蒽醌法双氧水生产课件
《双氧水安全生产》课件

安全生产责任制
明确各级管理人员和操作人员的 安全生产职责,建立完整的安全
生产责任体系。
制定安全生产目标,并层层分解 落实,确保各项安全工作得到有
效执行。
建立健全安全生产考核机制,对 各级管理人员和操作人员的安全 生产职责履行情况进行考核和奖
惩。
安全生产培训与教育
对新员工进行安全教育培训, 确保其掌握基本的安全知识和 技能。
对在岗员工进行定期的安全培 训和教育,提高其安全意识和 操作技能。
针对双氧水生产的特点和危险 因素,开展专项安全培训和教 育,提高员工应对突发事件的 能力。
安全生产检查与隐患排查治理
定期进行安全生产检查,及时发 现和消除安全隐患。
加强日常巡检,对双氧水生产过 程中的安全状况进行实时监控和
记录。
对排查出的安全隐患进行分类管 理,制定整改措施并限期整改, 同时对整改结果进行跟踪和复查
对进厂的原料进行质量检验,确保 原料的质量和纯度符合生产要求。
生产过程安全
工艺控制
严格按照生产工艺流程进行操作 ,控制好各项工艺参数,确保生
产过程中的安全。
设备维护
定期对生产设备进行维护和保养 ,确保设备的正常运行和使用安
全。
安全生产培训
对生产人员进行安全生产培训, 提高员工的安全意识和操作技能
。
某双氧水运输事故案例
事故经过
01
某双氧水运输车辆在高速公路上发生侧翻事故,造成泄漏和环
境污染。
原因分析
02
驾驶员疲劳驾驶、车辆超载和路况不良。
总结教训
03
加强驾驶员管理和车辆安全检查,确保运输安全。
THANKS
感容器干燥、清洁, 存放在阴凉、通风良好的地方,远离 火源和热源。
过氧化氢(双氧水)生产工艺

过氧化氢(双氧水)生产工艺过氧化氢(双氧水)工艺过氧化氢(双氧水)的生产方法1.1蒽醌法蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
20世纪初,人们发明以2-烷基蒽醌作为氢的载体循环使用生产双氧水的方法,后经多次改进,使该技术日趋成熟。
其工艺为2-烷基蒽醌与有机溶剂配制成工作溶液,在压力为0.30MPa、温度55℃~65℃、有催化剂存在的条件下,通入H2进行氢化,再在40℃~44℃下与空气进行逆流氧化,经萃取、再生、精制与浓缩制得到H2O2水溶液成品,目前我国市场上有质量分数分别为27.5%、35.0%和50.0%三种规格的产品。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌法工艺为主,随着生产能力的不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床工艺逐渐显示出其优越性:氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于计算机集散控制技术,可大大提高装置的安全性能,该工艺已成为过氧化氢生产发展的方向;近期新建装置及老厂的工艺改造几乎都采用蒽醌法,多采用钯催化固定床,镍钯混合床。
目前在国内还没有出现氢化流化床的文献报道,只有上海阿托菲纳双氧水公司和福建第一化工厂引进国外技术采用钯催化氢化流化床的专利工艺。
双氧水用途及概况1.1.1.1物理性质:双氧水(学名过氧化氢),分子式:H2O2,分子量:34,无色、无味透明无毒,但对皮肤有漂白及烧灼作用。
皮肤受其侵蚀可引起皮炎、起泡或针刺般疼痛,重者长期不痊愈。
它能强烈刺激眼睛,危害眼粘膜,长期接触,可使毛发变黄。
双氧水蒸汽可引起眼睛流泪,刺激眼、鼻、喉的粘膜。
