广西数学高三上学期理数第五次月考试卷
广西壮族自治区南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考(一)数学试题

南宁三中2024~2025学年度上学期高一月考(一)数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,集合,则( )A .B .C .D .2.如果,则正确的是( )A .若a >b,则B .若a >b ,则C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd3.设命题甲:,命题乙:,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .既充分又必要条件D .既不充分也不必要条件4.已知实数x ,y 满足,则的取值范围是( )A .B .C .D .5.若不等式的解集是或x >2},则a ,b 的值为( )A .,B .,C .,D .,6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是( )A .B .C .D .7.在R 上定义运算:a ⊕b =(a +1)b .已知1≤x ≤2时,存在x 使不等式(m -x )⊕(m +x )<4成立,则实数m 的取值范围为( ){}22M x x =-<<{1,0,1,2}N =-M N = {1,0,1}-{0,1,2}{}12x x -<≤{}12x x -≤≤,,,R a b c d ∈11a b<22ac bc >{}3|0x x <<{|||}12x x <-14,23x y -<<<<z x y =-{|31}z z -<<{|42}z z -<<{|32}z z -<<{|43}z z -<<-20x ax b ++>{3x x <-1a =6b =1a =-6b =1a =6b =-1a =-6b =-2y ax bxc =++ay x=()y b c x =+A.{m|-2<m<2}B.{m|-1<m<2}C.{m|-3<m<2}D.{m|1<m<2}8.若“”是“”的必要不充分条件,则实数的取值范围是()A.B.C.D.二、选择题:本题共3小题,每小题6分,共18分。
广西南宁市第二中学2024-2025学年高三上学期11月月考数学试题(含解析)

南宁二中2024年11月高三月考数学(时间120分钟,共150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集,集合,则( )A. B. C. D.2.已知复数是的共轭复数,则( )A.2B.3C.D.3.已知双曲线的一条渐近线方程为,则( )A.D.34.已知实数满足,且,则下列说法正确的是( )A. B.C.D.5.天上有三颗星星,地上有四个孩子.每个孩子向一颗星星许愿,如果一颗星星只收到一个孩子的愿望,那么该愿望成真,若一颗星星收到至少两个孩子的愿望,那么向这颗星星许愿的所有孩子的愿望都无法成真,则至少有两个孩子愿望成真的概率是( )A.B. C. D.6.已知,则( )A. B. C.1 D.37.已知函数的零点在区间内,则实数的取值范围是( )U =R {}{03},1A xx B x x =≤<=>∣∣()U A B ⋃=ð{3}x x <∣{01}x x ≤<∣{}01xx ≤≤∣{}0xx ≥∣1i,z z =-z i z z -=()22210y x b b-=>y =b =13,,a b c a b c >>0a b c ++=22ab cb >222a cc a+≥a b >0ab bc +>19294923π2tan 43θ⎛⎫+=- ⎪⎝⎭sin cos2sin cos θθθθ=-1310-1013-()(02)f x kx x =<≤31,2⎛⎫⎪⎝⎭kA. B. C. D.8.已知函数在区间上是增函数,若函数在上的图象与直线有且仅有一个交点,则的范围为( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某科技攻关青年团队共有10人,其年龄(单位:岁)分布如下表所示,则这10个人年龄的( )年龄454036322928人数121321A.中位数是34B.众数是32C.第25百分位数是29D.平均数为34.310.如图所示,在四棱锥中,底面是边长为2的正方形,是正三角形,为线段的中点,点为底面内的动点:则下列结论正确的是()A.若,平面平面B.若,直线与平面C.若直线和异面,点不可能为底面的中心D.若平面平面,且点为底面的中心,则11.设定义在上的函数与的导函数分别为和.若,,且为奇函数,则下列说法中一定正确的是( )A.函数的图象关于点对称B.⎛ ⎝(⎫⎪⎪⎭1,12⎛⎫ ⎪⎝⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦()f x π0,2⎡⎤⎢⎥⎣⎦2y =ω[)2,5[)1,5[]1,231,2⎡⎤⎢⎥⎣⎦E ABCD -ABCD CDE V M DE N ABCD BC DE ⊥CDE ⊥ABCDBC DE ⊥EA ABCD BM EN N ABCD CDE ⊥ABCD N ABCD BM EN≠R ()f x ()g x ()f x '()g x '()()42f x g x --=()()2g x f x '=-'()2f x +()f x ()2,0()()354g g +=-C.D.三、填空题:本题共3小题,每小题5分,共15分.12.已知正三角形的边长为为中点,为边上任意一点,则__________.13.已知三棱锥,二面角的大小为,当三棱锥的体积取得最大值时,其外接球的表面积为__________.14.拿破仑定理:“以任意三角形的三条边为边,向外构造三个正三角形,则这三个正三角形的中心恰为另一个正三角形的顶点.”利用该定理可为任意形状的市区科学地确定新的发展中心区位置,合理组织人流、物流,使城市土地的利用率,建筑的使用效率达到最佳,因而在城市建设规划中具有很好的应用价值.如图,设代表旧城区,新的城市发展中心分别为正,正,正的中心.现已知,则的面积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知等差数列中,.(1)令,证明:数列是等比数列;(2)求数列的前项和.16.(本小题满分15分)米接力短跑作为田径运动的重要项目,展现了一个国家短跑运动的团体最高水平.每支队伍都有自己的一个或几个明星队员,现有一支米接力短跑队,张三是其队员之一,经统计该队伍在参加的所有比赛中,张三是否上场时该队伍是否取得第一名的情况如下表.如果依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关,则认为张三是这支队伍的明星队员.队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名上场104020241()2024k g k ==-∑20241()0k f k ==∑ABC 2,O BC P BC AP AO ⋅=,3,,P ABC AC PB AB BC AB BC -==⊥=P AB C --60 P ABC -ABC V 123,,O O O ACD V ABE V BCF V 1232,30,AB ACB O O O ∠==V ABC V {}n a 5108,23a a ==732n a nb +={}n b {}n nb n n S 4100⨯4100⨯0.1α=未上场6合计24(1)完成列联表,并判断张三是否是这支队伍的明星队员.(2)米接力短跑分为一棒、二棒、三棒、四棒4个选手位置.张三可以作为一棒、二棒或四棒选手参加比赛.当他上场参加比赛时,他作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.当张三上场参加比赛时,队伍取得第一名的概率为0.7.(i )求的值;(ii )当张三上场参加比赛时,在队伍取得某场比赛第一名的条件下,求张三作为四棒选手参加比赛的概率.附:.0.150.100.050.0250.0100.0012.0722.7063.8415.0246.63510.82817.(本小题满分15分)如图,在四棱锥中,为等边三角形,底面是矩形、平面平面分别为线段的中点,点在线段上(不包括端点)(1)若,求证:点四点共面;(2)若,是否存在点,使得与平面,若不存在,请说明理由.18.(本小题满分17分)已知椭圆,四点22⨯4100⨯0.5,,x y 0.7,0.8,0.3,x y ()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++αx αP ABCD -PBC V ABCD PBC ⊥,,ABCD O E ,BC PA F PB 23PF PB =,,,O D E F 22BC AB ==F EF PCD PFBF()2222:10x y E a b a b+=>>,其中恰有三点在椭圆上.