铁路桥梁设计1
铁路桥梁的设计与建造

研究桥梁结构在荷载作用下的稳定性问题,防止 结构失稳破坏。
动力学特性
分析桥梁结构的自振频率、振型和阻尼等动力学 特性,以及地震、风等动力荷载对结构的影响。
有限元法在桥梁结构分析中的应用
1 2 3
有限元模型建立
利用有限元软件建立桥梁结构的精细化模型,包 括几何形状、材料属性、边界条件和荷载等。
段的施工任务和目标。
施工进度管理
制定详细的施工进度计划,并实 时监控和调整,确保施工按计划
进行。
施工质量控制
建立完善的质量管理体系,对施 工全过程进行质量控制和监督,
确保施工质量符合要求。
质量检测与验收标准
质量检测内容
01
包括原材料检测、施工过程检测和成品检测等,确保桥梁质量
符合设计要求和相关标准。
针对桥梁结构本身的安全问题,采取加固、维修、更 换等措施。
环境风险
应对自然灾害、气候变化等环境因素对桥梁安全的影 响,采取防护措施和应急预案。
施工风险
加强施工管理,提高施工质量,减少施工过程中的安 全隐患。
应急预案制定与演练实施
应急预案制定
根据可能发生的突发事件和事故,制定相应的应急预案,明确应急组织、通讯 联络、现场处置等方面的要求。
安全风险评估方法及流程
风险识别
通过对铁路桥梁结构、环境、施工等方面的全面分析,识别潜在的安全风险。
风险评估
采用定性或定量的评估方法,对识别出的风险进行评估,确定风险的等级和影响程度。
风险处理
根据风险评估结果,制定相应的风险处理措施,如风险规避、风险降低、风险转移等。
常见风险类型及应对措施
结构风险
结构响应分析
通过有限元计算,得到桥梁结构在荷载作用下的 应力、应变、位移等响应,以及结构的整体和局 部稳定性。
铁路桥梁体系结构分析及其优化设计

铁路桥梁体系结构分析及其优化设计铁路桥梁是铁路最重要的结构之一,它不仅具有支撑列车负荷、承受自然灾害、保证铁路安全等多种重要功能,而且对铁路运输效率和经济效益也有着重要的影响。
因此,对铁路桥梁的研究和设计至关重要。
本文将从铁路桥梁设计的体系结构、材料选择、结构分析、以及优化设计等方面进行深入探讨。
一、体系结构铁路桥梁设计需要考虑多种因素,如设计荷载、地形条件、环境条件等。
只有满足铁路运输和安全所需的要求,各种条件得到合理协调时,才能构成一种合理可行的桥梁体系结构。
铁路桥梁的体系结构通常由上部结构、下部结构和桥台构成。
其中,上部结构是铁路桥梁的承载部分,包括桥面、横梁、支座、承台等。
它的设计需考虑荷载、风荷载、温度变化等多种因素,而且还需要考虑列车振动和噪声等影响。
下部结构主要承受上部结构的荷载,包括桥墩、基础等。
下部结构的设计需要考虑地质条件、地震力、桥墩间距等多种因素。
而桥台则是连接上下部结构的部分,通常是沿铁路线布置的,其设计需要考虑陡坡、道岔、特殊障碍物等因素。
二、材料选择铁路桥梁采用的主要材料有钢材、混凝土和木材。
其中,钢材是一种高强度、高韧性的材料,能够承受大荷载和复杂工况,因此在铁路桥梁设计中得到广泛应用。
混凝土则是一种低成本、易施工、耐久性高的材料,特别适合于桥墩等下部结构的部分。
而木材则主要应用于小型桥梁和临时桥梁等特殊场合。
除了主要材料外,铁路桥梁的连接件、支座、防护、防腐等部分的材料也需要合理选择。
连接件主要用于连接桥梁各个部分,通常采用高强度钢材;支座则用于调节桥面和桥墩之间的位移,常用橡胶或钢球等材料制成;而防护和防腐则采用多种材料和工艺,以保障桥梁的安全和使用寿命。
三、结构分析结构分析是铁路桥梁设计的关键环节之一。
它主要分为静力分析和动力分析两种。
静力分析是指在荷载作用下,桥梁结构内外力的平衡关系和各部分的受力情况,其目的是确定桥梁结构是否安全以及所需材料的种类和数量等。