双氧水蒸气在空气中的最大浓度不应高于0.03mg/L1.1.2化学性质:双氧水是一种强氧化性物质,但遇到比它更强的氧化剂,比如高锰酸钾、氯气等,则呈还原性质。
1蒽醌法生产过氧化氢的原理

蒽醌法生产过氧化氢的安全事故分析及防范措施1 蒽醌法生产过氧化氢的原理本方法制取过氧化氢是以2- 乙基蒽醌( EAQ)为载体, 重芳烃(AR) 及磷酸三辛酯( TOP) 为混合溶剂, 配制成具有一定组成的工作液, 将其与氢气一起通入一装有催化剂的氢化床内, EAQ 于一定压力和温度下与氢进行氢化反应, 生成相应的氢蒽醌(HEAQ) , 所得溶液称氢化液。
氢化液再被空气中的氧氧化, 其中的氢蒽醌恢复成原来的蒽醌, 同时生成过氧化氢, 所得溶液称为氧化液。
利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢, 得到过氧化氢水溶液( 俗称双氧水) 。
此水溶液经净化处理即可得到过氧化氢产品。
经水萃取后的工作液( 称萃余液) , 经过后处理工序K2CO3 溶液干燥脱水分解H2O2 和沉降分离碱, 再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液, 然后再循环使用。
2 过氧化氢产品及原料的危险性2.1 过氧化氢纯净的过氧化氢, 在任何浓度下都很稳定, 工业生产的过氧化氢的正常分解速度极慢, 每年损失低于1%, 但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触, 或受光、热作用时, 可加速分解,并放出大量的氧气和热量。
分解反应速度与温度、pH 值及杂质含量有密切关系, 随着温度、pH 值的提高及杂质含量的增加, 分解反应速度加快。
温度每升高10 ℃, 分解速度约提高 1.3 倍, 分解时进一步促使温度升高和分解速度加快, 对生产安全构成威胁。
过氧化氢稳定性受pH 值的影响很大, 中性溶液最稳定, 当pH 值低( 呈酸性) 时, 对稳定性影响不大, 但当pH 值高(呈碱性)时, 稳定性急剧恶化, 分解速度明显加快。
当和含碱( 如K2CO3、NaOH 等) 成分的物质及重金属接触时, 则迅速分解。
虽然通常在过氧化氢产品中, 都加有稳定剂, 但当污染严重时, 对上述的分解也无济于事。
蒽醌法生产双氧水

一、蒽醌法双氧水工艺技术简介定义:蒽醌法生产双氧水,即利用醌类物质可以被氢化还原再重新回复成醌的性质,以烷基蒽醌衍生物为载体,在催化剂催化下被氢化,而后氧化合成过氧化氢(俗称双氧水)。
蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
目前,世界上双氧水的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法5种,在全球范围内蒽醌法生产占有绝对优势。
蒽醌法又分为钯催化生产工艺和镍催化剂氢化生产工艺。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌工艺为主,随着生产能力得不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床组件显示出氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于DCS集散控制技术,可大大提高装置得安全性能,该工艺已成为过氧化氢生产发展的方向。