(1)求的方程;(2)设是的左、右顶点,直线交于两点,直线的斜率分别为.若,证明:直线过定点.19.悬链线在建筑领域有很多应用.当悬链线自然下垂时,处于最稳定的状态,反之其倒置时也是一种稳定状态.链函数是一种特殊的悬链线函数,正链函数表达式为,相应的反链函数表达式为.(1)证明:曲线是轴对称图形,(2)若直线与函数和的图象共有三个交点,设这三个交点的横坐标分别为,证明:;(3)已知函数,其中.若对任意的恒成立,求的最大值.()()31241,1,0,1,,P P P P ⎛⎛- ⎝⎝E E A B 、E l E C D 、AC BD 、12k k 、127k k =l ()e e 2x x D x -+=()e e 2x xR x --=()()()()2222R x y D x R x Dx ⎡⎤=--⎣⎦y t =()y D x =()y R x =123,,x x x (123ln 1x x x ++>()()()2f x D x aR x b =--,a b ∈R ()4f x ≤))ln1,ln1x ⎡⎤∈⎣⎦a b +南宁二中2024年11月高三月考数学参考答案1.【答案】A 【详解】因为,所以,所以.故选:A.2.【答案】D 【详解】故选:D.3.【答案】C 【详解】因为双曲线为,所以它的渐近线方程为,因为有一条渐近线方程为,所以.故选:C.4.【答案】C 【详解】由题,,取,则,故A 错误;,故错误;,故D 错误;因为,所以,即,故C 正确.故选:C.5.【答案】C 【详解】四个孩子向三颗星星许愿,一共有种可能的许愿方式.由于四个人选三颗星星,那么至少有一颗星星被两个人选,这两个人愿望无法实现,至多只能实现两个人的愿望,所以至少有两个孩子愿望成真,只能是有两颗星星各有一个人选,一颗星星有两个人选,可以先从四个孩子中选出两个孩子,让他们共同选一颗星星,其余两个人再选另外两颗星,有种情况,所以所求概率为故选:C.6.【答案】B 【详解】由,解得,故.故选:B.{},1U B xx ==>R ∣{}U 1B x x =≤∣ð(){}U {03}1{3}A B x x x x x x ⋃=≤<⋃≤=<∣∣∣ð()i 1i i 1i 22i z z -=--+=-==()22210y x b b-=>y bx =±y =b =0,0a c ><1,0,1a b c ===-22ab cb =2522a c c a +=-B 0ab bc +=()()()220a b a b a b c a b -=+-=-->22a b >a b >4381=212432C C A 36=364819P ==πtan 12tan 41tan 3θθθ+⎛⎫+==- ⎪-⎝⎭tan 5θ=-()()()()22sin cos sin sin sin cos cos sin sin cos2sin cos sin sin cos sin cos sin cos θθθθθθθθθθθθθθθθθθθ-+-===-+---()2222sin cos sin tan tan 10cos sin tan 113θθθθθθθθ-+--===-++7.【答案】C 【详解】由,令,,要使的零点在区间内,即在内,与有交点,画出与图像,如图:当时,,此时;当时,,此时故.8.【答案】D 【详解】因为函数的图象关于原点对称,并且在区间上是增函数,所以,又,得,令,得,所以在上的图象与直线的第一个交点的横坐标为,第二个交点的横坐标为,所以,解得,综上所述,,故选:D9.【答案】BCD 【详解】对于A 、B ,把10个人的年龄由小到大排列为,这组数据的中位数为32,众数为32,故A 错误,B 正确;对于C ,由,得这组数据的第25百分位数是第3个数,为29,故正确;对于,这组数据的平均数,故D 正确.故选:BCD.10.【答案】AC 【详解】因为,所以平面,平面,所以平面平面,A 项正确;设的中点为,连接,则.平面平面,平面平面平面.()0f x kx kx ==⇒=()[]0,2g x y x ==∈()[],0,2h x kx x =∈(),(02)f x kx x =-<≤31,2⎛⎫ ⎪⎝⎭31,2x ⎛⎫∈ ⎪⎝⎭()g x ()h x ()g x ()h x 1x =()11g =1k =32x =32g ⎛⎫== ⎪⎝⎭k ==k ⎫∈⎪⎪⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦2π4π323T T ≤⇒≥2π0T ωω⎧=⎪⎨⎪>⎩302ω<≤()2sin 2f x x ω==()π2π2k x k ωω=+∈Z ()f x ()0,∞+2y =π2ωπ2π2ωω+πππ2π222ωωω≤<+15ω≤<312ω≤≤28,29,29,32,32,32,36,40,40,4525%10 2.5⨯=C D 28229332362404534.310x +⨯+⨯++⨯+==,,BC CD BC DE CD DE D ⊥⊥⋂=BC ⊥CDE BC ⊂ ABCD ABCD ⊥CDE CD F EF AF 、EF CD ⊥ ABCD ⊥CDE ABCD ⋂,CDE CD EF =⊂CDE平面,设平面所成的角为,则,,故B 项错误;连接,易知平面,由确定的面即为平面,当直线和异面时,若点为底面的中心,则,又平面,则与共面,矛盾,C 项正确;连接平面平面,分别为的中点,则,又,则,D 项错误.故选:AC.11.【答案】ABD 【详解】对于A ,由为奇函数,得,即,因此函数的图象关于点对称,A 正确;由,得,则,又,于是,令,得,即,则,因此函数是周期函数,周期为4,对于B ,由,得,B 正确;对于C ,显然函数是周期为4的周期函数,,,则C 错误;对于D ,,则,D 正确.故选:EF ∴⊥ABCD EA ABCD θEAF θ∠=AF EF AE ======sin EF EA θ==BD BM ⊂BDE B M E 、、BDE BM EN N ABCD N BD ∈E ∈BDE EN BM ,FN FN ⊂ ,ABCD EF ⊥,ABCD EF FN ∴⊥F N 、CD BD 、112FN BC ==EF =2,EN BM ====BM EN ≠()2f x +()()22f x f x -+=-+()()220f x f x -++=()f x ()2,0()()2g x f x '=-'()()2g x f x a =-+()()42g x f x a -=-+()()42f x g x --=()()22f x f x a =-++1x =2a =-()()2f x f x =-()()()()()2,42f x f x f x f x f x +=-+=-+=()f x ()()22g x f x =--()()()()3512324g g f f +=-+-=-()g x ()()()()13354g g g g +=+=-()()()()2402224g g f f +=-+-=-2024411()506()506(8)4048,k k g k g k ====⨯-=-∑∑()()()()130,240f f f f +=+=2024411()506()0k k f k f k ====∑∑ABD12.【答案】3 【详解】因为三角形是正三角形,为中点,所以,所以,又正三角形的边长为2,所以,所以.13.【答案】【详解】要使棱锥体积最大,需保证到面的距离最大,故,此时,又都在面上,故面,且设外接圆半径为,则由余弦定理,所以,即,故其表面积为故答案为:14.【详解】连接,因为分别为正,正的中心,所以,又,所以,又因为,所以,由勾股定理得,即,由余弦定理,即,解得,ABCO BC AO BC ⊥AO OP ⊥ABC AO ==()223AP AO AO OP AO AO OP AO ⋅=+⋅=+⋅==40π3P ABC d max sin60d PB =⋅ PB AB ⊥,,,AB BC PB BC B PB BC ⊥⋂=PBC AB ⊥PBC 60PBC ∠=PBC V r 2222212cos603223272PC PB BC PB BC =+-⋅⋅⋅=+-⋅⋅⋅= PC=2sin60PC r ==r =22211023R r AB ⎛⎫=+= ⎪⎝⎭2404ππ3R =40π313,CO CO 12,O O ACD V ABE V 1331,,30,30CO AC CO BC O CB O CA ∠∠==== 30ACB ∠= 1390O CO ∠= 123213O O O S O ==V 132O O =2221313CO CO O O +=22224,12AC BC AC BC ⎫⎫+=+=⎪⎪⎪⎪⎭⎭2222cos30AB AC BC AC BC =+-⋅ 412BC =-⋅AC BC ⋅=所以..15.