铁路桥梁施工组织设计

铁路桥梁施工组织设计
铁路桥梁施工组织设计是指在规划和设计铁路桥梁施工过程中,根据施工现场的实际情况,制定合理、科学的施工方案,并组织实施施工的过程。
它是桥梁工程施工的重要部分,其主要目的是保证施工安全、质量和进度。
在进行铁路桥梁施工组织设计时,需要考虑以下因素:
1. 现场地质环境:包括土壤、岩石等地质条件,需要根据实际情况选择合适的施工方法和工艺。
2. 施工工艺:对于不同类型的桥梁,需要选择合适的施工工艺,如浇筑、架设等。
3. 施工设备:需要根据施工工艺和现场条件选择合适的施工设备,如吊车、塔吊等。
4. 施工人员:需要根据施工工艺和工期要求,合理配置施工人员和管理人员。
5. 安全防护:需要制定安全防护措施,保障施工人员的安全。
在组织实施铁路桥梁施工过程中,需要按照施工方案进行严格管理和控制。
同时,
需要时刻关注施工过程中的各种问题和难点,并及时采取措施加以解决,确保施工的顺利进行。
总之,铁路桥梁施工组织设计是铁路工程施工中极为重要的一环,其设计和实施的好坏将直接影响到施工质量和安全。
因此,需要认真制定和执行施工方案,保障施工质量、安全和进度。
铁路桥梁的设计荷载

特殊荷载
地震力 地震力不与其他附加力同时计算,计算方 法详见《铁路工程抗震规范》震级与裂度 其他荷载 一般情况下吧控制验算
荷载组合
铁路桥梁在运营过程中,以上四类荷载 同时发生的可能性很小,设计时若上述荷 载同时考虑,桥梁设计会很保守,且不能 充分发挥材料的力学性能很浪费;设计时 有一个荷载组合的问题,经常发生是恒载 和活载必须考虑、个别发生可能性较大的 附加力需要考虑、特殊荷载一般用于结构 验算,详见《桥规-1》
恒 载
圬工等重量:体积乘容重(KN/m3),容重 可查《铁路桥涵设计基本规范》 (TB10002.1–2005)《桥规-1》 基础襟边上土壤重量 体积乘容重,桥台不考虑椎体横向变坡影响 土压力 墩台上土的侧压力,主动土压力(库仑理论) 实体墩台水浮力10kN/m3,(位于透水地基)
活
载
列车竖向静活载 列车竖向静活载应采用中华人民共和国铁 路标准活载(中-活载),计算时截取,下 图“中-活载”制定于1975年,计算桥梁抗 倾覆稳定性时采用空车竖向活载10KN/m
活 载
离心力 桥梁在曲线上,应考虑离心力,离心力 水平向外作用于轨定以上2m处
集中活载N:
v F (f N) 127 R
2
分布活载q:
v2 F ( f q) 127
离心力
活 载
F—离心力(kN) N—―中-活载”图式中的集中荷载(kN) q—―中-活载”图式中的分布荷载(kN/m) v—设计行车速度(km/h) R—曲线半径(m) f—竖向活载折减系数,
桥 梁 工 程
主讲 李勇
第 四 讲 铁路桥梁设计荷载
4.1荷载的种类 4.2荷载的计算 4.3荷载的组合
铁路桥梁荷载的种类
铁路框构桥施工组织设计

铁路框构桥施工组织设计一、工程概况本工程为一座铁路框构桥,桥梁类型为双轨双层组合结构,全长100米,跨径50米,桥型为连续刚构桥。
施工地点位于XXX。
本工程的施工单位为XXX。
二、施工准备1.人力资源准备根据工程施工的需要,组织相应的施工人员,包括项目经理、技术负责人、安全负责人、工长、施工人员等。
2.施工机械准备根据施工需要,准备桩机、起重机、模板支架设备、钢筋加工设备等。
3.材料准备准备好各种施工所需的材料,包括混凝土、钢筋、模板、防护设施等。
4.施工方案准备根据施工的实际情况,编制详细的施工方案,包括施工方法、工序安排、施工顺序等。
三、施工组织1.工程管理机构设立工程管理机构,包括项目经理、技术负责人、安全负责人等,负责施工现场的管理和技术指导。
