第三讲__排序不等式
人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计

人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计一、教学目标1.理解柯西不等式和排序不等式的概念和基本性质。
2.能够应用柯西不等式和排序不等式解决实际问题。
3.培养学生的数学思维能力、解决问题的能力和团队协作精神。
二、教学内容1.柯西不等式的定义和证明。
2.柯西不等式及其应用。
3.排序不等式的定义和证明。
4.排序不等式及其应用。
三、教学重点和难点1.理解柯西不等式和排序不等式的定义和基本性质。
2.掌握柯西不等式的证明方法,理解其应用。
3.熟练掌握排序不等式的证明方法,能够应用排序不等式解决实际问题。
四、教学方法和手段1.教师引导学生自主发现和探究柯西不等式和排序不等式。
2.采用运用举例的方法,引导学生理解和记忆柯西不等式和排序不等式,提高学生举一反三的能力。
3.推崇探究式学习方法,鼓励学生主动探究,组织学生研究、合作探讨,提升学生的团队合作能力。
五、教学流程1.柯西不等式的引入通过真实生活中的例子,引出两个变量之间的关系,小组探究两正数之积的最大值、两负数之积的最大值、正数与负数之积的最小值。
教授柯西不等式的定义和证明。
2.柯西不等式的应用通过计算题目,引出使用柯西不等式求出积分值最大值的方法,题目的复杂程度逐渐加深,教授柯西不等式在解题中的应用。
3.排序不等式引入介绍排序不等式的定义和证明过程,并从生活中的例子引出排序不等式的应用场景。
4.排序不等式的应用通过计算题目,引导学生掌握人教版高中选修4-5第三讲柯西不等式与排序不等式的解题方法,解决实际问题。
六、教学评价1.通过出题考核,检测学生掌握柯西不等式和排序不等式的基础知识和应用能力。
2.通过实际应用问题,检验学生对柯西不等式和排序不等式的理解和应用能力。
七、小组探究设计在小组合作过程中,让学生组织实验、调查等自主探究柯西不等式和排序不等式。
小组探究产生的报告可作为课后作业,让学生进行总结和讨论。
最后,本课程旨在为学生提供基本数学知识和运用能力,建立实际生活场景与知识的联系。
5.4柯西不等式与排序不等式 课件(人教A版选修4-5)

2 2 2
ac bd a b c d
2
定理2: (柯西不等式的向量形式)
| || | | |
设α,β是两个向量,则 当且仅当β是零向量,或存在实数k, 使α=kβ时,等号成立.
观 察
反序和≤乱序和≤顺序和
例1 :有10人各拿一只水桶去接水,设水 龙头注满第i(i=1,2,…,10)个人的水桶需 要ti分,假定这些ti各不相同。 问:只有一个水龙头时,应该如何安排10 人的顺序,使他们等候的总时间最少? 这个最少的总时间等于多少?
解:总时间(分)是 10t1+9t2+…+2t9+t10 根据排序不等式,当t1<t2<…<t9<t10时, 总时间取最小值。 即:按水桶的大小由小到大依次接水, 则10人等候的总时间最少。 最少的总时间是: 10t1+9t2+…+2t9+t10
即可
三 排序不等式
定理(排序不等式,又称排序定理) 设a1 a2 ... an,b1 b2 ... bn为两组 实数c1 , c2 是b1 , b2 ...bn的任一排列, 那么: a1bn a2bn 1 ... anb1 a1c1 a2 c2 ... an cn a1b1 a2b2 ... anb.n 当且仅当a1 a2 ... an或b1 b2 ... bn时, 反序和等于顺序和。
y
P1(x1,y1)
y P1(x1,y1) 0
0
P2(x2,y2) x
x P2(x2,y2)
根据两点间距离公式以及三角形的 边长关系:
x y x y ( x1 x2 ) ( y1 y2 )
第3讲柯西不等式与排序不等式复习课课件人教新课标

2.一般情势的柯西不等式 设 a1 , a2 , a3 , … , an , b1 , b2 , b3 , … ,(ban21+是a22实+…数+,a2n)则 _(b_21_+__b_22+ __… __+ __b_2n_)_≥(a1b1+a2b2+…+anbn)2 _______________________________________. 当 且 仅 当 bi = 0(i = 1,2 , … , n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立. 3.排序不等式 设 a1≤a2≤…≤an , b1≤b2≤…≤bn 为 两 组 实 数 , c1 , c2 , … , cn 是 b1 ,
证明 不妨设0<a≤b≤c,于是A≤B≤C.