【详解】(1)证明:设等差数列的公差为,因为,所以,联立解得:,所以.所以,所以.所以数列是等比数列,首项为2,公比为2.(2)所以数列的前项和.两式相减得.16.【答案】解:(1)根据题意,可得的列联表:队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名合计1sin302ABC S AC BC =⋅=V {}n a d 5108,23a a ==1148,923a d a d +=+=14,3a d =-=()43137n a n n =-+-=-73220n a n nb +==≠11222n n n n b b ++=={}n b 2nn nb n =⋅{}n nb n 23222322nn S n =+⨯+⨯+⋯⋯+⋅()2322222122n n n S n n +=+⨯+⋯⋯+-⋅+⋅212222nn n S n +-=++⋯⋯+-⋅()12212.21n n n +-=-⋅-()1122n n S n +=-⋅+22⨯上场301040未上场61420合计362460零假设:队伍是否取得第一名与张三是否上场无关;,依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关;故张三是这支队伍的明星队员.(2)由张三上场时,作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.设事件:张三作为一棒参赛,事件:张三作为二棒参赛,事件C :张三作为四棒参赛,事件D :张三上场且队伍获得第一名;则;(i )由全概率公式:,即;与联立解得:.(ii )由条件概率公式:.17【详解】(1)证明:【法1】延长,于延长线交于点,因底面是矩形,且是的中点,故,则是中点,.连,连交于点,0H ()()()()2220.1()60(3014106)4511.25 2.706362440204n ad bc x a b c d a c b d χ-⨯-⨯====>=++++⨯⨯⨯0.1α=0.5,,x y 0.7,0.8,0.3A B ()()()()()()0.5,,,0.7,0.8,0.3P A P B x P C y P DA P DB P DC ======∣∣∣()()()()()()()0.50.70.80.30.7PD P A P D A P B P D B P C P D C x y =++=⨯++=∣∣∣83 3.5x y +=0.510.5x y x y ++=⇒+=0.4,0.1x y ==()()()P DC P C D P D =∣()()()0.10.330.770P C P D C P D ⨯===∣DO AB T ABCD O BC 12OB AD ∥B AT EB ET PB F '因是中点,故,由得,,又因,故点即点,所以四点共面.【法2】因底面是矩形,故,过作直线与平行,则与也平行,故直线与共面,直线也与共面,延长与交于点,连接与直线交于点.则,因是中点,由得,于是,因是的中点,则且,由得,又因,故点即点,所以四点共面.【法3】,系数和为1,根据平面向量共线定理可知四点共面E PA 12EB PT ∥EBF TPF ''V V ∽2PF F B '='23PF PB = F 'F ,,,O D E F ABCD AD ∥BC P l AD l BC l AD l BC DE l G OG PB F ',PGE ADE PGF BOF ''V V V V ≌∽E PA PGE ADE V V ≌PG AD ∥PG BC ∥O BC PG ∥OB 2PG OB =PGF BOF ''V V ∽2PF BF '='23PF PB = F 'F ,,,O D E F ()()222121221333333333PF PB PO OB PO DA PO PA PD PO PE PD ==+=+=+-=+- ,,,O D E F(2)因为是的中点,所以,又平面平面,平面平面,平面,所以平面.取中点,连接,易知两两相互垂直,如图,分别以为轴建立空间直角坐标系,则,设平面的法向量为,则即,令,则,所以..设,则设与平面所成角为,则,解得此时或,此时18.(1)由椭圆对称性,必过,又横坐标为1,椭圆必不过,所以过三点,,PB PC O =BC PO BC ⊥PBC ⊥ABCD PBC ⋂ABCD BC =PO ⊂PBC PO ⊥ABCD AD Q OQ ,,OQ OC OP ,,OQ OC OP ,,x y z ()()()()(1,1,0,0,1,0,0,1,0,1,1,0,A B C D P --()()(0,2,0,1,0,0,0,AD CD CP ===- PCD (),,a x y z = 0,0,a CD a CP ⎧⋅=⎪⎨⋅=⎪⎩ 00x y =⎧⎪⎨-+=⎪⎩1z =y =()a = (01)PF k k PB=<<((11110,1,1,1,,2222EF PF PE k PB PA k k ⎛⎫=-=-=---=-- ⎪ ⎪⎝⎭ EF PCD θsin cos ,EF a EF a EF a θ⋅====⋅ 13k =12PF BF =23k =2PF BF=34,P P 4P 1P 234,,P P P代入椭圆方程得,解得椭圆的方程为:(2)说明:其他等价形式对应给分.依题意,点(i )若直线的斜率为0,则必有,不合题意(ii )设直线方程为与椭圆联立,整理得:,因为点是椭圆上一点,即,设直线的斜率为,所以,所以,即,因为,所以,222111314b a b ⎧=⎪⎪⎨+=⎪⎪⎩224,1a b ==⋯E 221;4x y +=()()2,0,2,0,A B -l 12k k =-l ()2,x ty n n =+≠±E 2244x y x ty n⎧+=⎨=+⎩()2224240t y nty n +++-=()()122222221222,4Δ44440,4.4tn y y t t n t n n y y t ⎧+=-⎪⎪+=-+->⎨-⎪=⎪+⎩()11,C x y 221114x y +=BC 3k 2121111322111111422444x y y y k k x x x x -⋅=⋅===+---123174k k k =-=23281k k ⋅=-()()()()()()1212122322121212122828282822222(2)y y y y y y k k x x ty n ty n t y y t n y y n ⋅===--+-+-+-++-()()()()()()()2222222222228428244222422(2)44n n t t n t n t n n t t n n n t t -++==-+-+-+--+-++()()2827141422n n n n ++===---32n =-故直线恒过定点;19.【详解】(1),令,则所以为偶函数,故曲线是轴对称图形,且关于轴对称(2)令,得,当时,在单调递减,在单调递增,所以,且当时,,当时,又恒成立,所以在上单调递增,且当时,,当时,且对任意,所以的大致图象如图所示,不妨设,由为偶函数可得,与图象有三个交点,显然,令整理得,解得或所以,即,又因为,所以.l3,02⎛⎫- ⎪⎝⎭()()()()22222e e 1e e x x x xR x y D x R x D x --⎛⎫-⎡⎤=--=- ⎪⎣⎦+⎝⎭()2e e 1e e x x x x g x --⎛⎫-=- ⎪+⎝⎭()()22e e e e 1l ,e e e e x x x x x x x x g x g x ----⎛⎫⎛⎫---=-=-= ⎪ ⎪++⎝⎭⎝⎭()g x ()()()()2222R x y D x R x D x ⎡⎤=--⎣⎦y ()e e 02x xD x --=='0x =0x >()()()0;0,0,D x x D x D x <'><'(),0∞-()0,∞+()()01D x D ≥=x ∞→-()D x ∞→+x ∞→+()D x ∞→+()e e 02x xR x -+=>'()R x R x ∞→-()R x ∞→-x ∞→+(),R x ∞→+⋅()(),x D x R x ∈>R 123x x x <<()D x 120x x +=y t =1t >()e e 1,2x x R x t --==>2e 2e 10x x -->e 1x >e 1x <(ln 1x >(3ln 1x >120x x +=(123ln 1x x x ++>+(3)设,则,所以因为单调递增,所以时,,即由即,该不等式组成立的一个必要条件为:和时同时满足,即,所以,当时等号成立;下面分析充分性:若时,显然对恒成立,从而,满足题意综上所述:的最大值为()e e 2x x R x m --==()222e e 2212x xD x m -+==+()()()2221,f x D x aR x b m am b =--=+--()e e 2x xR x --=))ln 1,ln 1x ⎡⎤∈-+⎣⎦()[]1,1R x ∈-[]1,1,m ∈-()244214f x m am b ≤⇔-≤+--≤22250230m am b m am b ⎧--+≥⎨---≤⎩1m =-1m =7117a b b a -≤--≤⎧⎨-≤-≤⎩7a b +≤4,3a b ==4,3a b ==2222222502435021023024330230m am b m m m m m am b m m m m ⎧⎧⎧--+≥--+≥-+≥⎪⎪⇔⇔⎨⎨⎨---≤---≤--≤⎪⎩⎪⎩⎩[]1,1m ∀∈-()4f x ≤a b +7.。