2.施工人员组织根据施工需要,确定各种施工人员的岗位,配备所需的人力资源。
3.施工机械组织根据施工需要,确定各种施工机械的使用方法和施工方案。
4.材料管理建立完善的材料管理制度,确保材料的供应和使用符合规范要求。
5.施工安全组织制定施工安全管理制度,采取措施确保施工过程的安全性。
四、施工工序1.土方开挖按照设计要求进行土方开挖和土方处理,保证桥基平整。
2.桩基施工按照设计要求进行桩基施工,采取预制桩或现浇桩的方式。
3.墩台施工根据设计要求进行墩台施工,包括梁座的安装。
4.梁段施工按照设计要求进行梁段施工,采用预制梁或现浇梁的方式。
5.桥面铺设铺设桥面,确保桥面的平整和牢固。
6.导向装置安装安装导向装置,确保车辆安全通过桥梁。
五、施工安全措施1.安全教育培训在施工前,对施工人员进行安全教育培训,提高施工人员的安全意识。
2.建立安全标志在施工现场建立合理的安全标志,引导施工人员进行安全作业。
3.施工现场管控建立完善的施工现场管理制度,确保施工现场的安全管理。
4.危险源管理对施工现场的危险源进行识别和管理,采取有效的措施控制危险因素。
5.应急预案制定合理的应急预案,为可能发生的紧急情况做好准备。
铁路桥梁工程施工组织设计

铁路桥梁工程施工组织设计摘要本文档旨在详细阐述铁路桥梁工程施工组织设计的内容和要点。
通过合理的施工组织设计,能够确保铁路桥梁工程的顺利进行,提高施工效率和施工质量。
引言铁路桥梁工程是铁路建设中的重要组成部分,其施工组织设计是确保施工工作正常进行的关键环节。
本文将对铁路桥梁工程施工组织设计的原则、方法和步骤进行介绍。
施工组织设计原则铁路桥梁工程施工组织设计需遵循以下原则:1. 安全原则:确保施工过程中的工人和设备安全;2. 经济原则:合理利用资源,控制施工成本;3. 时间原则:合理安排施工进度,确保按时完成工程;4. 质量原则:保证施工质量符合相关标准和要求。
施工组织设计方法铁路桥梁工程施工组织设计可采用以下方法:1. 工作分解法:将施工任务分解成一个个具体的工作项,明确每个工作项的执行责任和时间要求;2. 冲突分析法:分析可能出现的施工冲突,并提出相应的解决方案;3. 资源调配法:合理调配施工所需的人力、物力和财力资源,确保资源的有效利用;4. 进度控制法:制定详细的施工进度计划,并根据实际情况进行调整和控制;5. 风险评估法:对施工过程中可能出现的风险进行评估,并采取相应的措施进行风险管理。
施工组织设计步骤铁路桥梁工程施工组织设计可按以下步骤进行:1. 收集资料:收集有关铁路桥梁工程的相关资料,包括设计文件、施工规范等;2. 工作分解:将施工任务进行工作分解,明确每个工作项的任务和要求;3. 资源调配:根据工作分解结果,进行人力、物力和财力资源的调配;4. 进度计划:制定施工进度计划,明确每个工作项的开始时间和完成时间;5. 冲突分析:分析可能出现的施工冲突,并提出解决方案;6. 风险评估:对施工过程中的风险进行评估,并采取相应的措施进行管理;7. 编写文档:将施工组织设计结果整理成文档,包括设计依据、施工方案等。
结论铁路桥梁工程施工组织设计是确保施工工作正常进行的重要环节。
通过遵循施工组织设计原则、采用相应的方法和步骤,能够提高施工效率和施工质量,确保铁路桥梁工程的顺利完成。
高速铁路建设中的路基与桥梁设计优化

高速铁路建设中的路基与桥梁设计优化随着城市化进程的推进,交通运输领域的发展迫切需要高速铁路的建设。
而高速铁路的设计优化对于确保运输系统的安全、高效运行具有至关重要的意义。
其中,路基与桥梁设计是高速铁路建设中的关键环节,需要进行全面且精确的优化。