由0<b+c-a,0<a+b-c,0<a+c-b,
有0<A(b+c-a)+C(a+b-c)+B(a+c-b)
=a(B+C-A)+b(A+C-B)+c(A+B-C)
=a(π-2A)+b(π-2B)+c(π-2C)
=(a+b+c)π-2(aA+bB+cC).
得aAa++bbB++ccC<π2.
可得
x=2209,y=2390,z=2490.
1234
解析 答案
4.设 a,b,c 都是正数,求证:bac+cba+acb≥a+b+c. 证明 不妨设a≥b≥c>0, 则1a≤1b≤1c,ab≥ac≥bc, ∵bac+abc+acb≥bcc+aac+abb=a+b+c, ∴bac+abc+acb≥a+b+c.
4.数学建模是数学学习中的一种新情势,它为学生提供了自己学习的空间, 有助于学生了解数学在实际生活中的应用,体会数学与日常生活及其他学 科的联系.
人教版高中数学选修第三讲--柯西不等式与排序不等式ppt课件

补充例 3:已知 a 1 b2 b 1 a2 1, 求证: a2 b2 1 。
证明:由柯西不等式,得
a 1 b2 b 1 a2 ≤ a2 1 a2 b2 1 b2 1
当且仅当
b
1 b2 时,上式取等号,
分析: 设A
C b12
a12
b22
a
2 2
bn2,an2则 ,B不等a式 1b1就是 a2AbC2 Ba2
n
bn
构造二次函数
f ( x) (a12 a22 an2 ) x 2 2(a1b1 a 2b2 anbn ) x
(b12 b22 bn2 ) 又f ( x) (a1 x b1 )2 (a2 x b2 )2 (an x bn )2 0
思考:阅读课本第 31 页探究内容.
由 a2 b2 ≥ 2ab 两个实数的平方和与乘积 的 大小 关系 ,类 比考 虑与 下面 式子 有关 的有什 么不等关系:
设 a,b, c为, d任意实数.
(a2 b2 )(c2 d 2 )
联想
一、二维形式的柯西不等式
定 理1 (二 维 形 式 的 柯 西 不 等 式) 若a, b, c, d都 是 实 数, 则 当 且 仅 当ad bc时, 等 号 成 立.
小结:
(1)二 维 形 式 的 柯 西 不 等 式 (a2 b2 )(c2 d 2 ) (ac bd )2 (a, b, c, d R) 当且仅当ad bc时, 等号成立.
(2) a 2 b2 c 2 d 2 ac bd (3) a 2 b2 c 2 d 2 ac bd
高中数学 第三讲 柯西不等式与排序不等式 三 排序不等

1234
ab2+ba2≥ab+ba. 证明 由题意不妨设a≥b>0. 则 a2≥b2,1b≥1a,所以ab2≥ba2. 根据排序不等式知,ab2·1b+ba2·1a≥ab2·1a+ba2·1b, 即ab2+ba2≥ab+ba.
跟踪训练 1 c2
c+a.
已知 0<a≤b≤c,求证:a+c2 b+a+b2 c+b+a2 c≥a+a2b+b+b2 c+
证明
命题角度2 字母大小顺序不定问题 例 2 已知 a,b,c 均为正数,求证:b+a2 c+c+b2a+a+c2 b≥12(a+b+c).
证明
反思与感悟 对于排序不等式,其核心是必须有两组完全确定的数据, 所以解题的关键是构造出这样的两组数据.
跟踪训练2 设a,b,c∈R+,利用排序不等式证明:
a3+b3+c3≤b52+a2c5+c52+b2a5+a52+c2b5.
证明 不妨设0<a≤b≤c,
则 a5≤b5≤c5,c12≤b12≤a12, 所以由排序不等式可得 a3+b3+c3=aa52+bb52+cc52≤ac25+ba52+bc52, a3+b3+c3=aa52+bb52+cc52≤ab52+bc25+ac52,
=…=bn时,反序和等于顺序和.
题型探究
类型一 利用排序不等式证明不等式 命题角度1 字母已定序问题 例 1 已知 a,b,c 为正数,且 a≥b≥c, 求证:ba3c53+cb3a53+ac3b5 3≥1a+1b+1c.
证明
反思与感悟 利用排序不等式证明不等式的技巧在于仔细观察、分析所 要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺 序的两个数组.
1234
证明
规律与方法
1.对排序不等式的理解 排序原理是对不同的两个数组来研究不同的乘积和的问题,能构造的和按 数组中的某种“搭配”的顺序被分为三种形式:顺序和、反序和、乱序和, 对这三种不同的搭配形式只需注意是怎样的“次序”,两种较为简单的是 “顺与反”,而乱序和也就是不按“常理”的顺序了. 2.排序不等式的本质 两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方 向单调(一增一减)时所得两两乘积之和最小.