目前国内工业上蒽醌法生产过氧化氢的方法有悬浮釜镍催化剂工艺、固定床钯催化剂工艺、流化床工艺等,其中蒽醌法固定床钯催化剂工艺因其投资少、产量高、操作简单以及其使用的钯催化剂具有用量少、活性高、易再生和使用安全等优点,而成为国内过氧化氢生产工艺的主流,蒽醌法固定床钯催化剂工艺:是以2-乙基蒽醌为载体,以芳烃和磷酸三辛酯为溶剂配制成混合液体工作液。
工作液在固定床内于一定的温度、压力和钯催化剂的催化作用下,与氢气进行氢化反应,氢化完成液再与空气中的氧气进行氧化反应,得到的氧化液经纯水萃取、净化得到双氧水。
工作液经处理后循环使用。
其中氢化工序为整个生产工艺的核心,而氢化工序运行的效果,直接取决于钯催化剂的性能。
钯催化剂作为蒽醌法过氧化氢生产中的一种昂贵的关键原料,在生产应用时必须结合其特点进行有效的控制,使钯催化剂安全平稳地使用,否则,会影响钯催化剂效能正常发挥,造成浪费,影响产品产量质量,甚至造成难以弥补的损失。
1 蒽醌法生产过氧化氢的原理

蒽醌法生产过氧化氢的安全事故分析及防范措施1 蒽醌法生产过氧化氢的原理本方法制取过氧化氢是以2- 乙基蒽醌( EAQ)为载体, 重芳烃(AR) 及磷酸三辛酯( TOP) 为混合溶剂, 配制成具有一定组成的工作液, 将其与氢气一起通入一装有催化剂的氢化床内, EAQ 于一定压力和温度下与氢进行氢化反应, 生成相应的氢蒽醌(HEAQ) , 所得溶液称氢化液。
氢化液再被空气中的氧氧化, 其中的氢蒽醌恢复成原来的蒽醌, 同时生成过氧化氢, 所得溶液称为氧化液。
利用过氧化氢在水和工作液中溶解度的不同及工作液与水的密度差,用纯水萃取氧化液中的过氧化氢, 得到过氧化氢水溶液( 俗称双氧水) 。
此水溶液经净化处理即可得到过氧化氢产品。
经水萃取后的工作液( 称萃余液) , 经过后处理工序K2CO3溶液干燥脱水分解H2O2 和沉降分离碱, 再经白土床内的活性氧化铝吸附除碱和再生降解物后得到工作液, 然后再循环使用。
2 过氧化氢产品及原料的危险性2.1 过氧化氢纯净的过氧化氢, 在任何浓度下都很稳定, 工业生产的过氧化氢的正常分解速度极慢, 每年损失低于1%, 但与重金属及其盐类、灰尘、碱性物质及粗糙的容器表面接触, 或受光、热作用时, 可加速分解,并放出大量的氧气和热量。
分解反应速度与温度、pH 值及杂质含量有密切关系, 随着温度、pH 值的提高及杂质含量的增加, 分解反应速度加快。
温度每升高10 ℃, 分解速度约提高1.3 倍, 分解时进一步促使温度升高和分解速度加快, 对生产安全构成威胁。
过氧化氢稳定性受pH 值的影响很大, 中性溶液最稳定, 当pH 值低( 呈酸性) 时, 对稳定性影响不大, 但当pH 值高(呈碱性)时, 稳定性急剧恶化, 分解速度明显加快。
当和含碱( 如K2CO3、NaOH 等) 成分的物质及重金属接触时, 则迅速分解。
虽然通常在过氧化氢产品中, 都加有稳定剂, 但当污染严重时, 对上述的分解也无济于事。
双氧水生产工艺介绍(PPT 36张)

氢化工艺流程示意图
氢化液 储槽
氢气来 自纯氢
氢压 机
氢气柜 氢 再生液 换热器 氢化 白土床
化 再生 液泵
再生液 储槽
塔
前过 滤器
工作液 预热器
氢化液过滤器
蒽醌氢化反应式
O C 2H 5
OH C 2H 5
+H2
O
OH
四氢2-乙基蒽醌
O C 2H 5
四氢2-乙基氢蒽醌
O C 2H 5
+H2
O
O
2-乙基蒽醌
目 录
•
• • •
•
蒽醌法生产双氧水工艺流程示意图
氢气
压缩空气
纯水
再生液槽
氢化塔
氧 化 塔
萃 取 塔
尾气处理装置 白 土 床 碱 塔 萃余分离器 净 化 塔
碱分离器
碱沉降槽
成品
包
装
目 录