一、路基设计优化路基是高速铁路的基础结构,直接影响着列车的行驶平稳性、安全性以及维护成本。
在路基设计中,需要考虑以下几个方面的优化:1.地质勘察和土力学分析:通过充分了解地下土质的情况,进行详细的地质勘察和土力学分析,以确定路基的设计参数。
这样可以确保路基在不同地质条件下具有足够的稳定性和承载力。
2.基床设计:在路基设计中,需要合理选择基床类型。
传统的土石填筑基床在施工周期长、施工难度大的情况下,可以考虑采用混凝土模块化路基。
这种路基具有模块化施工、工期短、稳定性好等优点,能够降低施工风险和维护成本。
3.排水设计:路基的排水设计是确保路基长期稳定运行的关键因素之一。
通过合理设计排水系统,可以避免水分对路基和桥梁结构的破坏。
优化排水系统的设计,可以采用透水材料作为路面,以提高路基的排水性能。
4.断面设计:高速铁路的路基断面设计应结合列车的运行速度和荷载特点,合理确定路基的宽度和高度。
断面设计的优化可以降低路基的工程量,并提高路基的纵向和横向稳定性。
在路基设计优化中,必须充分考虑工程的可行性和经济性,合理平衡各项设计指标,确保高速铁路建设的可持续发展。
二、桥梁设计优化高速铁路中桥梁是承载列车荷载的重要结构,直接关系到线路的安全和舒适性。
在桥梁设计中,需要进行如下几个方面的优化:1.材料选择:选择合适的材料对于桥梁的设计和施工具有重要影响。
在高速铁路桥梁设计中,常用的材料包括钢结构、混凝土结构等。
根据桥梁的功能和负荷要求,合理选择材料,以提高桥梁的承载能力和使用寿命。
2.结构形式:根据不同地理条件和桥梁的功能要求,选择合适的桥梁结构形式。
常见的桥梁结构包括梁式桥、拱桥和斜交桥等。
铁路桥梁的抗震设计与分析

铁路桥梁的抗震设计与分析铁路作为现代交通运输的重要方式,其桥梁的安全性至关重要。
在地震等自然灾害面前,铁路桥梁需要具备足够的抗震能力,以保障铁路运输的畅通和乘客的生命财产安全。
本文将对铁路桥梁的抗震设计与分析进行详细探讨。
一、铁路桥梁抗震设计的重要性铁路桥梁通常跨越河流、山谷等地形,是铁路线路中的关键节点。
一旦在地震中受损,不仅会导致铁路运输中断,还可能引发次生灾害,造成巨大的经济损失和社会影响。
例如,强烈的地震可能导致桥梁坍塌,使列车脱轨,威胁乘客生命安全;也可能损坏桥梁的基础和支撑结构,影响桥梁的长期稳定性。
因此,进行科学合理的抗震设计是确保铁路桥梁在地震中安全可靠的关键。
二、地震对铁路桥梁的影响地震作用下,铁路桥梁可能会受到多种形式的破坏。
首先是水平地震力引起的桥梁结构的位移和变形。
桥梁的梁体、墩柱等部件可能会因水平力而发生相对位移,导致连接部位的破坏,如支座的损坏、伸缩缝的失效等。
其次,竖向地震力也不可忽视。
它可能会增加桥梁结构的竖向荷载,导致桥墩的受压破坏,或者使梁体与桥墩之间的接触面产生过大的压力,影响结构的整体性。
此外,地震还可能引发地基的液化和不均匀沉降,从而削弱桥梁基础的承载能力,导致桥梁倾斜甚至倒塌。
三、铁路桥梁抗震设计的原则1、多防线设计原则在抗震设计中,应设置多重抗震防线,避免因单一构件的破坏而导致整个结构的倒塌。
例如,除了主要的承载构件外,还应考虑次要构件和连接部位的抗震性能,形成相互协同的抗震体系。
2、能力设计原则通过合理的设计,确保结构中的关键构件和部位具有足够的强度和延性,能够在地震中承受较大的变形而不发生脆性破坏。
3、整体性原则注重桥梁结构的整体性,使各个构件之间能够有效地协同工作,共同抵抗地震作用。
加强连接部位的设计,确保力的传递顺畅。
4、经济性原则在满足抗震性能要求的前提下,尽量降低工程造价,通过优化设计方案,选择合适的材料和结构形式,实现经济与安全的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-------------------------设计说明一、概述为满足改建铁路胶济客运专线建设的需要,编制本设计图。