第三讲柯西不等式的基本方法与排序不等式(排序不等式)

S1 = a1b n + a 2 b n-1 + a 3 b n-2 +
问题:有10人各拿一只水桶去接水,设水龙头注 满第i(i = 1,2,3, ,10)个人的水桶需要ti分,假 定这些ti各不相同。 问只有一个水龙头时, 应 安排10人的顺序,使他们等候的总时间最少?这 个最少的总时间等于多少?
第三讲 不等式
柯西不等式与排序 排序不等式
ห้องสมุดไป่ตู้
一:引入概念 设 a1,a2,a3,…,an,,b1,b2,b3,…,bn∈R
且 a1≤a2 ≤ a3 ≤ … ≤ an,;
b1 ≤ b2 ≤ b3 ≤ …
≤
bn
设 c1 ,c2 ,c3 , ,cn 是数组b1,b2,b3,…,bn的 任何一个排列。 则将 S = a1c1 + a 2c2 + a 3c3 + + a ncn
问题 : 设a1 ,a 2 , ,a n 是n个互不相同的正数, 1 1 求证1+ + 2 3 1 a2 a3 + ≤ a1 + 2 + 2 + n 2 3 an + 2 n
人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。
二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。
三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。
3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。
四、教学过程设计
教学环节教学内容教学目标与要
求
教师活动与学生活动
1。
2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛 金牌教练员讲座兰州一中数学组第六讲不等式的应用、参数取值范围问题知识、方法、技能I .排序不等式(又称排序原理) 设有两个有序数组n a a a ≤≤≤ 21及.21n b b b ≤≤≤则n n b a b a b a +++ 2211(同序和)jn n j j b a b a b a +++≥ 2211(乱序和)1121b a b a b a n n n +++≥- (逆序和)其中n j j j ,,,21 是1,2,…,n 的任一排列.当且仅当n a a a === 21或n b b b === 21时等号(对任一排列n j j j ,,,21 )成立.证明:不妨设在乱序和S 中n j n ≠时(若n j n =,则考虑1-n j ),且在和S 中含有项),(n k b a n k ≠则.n n jn n j n n k b a b a b a b a n +≤+①事实上,左-右=,0))((≥--n j n k n b b a a由此可知,当n j n ≠时,调换n k j n j k j b a b a b a S ++++= 11(n j n ≠)中n b 与nj 位置(其余不动),所得新和.1S S ≥调整好n a 及n b 后,接着再仿上调整1-n a 与1-n b ,又得.12S S ≥如此至多经1-n 次调整得顺序和n n b a b a b a +++ 2211jn n j j b a b a b a +++≥ 2211②这就证得“顺序和不小于乱序和”.显然,当n a a a === 21或n b b b === 21时②中等号成立.反之,若它们不全相等,则必存在n j 及k ,使n b .,k n j a a b n >>这时①中不等号成立.因而对这个排列②中不等号成立. 类似地可证“乱序和不小于逆序和”. II .应用排序不等式可证明“平均不等式”:设有n 个正数n a a a ,,,21 的算术平均数和几何平均数分别是n n n nn a a a G na a a A 2121=+++=和此外,还有调和平均数(在光学及电路分析中要用到nn a a a nH 11121+++=,和平方平均(在统计学及误差分析中用到)na a a Q nn 22221+++=这四个平均值有以下关系n n n n Q A G H ≤≤≤. ○* 其中等号成立的充分必要条件都是n a a a === 21.下面首先证明算术平均数一几何平均数不等式:.n n G A ≥记1,,,2121211====n n n Ga a a x G aa x G a x ; .1,,1,12211nn x y x y x y ===由于数组n x x x ,,,21 和数组n y y y ,,,21 中对应的数互为倒数,由排序不等式得n n y x y x y x +++ 1211(逆序和)≤1121,-+++n n n y x y x y x ,即 .21nn n n G a G a G a n +++≤从而.n n G A ≥等号当且仅当n x x x === 21或n y y y === 21时成立,而这两者都可得到n a a a === 21.下面证明.n n H G ≥对n 个正数na a a 1,,1,121 应用,n n A G ≤得 .1111112121n nn a a a n a a a ⋅⋅⋅≥+++即.n n H G ≥(符号成立的条件是显然的).最后证明,n n Q A ≤它等价于.0)()(22122221≥+++-+++n n a a a a a a n而上式左边= +-++-+-++-+-2223221221221)()()()()(n n a a a a a a a a a a0)(21≥-+-n n a a ,于是不等式及等号成立的条件都是显然的了.