①工作液的氢化 工作液自再生液贮槽经再生液泵输送至工作液换热 器,初步提温后再经过工作液预热器,再生白土床、工 作液过滤器、工作液冷却器,工作液冷却至室温时与由 氢化液循环泵送来的循环氢化液汇合后进入氢化塔。由 氢处理工段输送的氢气在配制工段经压缩、冷却除水后 与工作液混合进入氢化塔顶部。进入氢化塔的工作液和 氢气的混合物,经过分配器分散后均匀通过触媒床层, 在一定的温度和压力下,氢气和工作液中的蒽醌进行加 氢反应,生成氢蒽醌和四氢氢蒽醌,加氢后的工作液称 为氢化液。
氢化工艺控制指标 (3)操作温度 • 固定床内氢化温度:50-75 ℃ • 氢化尾气温度:≤30 ℃(冷却后的尾气温度) (4)操作压力 • 固定床顶部压力:≤0.37 MPa • 固定床底部压力:≤0.30 MPa (5)控制液位或界面 • 氢气分离器液位:液位计的1/3—1/2处 • 氢化液储槽液位:液位计的1/3—1/2处
蒽醌法生产工艺

蒽醌法过氧化氢技术基础知识前言为便于公司职工及新来员工系统地学习东方宏业有限公司葸醌法过氧化氢生产技术的基础知识和系统化操作,我们将《操作规程》及过氧化氢生产相关知识进行了汇总,整编成了这本《蒽醌法过氧化氢技术基础知识》,基础知识以过氧化氢稀品主装置及公用工程、配制、污水、包装等辅助装置的基本生产知识为主要内容,对装置的生产原料性能、工艺原理、流程及按指令操作知识进行了系统、简洁地介绍。
通过对基础知识的学习,大家可以对过氧化氢生产装置有一个系统地了解,《操作规程》、《岗位操作法》及开、停车操作步骤的学习更加了解掌握。
学习要求:了解并掌握产品及主要生产原料的性能,熟练掌握过氧化氢稀品、生产工艺原理、工艺流程;牢记安全操作相关知识。
第一章过氧化氢产品规格、性能及应用领域一、产品规格及理化性质采用本工艺方法制得的工业级过氧化氢应符合国标GB1616 2003,详见下表:工业过氧化氢GBl616 —2003项目指标27.50%30% 35% 50% 70% 优等品合格品过氧化氧的质量分数/%≥27.5 27.5 30 35 50 70 游离酸(以H$0,计)的质量分数/%≤0.04 0.05 0.04 0.04 0.04 0.05 不挥发物的质量分数/%≤0.08 0.1 0.08 0.08 0.08 0.12 稳定度/%≥97 90 97 97 97 97总碳(以c计)的质量分数^≤0.03 0.040.0250.0250.035 0.05硝酸盐(以N0计)的质量分数/%≤0.02 0.02 0.02 0.02 0.025 0.03 注:过氧化氧的质量分数、游离酸、不挥发物、稳定度为强制性要求过氧化氢,俗名双氧水(hydrogen peroxlde),无色(或浅黄色)透明液体,有强烈的刺激性臭味,无毒,对皮肤有一定的侵蚀作用,产生灼烧感和针刺般疼痛,属于无机过氧化物,已列入国家安监局发布的危险化学品名录(2002版)。
蒽醌法生产双氧水

一、蒽醌法双氧水工艺技术简介定义:蒽醌法生产双氧水,即利用醌类物质可以被氢化还原再重新回复成醌的性质,以烷基蒽醌衍生物为载体,在催化剂催化下被氢化,而后氧化合成过氧化氢(俗称双氧水)。
蒽醌法生产双氧水是目前世界上该行业最为成熟的生产方法之一,国外大型的生产厂家都采用蒽醌法生产双氧水,在国内目前双氧水的制备也几乎都是蒽醌法。
目前,世界上双氧水的生产方法主要有电解法、蒽醌法、异丙醇法、氧阴极还原法和氢氧直接化合法5种,在全球范围内蒽醌法生产占有绝对优势。
蒽醌法又分为钯催化生产工艺和镍催化剂氢化生产工艺。
国内20世纪80年代中期以前,过氧化氢的生产主要以镍催化剂搅拌釜氢化蒽醌工艺为主,随着生产能力得不断扩大,与搅拌釜工艺相比,以钯为催化剂的固定床组件显示出氢化设备结构简单、装置生产能力大、生产过程中不需经常补加催化剂、安全性能好和操作方便等优点,借助于DCS集散控制技术,可大大提高装置得安全性能,该工艺已成为过氧化氢生产发展的方向。