云南2024-2025学年高三上学期9月月考数学试题含答案

数学试卷(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{13},{(2)(4)0}A xx B x x x =≤≤=--<∣∣,则A B = ()A.(2,3] B.[1,2)C.(,4)-∞ D.[1,4)【答案】A 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{(2)(4)0}{24}B xx x x x =--<=<<∣∣,而{|13}A x x =≤≤,则(2,3]A B ⋂=.故选:A.2.已知命题2:,10p z z ∃∈+<C ,则p 的否定是()A.2,10z z ∀∈+<CB.2,10z z ∀∈+≥C C.2,10z z ∃∈+<C D.2,10z z ∃∈+≥C 【答案】B 【解析】【分析】根据存在量词命题的否定形式可得.【详解】由存在量词命题的否定形式可知:2:,10p z z ∃∈+<C 的否定为2,10z z ∀∈+≥C .故选:B3.正项等差数列{}n a 的公差为d ,已知14a =,且135,2,a a a -三项成等比数列,则d =()A.7B.5C.3D.1【答案】C【解析】【分析】由等比中项的性质再结合等差数列性质列方程计算即可;【详解】由题意可得()23152a a a -=,又正项等差数列{}n a 的公差为d ,已知14a =,所以()()2111224a d a a d +-=+,即()()222444d d +=+,解得3d =或1-(舍去),故选:C.4.若sin160m ︒=,则︒=sin 40()A.2m -B.2-C.2-D.2【答案】D 【解析】【分析】利用诱导公式求出sin 20︒,然后结合平方公式和二倍角公式可得.【详解】因为()sin160sin 18020sin 20m ︒=︒-︒=︒=,所以cos 20︒==,所以sin 402sin 20cos 202︒=︒︒=故选:D5.已知向量(1,2),||a a b =+= ,若(2)b b a ⊥- ,则cos ,a b 〈〉=()A.5-B.10-C.10D.5【答案】C 【解析】【分析】联立||a b += 和(2)0b b a ⋅-=求出,b a b ⋅ 即可得解.【详解】因为(1,2)a = ,所以a =,所以222||27a b a b a b +=++⋅=,整理得222b a b +⋅=①,又(2)b b a ⊥- ,所以2(2)20b b a b a b ⋅-=-⋅=②,联立①②求解得11,2b a b =⋅= ,所以12cos ,10a b a b a b⋅〈〉=== .故选:C 6.函数)()ln f x kx =是奇函数且在R 上单调递增,则k 的取值集合为()A.{}1-B.{0}C.{1}D.{1,1}-【答案】C 【解析】【分析】根据奇函数的定义得()))()222()ln lnln 10f x f x kx kx x k x -+=-+=+-=得1k =±,即可验证单调性求解.【详解】)()lnf x kx =+是奇函数,故()))()222()ln ln ln 10f x f x kx kx x k x -+=-+=+-=,则22211x k x +-=,210k -=,解得1k =±,当1k =-时,)()lnf x x ==,由于y x =在0,+∞为单调递增函数,故()lnf x =0,+∞单调递减,不符合题意,当1k =时,)()lnf x x =+,由于y x =在0,+∞为单调递增函数且()00f =,故)()ln f x x =为0,+∞单调递增,根据奇函数的性质可得)()ln f x x =+在上单调递增,符合题意,故1k =,故选:C7.函数π()3sin ,06f x x ωω⎛⎫=+> ⎪⎝⎭,若()(2π)f x f ≤对x ∈R 恒成立,且()f x 在π13π,66⎡⎤⎢⎣⎦上有3条对称轴,则ω=()A.16 B.76C.136D.16或76【答案】B【解析】【分析】根据()2π3,2π2f T T =≤<求解即可.【详解】由题知,当2πx =时()f x 取得最大值,即π(2π)3sin 2π36f ω⎛⎫=+= ⎪⎝⎭,所以ππ2π2π,Z 62k k ω+=+∈,即1,Z 6k k ω=+∈,又()f x 在π13π,66⎡⎤⎢⎥⎣⎦上有3条对称轴,所以13ππ2π266T T ≤-=<,所以2π12T ω≤=<,所以76ω=.故选:B8.设椭圆2222:1(0)x y E a b a b +=>>的右焦点为F ,过坐标原点O 的直线与E 交于A ,B 两点,点C 满足23AF FC = ,若0,0AB OC AC BF ⋅=⋅=,则E 的离心率为()A.9B.7C.5D.3【答案】D 【解析】【分析】设(),A m n ,表示出,,,OA OC AF BF,根据0,0AB OC AC BF ⋅=⋅= 列方程,用c 表示出,m n ,然后代入椭圆方程构造齐次式求解可得.【详解】设(),A m n ,则()(),,,0B m n F c --,则()()(),,,,,OA m n AF c m n BF c m n ==--=+,因为23AF FC = ,所以()555,222n AC AF c m ⎛⎫==-- ⎪⎝⎭,所以()()55533,,,22222n c n OC OA AC m n c m m ⎛⎫⎛⎫=+=+--=-- ⎪ ⎪⎝⎭⎝⎭ ,因为0,0AB OC AC BF ⋅=⋅=,所以222253302220c OA OC m m n AF BF c m n ⎧⎛⎫⋅=--=⎪ ⎪⎝⎭⎨⎪⋅=--=⎩ ,得34,55m c n c ==,又(),A m n 在椭圆上,所以222291625251c ca b+=,即()()222222229162525c a c a c a a c -+=-,整理得4224255090a a c c -+=,即42950250e e -+=,解得259e =或25e =(舍去),所以3e =.故选:D【点睛】关键点睛:根据在于利用向量关系找到点A 坐标与c 的关系,然后代入椭圆方程构造齐次式求解.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.数列{}n a 的前n 项和为n S ,已知22()n S kn n k =-∈R ,则下列结论正确的是()A.{}n a 为等差数列B.{}n a 不可能为常数列C.若{}n a 为递增数列,则0k >D.若{}n S 为递增数列,则1k >【答案】AC 【解析】【分析】根据,n n a S 的关系求出通项n a ,然后根据公差即可判断ABC ;利用数列的函数性,分析对应二次函数的开口方向和对称轴位置即可判断D .【详解】当1n =时,112a S k ==-,当2n ≥时,()()()221212122n n n a S S kn n k n n kn k -⎡⎤=-=-----=-+⎣⎦,显然1n =时,上式也成立,所以()22n a kn k =-+.对A ,因为()()()1222122n n a a kn k k n k k -⎡⎤-=-+---+=⎣⎦,所以是以2k 为公差的等差数列,A 正确;对B ,由上可知,当0k =时,为常数列,B 错误;对C ,若为递增数列,则公差20k >,即0k >,C 正确;对D ,若{}n S 为递增数列,由函数性质可知02322k k >⎧⎪⎨<⎪⎩,解得23k >,D 错误.故选:AC10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以110.820y x =+、220.7525y x =+的方式赋分,其中12,x x 分别表示甲、乙两班原始考分,12,y y 分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则()A.