二、设计依据(一)《新建时速200公里客货共线铁路设计暂行规定》 铁建设函[2005]285号。
(二)《铁路桥涵设计基本规范》 TB1002.1-2005。
(三)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》 TB1002.3-2005。
(四)《铁路桥涵混凝土和砌体结构设计规范》TB10002.4-2005。
(五)《铁路混凝土结构耐久性设计暂行规定》铁建设(2005)157号。
(六)《铁路线路设计规范》(报批稿)。
(七)《铁路工程抗震设计规范》 GBJ111(报批稿)。
(八)《铁路架桥机架梁规程》 TB10213—99。
(九) 铁道部工程设计鉴定中心《改建铁路胶济客运专线工程初步设计审查意见》。
三、适用范围(一) 设计速度:客车200km/h,货车120 km/h 。
(二) 线路情况:客货共线,双线正线(标准线间距4.4m ),曲线(曲线半径R=2200m )。
(三) 轨底至梁顶高度:0.7m 。
(四) 施工方法:挂篮悬臂灌筑施工。
(五) 地震烈度:基本地震烈度6度。
(六) 桥式:本桥桥跨布置为75+120+75m 预应力混凝土连续梁,全长271.7m (含两侧梁端至边支座中心各0.85m )。
四、设计原则及技术参数(一)设计荷载 1. 恒载(1)结构自重:按《铁路桥涵设计基本规范》(TB1002.1-2005)采用,梁体γ取26.5kN/m 3。
(2)二期恒载:双线桥面二期恒载(包括钢轨、扣件、垫板、枕木、道碴、防水层、保护层、电缆槽、挡碴墙、人行道栏杆、接触网支架、人行道板等)按有碴桥面考虑,二期恒载q =198kN/m 。
(3)混凝土收缩、徐变影响:根据《铁路桥涵设计基本规范》(TB1002.1-2005)进行计算, 环境条件按野外一般条件计算,相对湿度取70%。
根据老化理论计算混凝土的收缩徐变,系数如下: 徐变系数终极极值:2.0(混凝土龄期6天)。
徐变增长速率:0.0055。
收缩速度系数:0.00625。
收缩终极系数:0.00016。
(4)基础沉降:相邻墩台沉降差按25mm 考虑,且荷载组合时按最不利情况进行组合。
2. 活载(1)设计列车荷载: 中-活载;设计加载时,标准活载计算图式可任意截取。
(2)列车活载的动力系数应按下列公式计算⎪⎭⎫⎝⎛++=+L 30611αμ式中α=4(1-h )≤2。
其中,h 为轨底到梁顶道碴厚度;L 为桥梁跨度,以米计。
(3)曲线桥列车静活载产生的离心力:水平向外作用于轨顶以上2.0m 处。
离心力的大小等于 中-活载乘以离心力率C 。
C 按下式计算:-------------------------R f V C 1272= ,⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+--=L V V f 88.2175.1814100012000.1 式中:V —设计速度(km/h ); R —曲线半径(m ); L —桥上曲线部分荷载长度(m );f —荷载折减系数。
当L≤2.88m 或V≤120km/h 时,f=1.0。
曲线上的桥梁还应考虑没有离心力时列车活载作用的情况。
(4)横向摇摆力:列车横向摇摆力为活载主力,取100 kN ,作为一个集中活载作用于桥梁结构最不利位置,其用点在垂直线路中线的钢轨顶面。
对于双线桥梁,只计算任一线上的横向摇摆力。
