例 小明和小华两人在400m的环形跑道上练习长跑,小明每分 钟跑260m,小华每分钟跑300m,两人起跑时站在跑道同一位置。 (2)如果小明起跑后1min小华开始反向跑,那么小华起跑后多 长时间两人首次相遇?
设小华起跑后xmin两人首次相遇, 根据等量关系,可列出方程: 260x+300x=400-260。 解这个方程,得 x=0.25。 因此,小华起跑后0.25min两人首次相遇。
追击问题:快车路程-慢车路程=路程差
一元一次方程的应用——行程问题PPT课件

一元一次方程的用 ——行程问题
大家好
2021
龟兔赛跑的故事
路程、时间、速度 他们之间的关系是:
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
2021
• 1、 相遇问题 • 历史问题:
直线跑道
•两“船相两距船4相00千隔米若,干甲距船离每, 小第时航一行艘6船0千需米行,5乙日船,航第 行二40千艘米船(需彼行此7抵日达(对彼方此 的抵位置达)对,方若位两置船)同时。出今 发两,相船向同而时行出,发问(经过相多向 少而小时行两)船,相问遇几?日后相
120 120x x 80 80x x
解:设x分钟后,小莉与小 强第一次相遇
120x+80x=400 200x=400 x=2
答:2分钟后,小莉与小强 第一次相遇。
2021
小结:快的经过的路程+慢的经过的路程=跑 道一圈的总长
2021
环形跑道
2、同向而行,首次相遇
• 小强、小莉分别在 400米环形跑道上练 习跑步,小强每分钟 跑120米,小莉每分 钟跑80米,两人同时 从同一点同向出发, 问几分钟后,小莉与 小强第一次相遇?
时从同一点同向出发,问几分钟后,小莉与小强第 一次相遇?
• 等量关系:相遇时,小莉的时间=小强的时间
•
小强的路长-小莉的路长=操场的总长(相遇时,
小强比小莉多跑一圈)
120 120x x 80 80x x
解:设x分钟后,小莉与小强第一 次遇见。
120x-80x=400
不善于步行的人。
2021
例2 有一个善于步行的人每小时走100米,一个不善 于步行的人每小时走60米。现在一个不善于步行的人 先走了100米,善于步行的人开始追他。问经过多久 才能追上不善于步行的人。
大家好
2021
龟兔赛跑的故事
路程、时间、速度 他们之间的关系是:
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
2021
• 1、 相遇问题 • 历史问题:
直线跑道
•两“船相两距船4相00千隔米若,干甲距船离每, 小第时航一行艘6船0千需米行,5乙日船,航第 行二40千艘米船(需彼行此7抵日达(对彼方此 的抵位置达)对,方若位两置船)同时。出今 发两,相船向同而时行出,发问(经过相多向 少而小时行两)船,相问遇几?日后相
120 120x x 80 80x x
解:设x分钟后,小莉与小 强第一次相遇
120x+80x=400 200x=400 x=2
答:2分钟后,小莉与小强 第一次相遇。
2021
小结:快的经过的路程+慢的经过的路程=跑 道一圈的总长
2021
环形跑道
2、同向而行,首次相遇
• 小强、小莉分别在 400米环形跑道上练 习跑步,小强每分钟 跑120米,小莉每分 钟跑80米,两人同时 从同一点同向出发, 问几分钟后,小莉与 小强第一次相遇?
时从同一点同向出发,问几分钟后,小莉与小强第 一次相遇?
• 等量关系:相遇时,小莉的时间=小强的时间
•
小强的路长-小莉的路长=操场的总长(相遇时,
小强比小莉多跑一圈)
120 120x x 80 80x x
解:设x分钟后,小莉与小强第一 次遇见。
120x-80x=400
不善于步行的人。
2021
例2 有一个善于步行的人每小时走100米,一个不善 于步行的人每小时走60米。现在一个不善于步行的人 先走了100米,善于步行的人开始追他。问经过多久 才能追上不善于步行的人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号,得
2x+6=2.5x-7.5
移项及合并,得 0.5x=13.5
X=27
答:船在静水中的平均速度为27千米/时。
一元一次方程应用题行程问题
11
练习:
一架飞机飞行两城之间,顺风时需要5小时30分钟,
逆风时需要6小时,已知风速为每小时24公里,
求两城之间的距离?
解:设两城之间距离为x 里/小时,逆风速为
解2 (间接设元) 设汽船逆水航行从乙地到甲地需x 小时,
则汽船顺水航行的距离是(18+2)(x -1.5)千米,
逆水航行的距离是(18 -2)x千米。
等量关系:汽船顺水航行的距离=汽船逆水航行的距离。
依题意得: (18+2)(x -1.5)= (18 -2)x
(18 -2) ×7.5=120
x=7.5
一元一次方程应用题行程问题
3
3、三个连续的奇数的和为57,求这三个数。若设中间一 个奇数为X,则另外两个为__X_-_2___、_X_+__2___,并可得方 程为_(__X_-_2_)__+_X__+_(__X+2)=57
4、在某个月的日历表中任意圈出一个横列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 __X_-_1___、__X_+__1__,并可得方程为(_X__-_1_)__+_X_+_(__X__+1)=57
6
问题2.一艘轮船航行于两地之间, 顺水要用3小时,逆水要用4小时, 已知船在静水中的速度是50千米 /小时,求水流的速度.