甲班原始分数的平均数比乙班原始分数的平均数高B.甲班原始分数的标准差比乙班原始分数的标准差高C.甲班每位同学赋分后的分数不低于原始分数D.若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高【答案】ACD 【解析】【分析】根据期望和标准差的性质求出赋分前的期望和标准差即可判断AB ;作差比较,结合自变量范围即可判断C ;作出函数0.820,0.7525y x y x =+=+的图象,结合图象可判断D .【详解】对AB ,由题知()()1215E y E y ====,因为110.820y x =+,220.7525y x =+,所以()()120.82060,0.752515E x E x +=+===,解得()()1250,20E x E x =≈==,所以()()12E x E x >=,故A 正确,B 错误;对C ,因为111200.2y x x -=-,[]10,100x ∈,所以10200.220x ≤-≤,即110y x -≥,所以C 正确;对D ,作出函数0.820,0.7525y x y x =+=+的图象,如图所示:由图可知,当12100y y =<时,有21x x <,又因为0.820y x =+单调递增,所以当12y y >时必有12x x >,D 正确.故选:ACD11.已知函数()f x 及其导函数()f x '的定义域为R ,若(1)f x +与()f x '均为偶函数,且(1)(1)2f f -+=,则下列结论正确的是()A.(1)0f '=B.4是()f x '的一个周期C.(2024)0f =D.()f x 的图象关于点(2,1)对称【答案】ABD 【解析】【分析】注意到()f x '为偶函数则()()2f x f x -+=,由()(1)1f x f x -+=+两边求导,令0x =可判断A ;()()11f x f x --='+'结合导函数的奇偶性可判断B ;利用()f x 的周期性和奇偶性可判断C ;根据()()2f x f x -+=和()(1)1f x f x -+=+可判断D .【详解】因为()f x '为偶函数,所以()()f x f x -'=',即()()f x f x c --=+,而(1)(1)2f f -+=,故2c =-,故()()2f x f x +-=,又(1)f x +为偶函数,所以()(1)1f x f x -+=+,即()()2f x f x =-,所以()2()2f x f x -+-=,故()(2)2f x f x ++=即()2(4)2f x f x +++=,()()4f x f x =+,所以4是()f x 的周期,故B 正确.对A ,由()(1)1f x f x -+=+两边求导得()()11f x f x --='+',令0x =得()()11f f -'=',解得()10f '=,A 正确;对C ,由上知()()2f x f x +-=,所以()01f =,所以()()(2024)450601f f f =⨯==,C 错误;对D ,因为()()2f x f x +-=,()()2f x f x =-,故()2(2)2f x f x -++=,故()f x 的图象关于2,1对称,故选:ABD【点睛】关键点睛:本题解答关键在于原函数与导数数的奇偶性关系,以及对()(1)1f x f x -+=+两边求导,通过代换求导函数的周期.三、填空题(本大题共3小题,每小题5分,共15分)12.曲线()e xf x x =-在0x =处的切线方程为______.【答案】1y =##10y -=【解析】【分析】求出函数的导函数,利用导数的几何意义求出切线的斜率,即可求出切线方程.【详解】因为()e xf x x =-,则()01f =,又()e 1xf x '=-,所以()00f '=,所以曲线()e xf x x =-在0x =处的切线方程为1y =.故答案为:1y =13.若复数cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭在复平面内对应的点位于直线y x =上,则λ的最大值为__________.【答案】1-##1-+【解析】【分析】根据复数对应的点cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭在y x =得212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,即可利用二倍角公式以及基本不等式求解.【详解】cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭对应的点为cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,故cos 21sin sin 2θλθθ⎛⎫+-= ⎪⎝⎭,故212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,由于()0,πθ∈,故sin 0θ>,则2sin 1111sin sin sin 122sin θλθθθθ==≤++++,当且仅当1sin 2sin θθ=,即2sin 2θ=,解得π3π,44θθ==时等号成立,114.过抛物线2:3C y x =的焦点作直线l 交C 于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于M ,N 两点,若||12AB =,则||MN =__________.【答案】【解析】【分析】联立直线与抛物线方程,得韦达定理,根据焦点弦的公式可得223332122k AB k +=+=,解得213k =,即可求解()111:AM y x x y k=--+得11M x ky x =+,即可代入求解.【详解】2:3C y x =0,根据题意可知直线l 有斜率,且斜率不为0,根据对称性不设直线方程为34y k x ⎛⎫=-⎪⎝⎭,联立直线34y k x ⎛⎫=-⎪⎝⎭与23y x =可得22223930216k x k x k ⎛⎫-++= ⎪⎝⎭,设()()1122,,,A x y B x y ,故2121223392,16k x x x x k ++==,故21223332122k AB x x p k +=++=+=,解得213k =,直线()111:AM y x x y k=--+,令0y =,则11M x ky x =+,同理可得22N x ky x =+,如下图,故()()()211221212121M N MN x x ky x ky x k y y x x k x x =-=+--=-+-=+-,()()22221212233192141483316k MN k x x x x k ⎛⎫+ ⎪⎛⎫=++-=+-⨯= ⎪ ⎪⎝⎭ ⎪⎝⎭故答案为:83四、解答题(本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos 0a b c A -+=.(1)求角C ;(2)若AB 边上的高为1,ABC V 的面积为33,求ABC V 的周长.【答案】(1)π3C =;(2)23.【解析】【分析】(1)利用余弦定理角化边,整理后代入余弦定理即可得解;(2)利用面积公式求出c ,然后由面积公式结合余弦定理联立求解可得a b +,可得周长.【小问1详解】由余弦定理角化边得,2222202b c a a b c bc +--+⨯=,整理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,因为()0,πC ∈,所以π3C =.【小问2详解】由题知,13123c ⨯=,即233c =,由三角形面积公式得1πsin 233ab =,所以43ab =,由余弦定理得()222π42cos 333a b ab a b ab +-=+-=,所以()2416433a b +=+=,所以3a b +=,所以ABC V 的周长为33a b c ++=+=16.如图,PC 是圆台12O O 的一条母线,ABC V 是圆2O 的内接三角形,AB 为圆2O 的直径,4,AB AC ==.(1)证明:AB PC ⊥;(2)若圆台12O O 的高为3,体积为7π,求直线AB 与平面PBC 夹角的正弦值.【答案】(1)证明见详解;(2)19.【解析】【分析】(1)转化为证明AB ⊥平面12O O CP ,利用圆台性质即可证明;(2)先利用圆台体积求出上底面的半径,建立空间坐标系,利用空间向量求线面角即可.