从上述证明可见,nn Q A ≤对一切R a a a n ∈,,,21 成立.III .应用算术平均数——几何平均数不等式,可用来证明下述重要不等式.柯西(Cavchy )不等式:设1a 、2a 、3a ,…,n a 是任意实数,则).)(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++等号当且仅当k ka b i i (=为常数,),,2,1n i =时成立.证明:不妨设),,2,1(n i a i =不全为0,i b 也不全为0(因为i a 或i b 全为0时,不等式显然成立). 记A=22221n a a a +++ ,B=22221n b b b +++ .且令),,,2,1(,n i Bby A a x i i i i ===则.1,12222122221=+++=+++n n y y y x x x 于是原不等式成为.12211≤+++n n y x y x y x即≤+++)(22211n n y x y x y x 2222122221n n y y y x x x +++++++ .它等价于.0)()()(2222211≥-++-+-n n y x y x y x其中等号成立的充要条件是).,,2,1(n i y x i i ==从而原不等式成立,且等号成立的充要条件是).(BA k ka b i i == IV .利用排序不等式还可证明下述重要不等式.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21 ,则.21212211nb b b n a a a n b a b a b a nn n n +++⋅+++≥+++证明:由题设和排序不等式,有n n b a b a b a +++ 2211=n n b a b a b a +++ 2211,132212211b a b a b a b a b a b a n n n +++≥+++ ,…….11212211-+++≥+++n n n n n b a b a b a b a b a b a将上述n 个不等式叠加后,两边同除以n 2,即得欲证的不等式.赛题精讲I .排序不等式的应用 应用排序不等式可以简捷地证明一类不等式,请看下述例题.例1:对+∈R c b a ,,,比较a c c b b a c b a 222333++++与的大小.【思路分析】要应用“排序不等式”,必须取两组便于排序的数,这要从两式的结构上去分析. 【略解】 取两组数.,,;,,222c b a c b a不管c b a ,,的大小顺序如何,都是乱序和都是同序和a c c b b a c b a 222333++++,故a c cb b ac b a 222333++>++.【评述】 找出适当的两组数是解此类题目的关键.例2:+∈R c b a ,,,求证.222222222222abc ca b bc a b a c a c b c b a c b a ++≤+++++≤++ 【思路分析】 应先将a 、b 、c 三个不失一般性地规定为.0>≥≥c b a【略解】由于不等式关于a 、b 、c 对称,可设.0>≥≥c b a于是ab c c b a 111,222≥≥≥≥. 由排序不等式,得ac c b b a c c b b a a 111)(111222222⋅+⋅+⋅≤⋅+⋅+⋅逆序和(乱序和). 及.111111222222bc a b c a c c b b a a ⋅+⋅+⋅≤⋅+⋅+⋅以上两个同向不等式相加再除以2,即得原式中第一个不等式.再考虑数组abca bc c b a 111,0333≥≥>≥≥及,仿上可证第二个不等式,请读者自己完成. 【评述】应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计.这一点应从所要证的式子的结构观察分析,再给出适当的数组. 例3:在△ABC 中,试证:.23ππ<++++≤c b a cC bB aA【思路分析】 可构造△ABC 的边和角的序列,应用排序不等式来证明之.【详解】 不妨设c b a ≤≤,于是.C B A ≤≤由排序不等式,得.,,bC aB cA cC bB aA aC cB bA cC bB aA cC bB aA cC bB aA ++≥++++≥++++≥++ 相加,得)())(()(3c b a C B A c b a cC bB aA ++=++++≥++π, 得3π≥++++c b a cC bB aA ①又由,0,0,0b c a c b a a c b -+<-+<-+<有).(2)()3()2()2()()()()()()(0cC bB aA c b a C c B b A a C B A c B C A b A C B a b c a B c b a C a c b A ++-++=-+-+-=-++-++-+=-++-++-+<ππππ得.2π<++++c b a cC bB aA ②由①、②得原不等式成立.【评述】此题后半部分应用了不等式的性质来证明. 例4:设n a a a ,,,21 是互不相同的自然数,试证.212112221n a a a n n +++≤+++ 【思路分析】 应先构造两个由小到大的排序.【略解】将n a a a ,,,21 按由小到大的顺序排成n j j j a a a <<< 21其中n j j j ,,,21 是1,2,…,n 的一个排列,则.,2,121n a a a n j j j ≥≥≥ 于是由排序不等式,得.12112222222121n na a a n a a a n j j j n +++≥+++≥+++例5:设n b b b ,,,21 是正数n a a a ,,,21 的一个排列,求证.2211n b a b a b a nn ≥+++【思路分析】 应注意到),,2,1(11n i a a ii ==⋅【略证】不妨设n a a a ≥≥≥ 21,因为n a a a ,,,21 都大于0. 