目前国内工业上蒽醌法生产过氧化氢的方法有悬浮釜镍催化剂工艺、固定床钯催化剂工艺、流化床工艺等,其中蒽醌法固定床钯催化剂工艺因其投资少、产量高、操作简单以及其使用的钯催化剂具有用量少、活性高、易再生和使用安全等优点,而成为国内过氧化氢生产工艺的主流,蒽醌法固定床钯催化剂工艺:是以2-乙基蒽醌为载体,以芳烃和磷酸三辛酯为溶剂配制成混合液体工作液。
工作液在固定床内于一定的温度、压力和钯催化剂的催化作用下,与氢气进行氢化反应,氢化完成液再与空气中的氧气进行氧化反应,得到的氧化液经纯水萃取、净化得到双氧水。
工作液经处理后循环使用。
其中氢化工序为整个生产工艺的核心,而氢化工序运行的效果,直接取决于钯催化剂的性能。
钯催化剂作为蒽醌法过氧化氢生产中的一种昂贵的关键原料,在生产应用时必须结合其特点进行有效的控制,使钯催化剂安全平稳地使用,否则,会影响钯催化剂效能正常发挥,造成浪费,影响产品产量质量,甚至造成难以弥补的损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒽醌法的溶剂与载体
氢蒽醌溶剂:
沸点/ ℃
TOP
215
比重 常用溶剂比
0.92 75/25
MCA
188
0.92 50/50
DIBC
178
0.81 40/60
溶剂比,即蒽醌 溶剂与氢蒽醌溶 剂的体积比,提 高溶剂比可提高 分配系数,但过 高的比值会使氢 蒽醌析出堵塞设 备,管线,催化
剂板结
分配系数 备注
EAHQ+O2→EAQ+H2O2 H2O2→H2O+0.5O2
流速的提高可以消除催化剂的死角,且流速高时氢气在工作液中的溶解度 增加。
cspc
SUCCESS
THANK YOU
2020/5/22
可编辑
氢化工段
氢化流程问题
• T1101设置气液分离罐的意义?
防止无意识抬高塔内液位,使催化剂淹没在氢化液中,发生局部过度氢化。
一般要求 尾气中氧 气体积含 量﹤6%
异丁基甲醇(DIBC)
cspc
蒽醌法的溶剂与载体
蒽醌溶剂:重芳烃
重芳烃的主要组分分子结构如下: 最差
最优
其中偏三甲苯(1,2,4-三甲苯)对蒽醌的溶解度,对H2O2的分配 系数最高。
另外,应尽量减少异丙苯的含量,异丙苯易氧化生成过氧化氢异丙苯, 是一种易燃易爆的有机过氧化物,过氧化氢异丙苯也可以酸解生成苯酚和 丙酮,增加了芳烃的消耗。
蒽醌法双氧水生产工艺学习
Contents
1 蒽醌法的溶剂与载体 2 氢化工段 3 氧化工段 4 萃取工段
后处理工段
cspc
蒽醌法的溶剂与载体
载体:蒽醌
一般使用蒽醌和四氢蒽醌的混合物, 四氢蒽醌与蒽醌形成低共溶物, 增大总蒽醌的溶解度。
混合蒽醌溶解度数据
混合蒽醌溶解度g/L
250 20Leabharlann 150 100与反应器持液量成正比
• 在使用纯氧氧化的工艺中氧化塔一般选用气液逆流接触,但用空气氧 化时气相流动速度较大,会使液体向下流动受阻,因此选用气液并流 的接触方式。另外本工艺使用两节塔进行氧化,总体成逆流的接触方 式十分巧妙。
cspc
氧化工段
氧化反应
• 氧化效率的控制: 调节氧化塔温度 提高进塔气量
cspc
氢化工段
氢化反应
因此开工初期时,催化
氢化反应是一个放热剂反活应性,非反常高应,热为△控制H=-75.33k实J际/m生o产l 中增大蒽醌
反应速度和深度,需向
浓度只是为了降低氢
反应器中补入N2以稀释
化深度,防止蒽醌降
反应速率v=k[EAQ]0PH2 H2,减小氢分压
解!