【小问1详解】由题知,因为AB 为圆2O 的直径,所以AC BC ⊥,又4,AB AC ==AB ==,因为2O 为AB 的中点,所以2O C AB ⊥,由圆台性质可知,12O O ⊥平面ABC ,且12,,,O O P C 四点共面,因为AB ⊂平面ABC ,所以12O O AB ⊥,因为122,O O O C 是平面12O O CP 内的两条相交直线,所以AB ⊥平面12O O CP ,因为PC ⊂平面12O O CP ,所以AB PC ⊥.【小问2详解】圆台12O O的体积(2211ππ237π3V r =⋅+⋅⨯=,其中11r PO =,解得11r =或13r =-(舍去).由(1)知122,,O O AB O C 两两垂直,分别以2221,,O B O C O O 为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则(2,0,0),(2,0,0),(0,2,0),(0,1,3)A B C P -,所以(4,0,0),(2,1,3),(2,2,0)AB BP BC ==-=-.设平面PBC 的一个法向量为(,,)n x y z =,则230,220,n BP x y z n BC x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩解得,3,x y x z =⎧⎨=⎩于是可取(3,3,1)n =.设直线AB 与平面PBC 的夹角为θ,则sin cos ,19AB n θ===,故所求正弦值为19.17.已知函数()ln f x x ax =+.(1)若()0f x ≤在(0,)x ∈+∞恒成立,求a 的取值范围;(2)若()1,()e()xa g x f f x ==-,证明:()g x 存在唯一极小值点01,12x⎛⎫∈ ⎪⎝⎭,且()02g x >.【答案】(1)1,e⎛⎤-∞- ⎥⎝⎦;(2)证明见解析.【解析】【分析】(1)参变分离,构造函数()ln xh x x=-,利用导数求最值即可;(2121内,利用零点方程代入()0g x ,使用放缩法即可得证.【小问1详解】()0f x ≤在(0,)x ∈+∞恒成立,等价于ln xa x≤-在(0,)+∞上恒成立,记()ln x h x x =-,则()2ln 1x h x x='-,当0e x <<时,ℎ′<0,当e x >时,ℎ′>0,所以ℎ在()0,e 上单调递减,在()e,∞+上单调递增,所以当e x =时,ℎ取得最小值()ln e 1e e eh =-=-,所以1a e≤-,即a 的取值范围1,e ∞⎛⎤-- ⎥⎝⎦.【小问2详解】当1a =时,()()e()eln ,0xxg x f f x x x =-=->,则1()e x g x x'=-,因为1e ,xy y x==-在(0,)+∞上均为增函数,所以()g x '在(0,)+∞单调递增,又()121e 20,1e 102g g ⎛⎫=-''=- ⎪⎝⎭,1存在0x ,使得当∈0,0时,()0g x '<,当∈0,+∞时,()0g x '>,所以()g x 在()00,x 上单调递减,在()0,x ∞+上单调递增,所以()g x 存在唯一极小值点01,12x ⎛⎫∈⎪⎝⎭.因为01e 0x x -=,即00ln x x =-,所以00000()e ln =e x x g x x x =-+,因为01,12x ⎛⎫∈⎪⎝⎭,且=e x y x+1上单调递增,所以012001()=e e 2x g x x +>+,又9e 4>,所以123e 2>,所以00031()=e 222xg x x +>+=.18.动点(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于34,且|||y x <.记点M 的轨迹方程为Γ.(1)求Γ的方程;(2)过Γ上的点P 作圆22:(4)1Q x y +-=的切线PT ,T 为切点,求||PT 的最小值;(3)已知点40,3G ⎛⎫⎪⎝⎭,直线:2(0)l y kx k =+>交Γ于点A ,B ,Γ上是否存在点C 满足0GA GB GC ++= ?若存在,求出点C 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)2(3)3,44C ⎛⎫-- ⎪ ⎪⎝⎭【解析】【分析】(1)根据点到直线距离公式,即可代入化简求解,(2)由相切,利用勾股定理,结合点到点的距离公式可得PT =,即可由二次函数的性质求解,(3)联立直线与双曲线方程得到韦达定理,进而根据向量的坐标关系可得()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,将其代入双曲线方程即可求解.【小问1详解】根据(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于3434=,化简得2233x y -=,由于|||y x <,故2233x y -=,即2213y x -=.【小问2详解】设(,)P x y,PT ====故当3y =时,PT 最小值为2【小问3详解】联立:2(0)l y kx k =+>与2233x y -=可得()223470k x kx ---=,设()()()112200,,,,,A x y B x y C x y ,则12122247,33k x x x x k k-+==--,故()212122444,3k y y k x x k+=++=+-设存在点C 满足0GA GB GC ++= ,则1201200433x x x y y y ++=⎧⎪⎨++=⨯⎪⎩,故()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,由于()00,C x y 在2233x y -=,故22222443333k k k k ⎛⎫-⎛⎫--= ⎪⎪--⎝⎭⎝⎭,化简得421966270k k -+=,即()()2231990k k --=,解得2919k =或23k =(舍去),由于()22Δ162830k k =+->,解得27k<且23k ≠,故2919k =符合题意,由于0k >,故31919k =,故022024,344334k x k k y k ⎧=-=-⎪⎪-⎨-⎪==-⎪-⎩,故3,44C ⎛⎫-- ⎪ ⎪⎝⎭,故存在3,44C ⎛⎫-- ⎪ ⎪⎝⎭,使得0GA GB GC ++= 19.设n ∈N ,数对(),n n a b 按如下方式生成:()00,(0,0)a b =,抛掷一枚均匀的硬币,当硬币的正面朝上时,若n n a b >,则()()11,1,1n n n n a b a b ++=++,否则()()11,1,n n n n a b a b ++=+;当硬币的反面朝上时,若n n b a >,则()()11,1,1n n n n a b a b ++=++,否则()()11,,1n n n n a b a b ++=+.抛掷n 次硬币后,记n n a b =的概率为n P .(1)写出()22,a b 的所有可能情况,并求12,P P ;(2)证明:13n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求n P ;(3)设抛掷n 次硬币后n a 的期望为n E ,求n E .【答案】(1)答案见详解;(2)证明见详解,1111332n n P -⎛⎫=-⨯- ⎪⎝⎭;(3)21113929nn E n ⎛⎫=+--⎪⎝⎭【解析】【分析】(1)列出所有()11,a b 和()22,a b 的情况,再利用古典概型公式计算即可;(2)构造得1111323n n P P +⎛⎫-=-- ⎪⎝⎭,再利用等比数列公式即可;(3)由(2)得()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,再分n n a b >,n n a b =和n n a b <讨论即可.【小问1详解】当抛掷一次硬币结果为正时,()()11,1,0a b =;当抛掷一次硬币结果为反时,()()11,0,1a b =.当抛掷两次硬币结果为(正,正)时,()()22,2,1a b =;当抛掷两次硬币结果为(正,反)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,正)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,反)时,()()22,1,2a b =.所以,12210,42P P ===.【小问2详解】由题知,1n n a b -≤,当n n a b >,且掷出反面时,有()()11,,1n n n n a b a b ++=+,此时11n n a b ++=,当n n a b <,且掷出正面时,有()()11,1,n n n n a b a b ++=+,此时11n n a b ++=,所以()()()()()1111112222n n n n n n n n n n P P a b P a b P a b P a b P +⎡⎤=>+<=>+<=-⎣⎦,所以1111323n n P P +⎛⎫-=-- ⎪⎝⎭,所以13n P ⎧⎫-⎨⎬⎩⎭是以11133P -=-为首项,12-为公比的等比数列,所以1111332n n P -⎛⎫-=-⨯- ⎪⎝⎭,所以1111332n n P -⎛⎫=-⨯- ⎪⎝⎭.