3. 附加力(1)风力:桥上有车时设计风压强度为1250Pa ,桥上无车时设计风压强度为2200Pa 。
(2)温度荷载:施工合拢温度按照5~15℃考虑,梁体按均匀升温25℃、降温25℃计算,非线性温度变化,按顶板升温5℃考虑。
横向计算日照温差及寒流温差采用如下图示:(3)制动力或牵引力的计算按《铁路桥涵设计基本规范》规定办理。
即桥上列车制动力或牵引力应按列车竖向静活载的10%计算。
但当与离心力或列车竖向动力作用同时计算时,制动力或牵引力应按列车竖向静活载的7%计算。
双线桥采用一线的制动力或牵引力。
制动力或牵引力由固定墩承受。
4. 特殊荷载(1)地震力:按《铁路工程抗震设计规范》(GBJ111-87)的规定计算。
(2)长钢轨纵向水平力:按《新建铁路桥上无缝线路设计暂行规定》办理。
(3)列车脱轨荷载:按《铁路桥涵设计基本规范》(TB1002.1-2005)办理。
(4)施工荷载:施工挂篮和模板总重120t ,挂篮前支点距离梁端0.5m 。
合拢吊架、模板重量按2x300KN (每悬臂端各300KN )考虑,机具、人群等临时施工荷载按2.5kN/m 计算。
当采用的施工荷载大于 本设计荷载时,应按实际荷载重新进行检算。
(二)主要设计指标 1. 梁体变形限值(1)梁体竖向挠度:梁体的竖向挠度的计算采用“中-活载”乘以动力系数,双线桥双线加载。
梁体竖向挠度值不大于梁体计算跨度的1/900。
(2)在中-活载乘以动力系数作用下,梁端竖向折角不应大于2‰。
(3)在列车横向摇摆力、离心力、风力和温度力的作用下,梁体的水平挠度应不大于梁体计算跨度的1/4000。
(4)在中-活载乘以动力系数作用下,一个轨距宽度内3.0m 梁长的扭曲变形应满足:t≤3.0mm 。
(5)轨道铺设后,有碴桥面梁的徐变上拱值不宜大于20mm 。
2. 设计安全系数及各阶段应力指标-------------------------按照《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》规定执行。
梁体设计安全系数及各阶段应力指标见表一。
设计安全系数及各阶段应力指标表一顺号项目检算条件控制条件1设计安全系数强度安全系数运营荷载下(主力)K≥2.0运营荷载下(主+附)K≥1.8安装荷载下K≥1.82抗裂安全系数运营荷载下Kf≥1.2安装荷载下Kf≥1.13预应力钢绞线应力(MPa)预加应力时的锚下钢绞线控制应力σcon≤0.75fpk4 传力锚固时钢绞线控制应力σp≤0.65fpk5 运营荷载下钢绞线应力σp≤0.60fpk 6疲劳荷载作用下钢绞线应力幅△σp≤140 7 钢筋应力(MPa)疲劳荷载作用下带肋钢筋应力幅△σs≤1508混凝土应力(Mpa)混凝土应力(Mpa) 传力锚固时混凝土压应力σc≤0.75fc'9 传力锚固时混凝土拉应力σct≤0.70fct'10 运营荷载下混凝土压应力σc≤0.50fc11 运营荷载下混凝土拉应力σct≤012运营荷载下混凝土最大剪应力τc≤0.15fc13 运营荷载下混凝土主拉应力σtp≤0.7fct14 抗裂荷载下混凝土主压应力σcp≤0.60fc15 抗裂荷载下混凝土主拉应力σtp≤fct注:1.fpk为钢绞线之抗拉强度标准值;fc'、fct'分别为预加应力时混凝土轴心抗压、抗拉极限强度;fc、fct分别为混凝土轴心抗压、抗拉极限强度。
-------------------------2.对于制造工艺不符合工厂制造条件的结构,表中所列主力及主力加附加力作用下的各项强度安全系数均应增大10%。
(三)线形控制1. 梁体由于列车动活载所引起的竖向挠度值:边跨18.2mm(向下),为计算跨度的1/4120;中跨50.0mm(向下),为计算跨度的1/2400,均小于L/900,满足规范要求。