反应速率与氢分压成正比,与蒽醌浓度无关。
注意:氢化温度,氢气分压过高四氢蒽醌的生成速度加快,四氢蒽醌在工 作液中的溶解度低于蒽醌,若大量生成会有载体大量析出,造成事故。
cspc
氢化工段
氢化催化剂
• 催化剂的活化:氢化催化剂的生产是将PdCl2盐浸渍在氧化铝载体上, 再经烘焙吹将干钯时盐,不转必化完为全干PdO,PdO对氢化反应并没有活性,因此开工初 期,需将燥催,化有剂研究用表氮明气维持升温至活化温度,通入氢气,将PdO转化为钯黑
燥床层,最后通氢活化。
化深度一般控制在
• 生产中催化剂床层压降可能会异常增大,应考40虑-60氢% 化深度过大,氢蒽
醌析出,使催化剂板结。
cspc
氢化工段
循环氢化液的作用
氧气的来源:1)工作
• 调节氢化温度
液与大气接触;2)萃 余双氧水分解
• 提高喷淋密度:控制氢化深度,提高产量
• 控制塔顶氧含量:通过氢蒽醌减半反应消除O2
50 0 0
10
20
30
40
50
60
70
80
90 100
2-乙基蒽醌含量/%
一般认为四氢蒽醌是催化剂选择性差的情况下产生的。有实验表明当 工作液中四氢蒽醌达到一定浓度后就不再增加,因此可以说四氢蒽醌 的存在有利于抑制副反应的发生。
蒽醌的烷基取代基越长,在蒽醌溶剂中的溶解度越大,但是在循环中 也越易降解。
和水。 一定的湿度(42-92%)
• 催不化到剂要的求有再时助生,于:催提活高当化性催氢 剂化化需剂的温要度再、生氢,分再压生均时氢达先蒽化到放醌深占工尽度总艺塔(蒽被极节醌氢限内的化比,的的而氢氢化化液效,率再达将 残余的工作液用蒸汽吹到V1105,工作液例回)收,正利常用生。产时再氢用热氮气循环干
• 氢气进料的控制要点,设置氮气线的意义?
氢气进料控制要防止下塔压力超过上塔压力,设置氮气线可以稀释氢气,降低 反应氢分压,控制氢化深度。
• 氢化液中溶解的氢气如何脱除?
氢化液贮槽底部设置有隔板,使氢化液进入贮槽后要经过一定的停留时间才能
到达氢化液泵,为氢气逸出提供足够的时间。 • 为何在氢化液泵入口加入磷酸?
66.6
72
沸点低,氢 蒽醌溶解度
低
密度低,分 配系数高
萃取时水相与油 相中双氧水浓度
之比 m=Yi/Xi AR>MCA>TOP
本工艺选择两种氢蒽醌溶剂的目的:提高分配系数的同时,提高氢蒽醌溶解度
cspc
蒽醌法的溶剂与载体
总结:溶剂的选择要点
• 对蒽醌及氢蒽醌的溶解度要高 (提高氢化效率,减小工作液循环量) • 水与所选溶剂对H2O2的分配系数要高(利于减少萃取板数及降低萃余) • 对氢化、氧化过程稳定,不水解(减少溶剂消耗) • 不影响催化剂的活性和选择性 • 沸点高,闪点高(减少溶剂消耗,提高安全性) • 与水不互溶或者互溶度低(降低产品TOC) • 与水的密度差大(密度差是萃取过程推动两相流动的动力) • 与H2O2不反应
cspc
蒽醌法的溶剂与载体
溶剂:
常温下蒽醌是固体不容易与氢气反应生成氢蒽醌(常温下也是固体), 因此需要将两种物质配成溶液以实现上述反应。 两种物质的极性:
蒽醌<氢蒽醌
由相似相溶原理可知需要两种以上极性不同的溶剂来分别溶解上述物质, 其中溶剂的极性为:
蒽醌溶剂<氢蒽醌溶剂
且两种溶剂应有良好的互溶性,以形成均一的溶液。 常用的蒽醌溶剂是含有9-10个碳原子的烷基苯,国内常选用C9芳烃; 常用的氢蒽醌溶剂有:磷酸三辛酯(TOP),醋酸甲基环已酯(MCA),二
在这里加入磷酸后可利用泵的叶轮对氢化液充分搅拌,使磷酸和氢化液混合均 匀。
cspc
氧化工段
氧化反应
• 氧化反应的速率: 与氧分压成正比
与氢蒽醌浓度成正比(近似)
提高氢化 效率有利 于氧化反 应
与氧的传质系数,界面面积成正比(近似)
进气的分布器好 坏对整个氧化过 程都十分重要, 塔内增加填料可 以增大界面面积