【小问3详解】设n n a b >与n n a b <的概率均为n Q ,由(2)知,()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥⎪⎝⎭⎢⎥⎣⎦显然,111110222E =⨯+⨯=.若n n a b >,则1n n a b =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b =,则当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b <,则1n n b a =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,11n n a a +=+.所以1n n a a +=时,期望不变,概率为111122262nn n Q P ⎡⎤⎛⎫+=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;11n n a a +=+时,期望加1,概率为1111111124226262n nn n Q P ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+=-+-=--⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.所以()11111112144626262nn nn nn n E E E E +⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯+-++⨯--=+--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故12112111111444626262n n n n n n E E E -----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+--=+--+--⎢⎥⎢⎥⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=1111111446262n E -⎡⎤⎡⎤⎛⎫⎛⎫=+--++--⎢⎥⎢⎥⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦011111111444626262n -⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+--++--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 111241612n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦21113929nn ⎛⎫=+-- ⎪⎝⎭.经检验,当1n =时也成立.21113929nn E n ⎛⎫∴=+-- ⎪⎝⎭.【点睛】关键点点睛:本题第三问的关键是分1n n a a +=和11n n a a +=+时讨论,最后再化简n E 的表达式即可.。
广西名校2024-2025学年高三上学期9月联合调研测试数学科试卷(无答案)

2025届广西名校高三年级9月联合调研考试数学科试卷试卷满分:150分 考试时间:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.设集合,,若,则( )A .B .1C .2D .32.若复数z 是方程的一个根,则( )A .3B C .5D 3.在平行四边形ABCD 中,,,,,则( )A .1B .C .2D .34.已知,则( )A .B .C .D .5.设等比数列的前n 项和为,,,则( )A .B .63C .D .316.已知,,,则a ,b ,c 的大小关系是( )A .B .C .D .7.已知点P 在抛物线M :上,过点P 作圆C :的切线,若切线长为,则点P到M 的准线的距离为( )A .5BC .6D8.根据公式,的值所在的区间是(){}1,21A a =+{}3,1,32B a a =--A B ⊆a =2-2450x x -+=z =3AB =AD =45A ∠=︒2DE EC = AE BE ⋅=32ππsin 3sin 44αα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭cos 2α=45-35-3545{}n a n S 2592a a +=3694a a +=5S =63431214e a e=+3log 2b =5log 2c =a b c >>a c b >>b c a >>c b a>>24y x =()2221x y -+=3sin 33sin 4sin ααα=-sin10︒A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分。
广西壮族自治区贵百河武鸣高中2024-2025学年高一上学期10月月考试题 数学(含解析)

2024级“贵百河—武鸣高中”10月高一年级新高考月考测试数 学(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,集合,则图中阴影部分表示的集合为()A . B.C .D .2.已知命题,则是( )A .B .C .D .3.已知集合,则“”是“集合M 仅有1个真子集”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.已知函数的对应关系如下表,函数的图象如图,则的值为()A .3B .0C .1D .25.给出下列结论:①两个实数a ,b 之间,有且只有a ﹥b ,a =b ,a <b 三种关系中的一种;②若,则a ﹥b ;③若,;④已知,则.其中正确结论的个数为( )A .1B .2C .3D .4x123230{32}A x x =-<<{05}B x x =<<{35}x x -<<{02}x x <<{30}x x -<≤{3025}x x x -<≤≤<或2:1,1p x x ∀<->p ⌝21,1x x ∃≤-≤21,1x x ∃<-≤21,1x x ∀<->21,1x x ∀≥->{}()210R M x ax x a =-+=∈14a =)(x f y =)(x g y =()1f g ⎡⎤⎣⎦1>ab0a b >>0a bc d d c >>⇒>0ab >11a b a b>⇔<()f x6.已知函数的定义域是,则的定义域为()A .B .C .D .7.已知函数,若对于任意的实数与至少有一个为正数,则实数m 的取值范围是( )A .B .C .D .8.已知正实数a ,b ,记,则M 的最小值为()AB .2C .1D .二、多选题:本题共3小题,每小题6分,共18分。
北京市中学2024-2025学年高三上学期10月月考数学试卷含答案

北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
2024-2025学年广西南宁一中高三(上)月考数学试卷(10月份)(含答案)

2024-2025学年广西南宁一中高三(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x ∈Z|−5<x 3<10},B ={x|y =ln (x +1)},则A ∩B =( )A. {0,1,2}B. {0,1}C. {1,2}D. {−1,0,1,2}2.已知a ,b ∈R ,且a−3ib +i =1+2i ,其中i 是虚数单位,则a +b =( )A. 2B. −2C. −4D. −63.若定义域为R 的函数f(x)不是偶函数,则( )A. ∀x ∈R ,f(−x)≠f(x) B. ∀x ∈R ,f(−x)=−f(x)C. ∃x 0∈R ,f(−x 0)≠f(x 0)D. ∃x 0∈R ,f(−x 0)=−f(x 0)4.已知一组数据2x 1+1,2x 2+1,2x 3+1,2x 4+1的平均数是3,方差为4,则数据x 1,x 2,x 3,x 4的平均数和方差分别是( )A. 1,1B. 1,2C. 32, 34D. 32, 25.已知递增的等差数列{a n }的前n 项和为S n ,a 1+a 6=19,a 2a 5=70,则S 8=( )A. 70B. 80C. 90D. 1006.在△ABC 中,BA ⋅BC =12BC 2,若a =13AB +23AC ,b =34AB +14AC ,c =27AB +57AC ,则( )A. |b |>|c |>|a |B. |b |>|a |>|c |C. |a |>|c |>|b |D. |c |>|a |>|b |7.已知函数f(x)=sin (ωx +π6)(ω>0)在区间[0,π2)内既有最大值,又有最小值,则ω的取值范围是( )A. (23, +∞) B. (23, 43]∪(83, +∞)C. (83, +∞)D. (23, 43)∪(83, +∞)8.不等式t( x + y )≤2x +2y 对所有的正实数x ,y 恒成立,则t 的最大值为( )A. 2B.2C.24D. 1二、多选题:本题共3小题,共18分。