所以有na a a 11121≤≤≤ , 又n n a a a b b b 1,,1,11,,1,12121 是的任意一个排列,于是得到 .11111122112211nn n n b a b a b a a a a a a a n +++⋅≤⋅++⋅+⋅= 【评述】 此题比较简单,但颇具启发意义,读者应耐心体会.例6:设正数c b a ,,的乘积1=abc ,试证:.1)11)(11)(11(≤+-+-+-ac c b b a【略解】设xzc z y b y x a ===,,,这里z y x ,,都是正数,则原需证明的不等式化为 y x z x z y z y x xyz y x z x z y z y x -+-+-+≤-+-+-+,,,))()((显然中最多只有一个非负数.若y x z x z y z y x -+-+-+,,中恰有一个非正数,则此时结论显然成立.若y x z x z y z y x -+-+-+,,均为正数,则z y x ,,是某三角形的三边长.容易验证)].()()([(31))()((222z y x z y x z y x z y x y x z x z y z y x -++-++-+≤-+-+-+故得.))()((xyz y x z x z y z y x ≤-+-+-+【评述】 利用上述换元的方法可解决同类的问题.见下题:设正数a 、b 、c 的乘积,1=abc 证明.23)(1)(1)(1222≥+++++b a c a c b c b a证明:设1,1,1,1====xyz zc y b x a 则,且所需证明的不等式可化为 23222≥+++++y x z x z y z y x ,现不妨设z y x ≥≥,则 yx zx z y z y x +≥+≥+,据排序不等式得y x z x z y z y x +++++222y x zy x z y x z y x z +⋅++⋅++⋅≥ 及y x z x z y z y x +++++222yx zx x z y z z y x y +⋅++⋅++⋅≥两式相加并化简可得)(2222yx z x z y z y x +++++.333=≥++≥xyz z y x例7:设实数n n n z z z y y y x x x ,,,,,212121 ≥≥≥≥≥≥是n y y y ,,,21 的一个置换,证明:∑∑==-≤-ni i i ni i iz x y x1212.)()(【略解】 显然所需证不等式等价于∑∑==≥ni ii n i ii z x y x 11,这由排序不等式可直接得到.【评述】 应用此例的证法可立证下题:设k a 是两两互异的正整数(),2,1 =k ,证明对任意正整数n ,均有∑∑==≥ni ni k kk a 112.1证明:设n b b b ,,,21 是n a a a ,,,21 的一个排列,使n b b b <<< 21,则从条件知对每个k b n k k >≤≤,1,于是由排序不等式可知∑∑∑===≥≥ni n i k ni k kk b k a 11212.1II .柯西不等式的应用应用柯西不等式,往往能十分简捷地证明某些不等式. 例8:设+∈R x x x n ,,,21 ,求证:.211221322221n n n n x x x x x x x x x x x +++≥++++-【思路分析】 注意到式子中的倒数关系,考虑应用柯西不等式来证之.【评述】注意到式子中的倒数关系,考虑应用柯西不等式来证之.【详解】 ∵0,,,21>n x x x ,故由柯西不等式,得))((1221322221132x x x x x x x x x x x x n n n n ++++++++-2111323212)(x x x x x x x x x x x x n nn n ⋅+⋅++⋅+⋅≥-2121)(n n x x x x ++++=- ,∴.211221322221n n n n x x x x x x x x x x x +++≥++++- 【评述】这是一道高中数学联赛题,还可用均值不等式、数学归纳法、比较法及分离系数法和构造函数法等来证之.针对性训练题1.设a 、b 、c +∈R ,利用排序不等式证明: (1)b a b a b a abba≠>(); (2)b a a c c b cbac b a c b a +++≥222;(3)23≥+++++b a c a c b c b a ; (4).101010121212c b a abc ca b bc a ++≥++ 2.设a 、b 、c 是三角形三边的长,求证:.3≥-++-++-+cb a cb ac b a c b a3.已知a 、b 、c *N ∈,并且,,,c b a b a c a c b >+>+>+求证:.1)1()1()1(≤-+-+-+cb a cb a b ac a c b 4.设,1,*>∈n N n 求证:.22121-⋅>+++n nn n n n C C C5.若b a b a b a lg 2lg ,62,0,0+=+>>求且的最大值. 6.若122,122++=+b ab a 求的最小值.7.已知11),(),1(13++=>=-x y y x u x y x 求的最小值. 8.y x y x u y x 2),(,1222+==+求的最值.。