1、顺水速度=静水速度+水流速度
2、逆水速度=静水速度-水流速度
3、顺水速度-逆水速度=2倍水速
一元一次方程应用题行程问题
7
例题讲解:
问题3 汽船从甲地顺水开往乙地,所用时间比从乙地逆 水开往甲地少1.5小时。已知船在静水的速度为18千米/小 时,水流速度为2千米/小时,求甲、乙两地之间的距离?
设飞机在无风时的速度为x千米/时. 则它顺风时的速度
为(x+24)千米/时,逆风时的速度为(x-24)千米/时.根据
顺风和逆风飞行的路程相等列方程得
17(x24)3(x24) 6
去括号,得 17x683x72
6 移项及合并,得
1
x
140
6
系数化为得 x=840
答:飞机在无风一时元一的次方速程应度用题是行程8问4题0千米/时.
(3)顺速 – 逆速 = 2水速;顺速 + 逆速 = 2船速 (4)顺水的路程 = 逆水的路程
一元一次方程应用题行程问题
5
问题1: 一架飞机飞行在两个城市之间,风速为24千米 /时. 顺风飞行需要2小时50分,逆风飞行需要3小时. 求 飞机在无风时的速度及两城之间的飞行路程.
解:
2小时 50分17小时 6
分析:本题是行程问题,但涉及水流速度,必须要
掌握:顺水速度=船速+水速 逆水速度=船速-水速
解:(直接设元)
设甲、乙两地的距离为x 千米 等量关系:逆水所用时间-顺水所用时间=1.5 依题意得: x x 1.5
182 182
x=120
答:甲、乙两一地元一的次方距程应离用题为行程1问2题0千米。
8
问题3 汽船从甲地顺水开往乙地,所用时间比从乙地逆水 开往甲地少1.5小时。已知船在静水的速度为 18千米/小时,水流速度为2千米/小时, 求甲、乙两地之间的距离?
2
基础题
1. 已知矩形的周长为20厘米,设长为x厘米,则
2. 宽为(B ).
A. 20-x B. 10-x C. 10-2x D. 20-2x
2.学生a人,以每10人为一组,其中有两组各少
1人,则学生共有( D)组.
A.10a-2
B. 10-2a
B. C. 10-(2-a) D.(a +2)/10
10
问题4一艘船从甲码头到乙码头顺流行驶,用了2小时; 从乙码头返回甲码头逆流行驶,用了2.5小时。已知 水流的速度是3千米/时,求船在静水中的速度。
解:设船在静水中的平均速度为x千米/时,则顺流
速度为(x+3)千米/时,逆流速度为(x-3)千米/时。
根据往返路程相等,列得
2(x+3)=2.5(x-3)
答:甲、乙两地距离一元为一次1方2程0应千用题米行程。问题
9
问题4 一艘船从甲码头到乙码头
顺流行驶,用了2小时;从乙码头 返回甲码头逆流行驶,用了2.5小 时。已知水流的速度是3千米/时, 求船在静水中的速度。
分析:题中的等量关系为
这艘船往返的路程相等,即:
顺流速度×顺流时间=逆流速度×逆流时间
一元一次方程应用题行程问题
一元一次方程应用题行程问题
1
列方程是解决实际问题的有效途径之一
1、审题:分析题意,找出图中的数量及其关系 2、设元:选择一个适当的未知数用字母表示(如X) 3、列方程:根据找出的相等关系列出方程 4、解方程:求出未知数的值 5、检验:检查求得的值是否正确和符合实际情形
6、答:写出答案
一元一次方程应用题行程问题
5 在某个月的日历表中任意圈出一个竖列上相邻的三个 数,和为57,若设中间一个数为X,则另外两个为 __X_+_7___、__X_-_7___,并可得方程为(_X__-7_)__+__X_+_(__X__+7)=57
一元一次方程应用题行程问题
4
航行问题常用的等量关系是:
(1)顺水速度=静水速度+水流速度 (2)逆水速度=静水速度-水流速度
公里,则顺风速为 x 公里/小时
5
x .
5
公
6
等量关系:顺风时飞机本身速度=逆风时飞机本身速度。
依题意得: x 24 x 24
5.5
6
x=3168
答:两城之间的距离为3168公里
注:飞行问题也是行程问题。同水流问题一样,飞行问
题的等量关系有:顺风飞行速度=飞机本身速度+风速
逆风一元飞一次行方程速应用度题行=程飞问题机本身速度-风速12
学习小结
1、说说你在本节课中的收获和体会。 2、说说在航行问题中的基本关系有哪些?
一元一次方程应用题行程问题
13