辽宁省鞍山市第一中学2024-2025学年高三上学期10月月考数学试题(含答案)

鞍山市第一中学2024-2025学年高三上学期10月月考数学科试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知( )A .1B .2CD .32.为了得到函数的图像,只需把函数的图像( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位3.在中,点在边上,,设,则( )A .B .C .D .4.设函数,其中,则是偶函数的充要条件是( )A .B .C .D .5.已知函数,则不等式的解集为( )A .B .C .D .6.已知函数,若在有唯一的零点,则( )A .1B .2C .3D .47.已知函数在处有极大值,则( )A .1B .2C .3D .48.已知函数的最小正周期为,当时,函数取最小值,则下列结论正确的是( )A .B .C .D .12i ,iz z -==πsin 23y x ⎫⎛=- ⎪⎝⎭πsin 26y x ⎫⎛=+ ⎪⎝⎭π4π4π2π2ABC △M N 、BC BM MN NC ==,AM m AN n == AB = 2m n - 2n m - 2m n - 2n m- ()()cos f x x ωϕ=+0ω>()f x ()01f =()00f =()01f '=()00f '=()112,02,0x x x f x x +-⎧≥=⎨-<⎩()()2f x f x ->(),1-∞-(),1-∞()1,-+∞()1,+∞()()2cos 1f x x a x =-+()f x ()1,1-a =()2()f x x x c =⋅-1x =c =()()sin (,,0)f x A x A ωϕωϕ=+>π6074π3x =()f x ()()()220f f f <-<()()()202f f f -<<()()()022f f f <<-()()()202f f f <<-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西数学高三上学期理数第五次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2016高二下·咸阳期末) 设集合U={-2,-1,0,1,2},A={1,2},B={-2,-1,2}则
等于()
A . {1}
B . {1,2}
C . {2}
D . {0,1,2}
2. (2分)曲线y=x2-x+4上一点P处的切线的斜率为5,则点P处的切线方程为()
A . 5x-y-5=0
B . 5x-y+5=0
C . 5x-y-53=0
D . 5x-y+53=0
3. (2分) (2019高三上·宜昌月考) 若,则()
A .
B .
C .
D .
4. (2分) (2017高一上·蓟县期末) 要得到函数y=3cosx的图象,只需将函数y=3sin(2x﹣)的图象上所有点的()
A . 横坐标缩短到原来的(纵坐标不变),所得图象再向左平移个单位长度
B . 横坐标缩短到原来的(纵坐标不变),所得图象再向右平移个单位长度
C . 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向左平移个单位长度
D . 横坐标伸长到原来的2倍(纵坐标不变),所得图象再向右平移个单位长度
5. (2分) (2019高二上·望城月考) 给出下列语句:
①若α、β均为第一象限角,且α>β,则sinα>sinβ;
②若函数y=2cos 的最小正周期是4 ,则a= ;
③函数y= 的周期是;
④函数y=sinx+sin 的值域是.
其中叙述正确的语句个数为()
A . 0
B . 1
C . 2
D . 3
6. (2分) (2020高一下·成都期末) 满足,,的恰有一个,那么的取值范围是()
A .
B .
C .
D . 或
7. (2分) (2017高二上·河南月考) 下列叙述正确的是()
A . 若,则
B . 方程表示的曲线是椭圆
C . 是“数列为等比数列”的充要条件
D . 若命题,则
8. (2分) (2019高三上·郴州月考) 丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,
在上的导函数为,若在上恒成立,则称函数在上为“凸函数”.已知在上为“凸函数”,则实数m的取值范围是()
A .
B .
C .
D .
9. (2分) (2015高二上·广州期末) 若变量x,y满足约束条件,则z=2x+y的最大值为()
A . 1
B . 2
C . 3
D . 4
10. (2分)四边形OABC中,=,若=,=,则=()
A . -
B . -
C . +
D . -
11. (2分)已知正三棱锥P-ABC的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为()
A . 4π
B . 12π
C .
D .
12. (2分)已知函数的图象如右图所示,则的解析式可以是()
A .
B .
C .
D .
二、填空题 (共4题;共5分)
13. (1分)若复数z满足(i为虚数单位),则复数z=________
14. (1分)正项等比数列{an}满足:a3=a2+2a1 ,若存在am , an ,使得am•an=64a ,则 + 的最小值为________.
15. (2分)(2017·济南模拟) 祖暅著《缀术》有云:“缘幂势既同,则积不容异”,这就是著名的祖暅原理,如图1,现有一个半径为R的实心球,以该球某条直径为中心轴挖去一个半径为r的圆柱形的孔,再将余下部分熔铸成一个新的实心球,则新实心球的半径为________(如图2,势为h时幂为S=π(R2﹣r2﹣h2))
16. (1分) (2017高二下·新余期末) 已知函数f(x)=alnx﹣ x2+bx存在极小值,且对于b的所有可能取值,f(x)的极小值恒大于0,则a的最小值为________.
三、解答题 (共6题;共44分)
17. (10分)已知A={x|x2+3x﹣10≤0},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.
18. (2分) (2017高三上·东莞期末) 设△ABC 的内角 A,B,C 的对边分别是a,b,c,且 a= b cosC+c sinB.
(Ⅰ)求角B 的大小;
(Ⅱ)若点M 为BC的中点,且 AM=AC,求sin∠BAC.
19. (10分)(2020·许昌模拟) 已知函数 .
(1)当,时,求不等式的解集;
(2)若,,的最小值为2,求的最小值.
20. (2分) (2019高二上·桂林期末) 已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(1)求数列{bn}的通项公式;
(2)证明:.
21. (10分) (2020高二上·西湖期末) 如图所示,在四棱锥中,底面是
且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若为的中点,为
的中点.
(1)求证:平面;
(2)求证:;
(3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由
22. (10分) (2019高二下·海珠期末) 已知函数.
(1)求函数的单调区间;
(2)求函数在区间上的最大值和最小值.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共5分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共6题;共44分)
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、答案:21-2、
答案:21-3、考点:
解析:
答案:22-1、答案:22-2、
考点:
解析:。