2. 梁体由于列车动活载所引起的竖向梁端转角值:0.9‰<2‰;梁体反弯的梁端转角:-0.7‰>-2‰,满足规范要求。
3. 预拱度按(恒载+1/2活载)挠度值反向设置,见胶济客专济枢桥通-01-025图,恒载作用下最大挠度值:边跨19.9mm(向上);中跨26.9mm(向下)。
实际施工中立摸高程应根据具体情况,充分考虑施工荷载、预应力、温度、收缩徐变的影响以及预计二期恒载上桥时间确定。
4. 梁体由于列车横向摇摆力、离心力、风力和温度力引起的水平挠度值:边跨2.7mm,为计算跨度的1/27778;中跨11.5mm,为计算跨度的1/10435,均小于L/4000,满足规范要求。
5. 按成桥后60天上二期恒载计算徐变上拱值为:边跨4.9mm(向上),中跨1.4mm(向上),均小于20mm,满足规范要求。
五、主要结构形式1.计算跨度为75+120+75m,边支座中心线至梁端0.85m,梁全长271.7m。
梁高沿纵向按二次抛物线变化,中支点梁高9.5m(高跨比1/12.6),边支点及跨中梁高5.5m(高跨比1/21.8),中跨跨中直线段长10m,边跨直线段长20.85m。
2.采用整体桥面形式,桥面板上设置高挡碴墙、人行道板、混凝土栏杆或声屏障,电缆槽设于人行道板下。
线路中心距人行道栏杆内侧不小于3.25m。
连续梁边跨跨中设置普通电化立柱一个;中跨距墩中心40m处各设置普通电化立柱一个,电化立柱距离线路中心线距离应不小于2.9m,基础处桥面板需局部加厚。
桥面布置见胶济客专济枢桥通-01-007图。
3.截面采用单箱单室直腹板形式,顶板厚度除梁端附近外均为45cm,腹板厚60~100cm,按折线变化,底板由跨中的40cm按二次抛物线变化至根部120cm。
顶板宽度为11.8m,底板宽度6.8m。
箱梁两侧腹板与顶底板相交处均采用圆弧倒角过渡。
箱梁悬臂板下设置通长的滴水槽。
支座处及中跨跨中共设置5个横隔板。
横隔板厚度:边支座处1.75m,中支座处3.2m,中跨跨中0.6m。
横隔板及梁端底板设有孔洞,供检查人员通过。
4.全桥共分67个梁段,中支点0号梁段长度13m,一般梁段长度分成3.0m、3.5m、4.0m,合拢段长2.0m,边跨现浇直线段长14.85m,最大悬臂浇筑块重2143KN。
5.本桥位于半径为2200米的平曲线上。
图纸中梁体沿横截面中心线对称布置,相应的梁体轮廓尺寸均为沿梁体中心线的展开尺寸。
施工时按实际线型施工放样。
梁体轮廓、普通钢筋、预应力钢束及管道等均以梁体中心线为对称线沿径向根据曲率进行相应调整,支座、桥墩亦按径向布置。
六、建筑材料(一)、混凝土:梁体采用C55耐久混凝土,fc=37Mpa,fct=3.30Mpa,Ec=3.60x104Mpa,封端采用C55无收缩混凝土,封锚后用防水涂-------------------------料进行防水处理。
管道压浆所用水泥浆强度等级不低于M50。
挡碴墙、人行道栏杆底座及电缆槽竖墙采用C40混凝土;人行道栏杆采用C30钢筋混凝土。
(二)、预应力体系:1. 纵向预应力钢筋采用抗拉强度标准值为1860MPa的高强低松弛钢绞线,公称直径15.2mm,其技术条件应符合GB/T5224-2003标准。
管道形成采用塑料波纹管。
锚具采用夹片式锚具。
纵向预应力束T0~T4采用19-Φj15.2钢绞线,T5~T18采用15-Φj15.2钢绞线;腹板钢束F1~F11采用19-Φj15.2钢绞线,W1~W6采用19-Φj15.2钢绞线;底板预应力钢束B0~B8、D0~D6采用12-Φj15.2;梁端锚固钢束采用单端张拉,其余钢束均采用双端张拉。