奥林匹克训练题库· 不定方程

合集下载

五年级数学奥数竞赛题-不定方程(含答案)

五年级数学奥数竞赛题-不定方程(含答案)

奥数竞赛题一: 不定方程(每题10分, 共100分,限时1小时)
1.已知△和☆表示两个自然数,并且△/5+☆/11=37/55, 问△+☆等于多少? 5
2. 已知1999×△+4×□=9991,其中△和□是自然数, 那么□等于多少? 1998
3. 有一箱乒乓球, 其中25%是一级品, 五分之几是二级品,其余91个是三等品, 问箱子里共有多少个乒乓球? 260
4. 全班同学分成若干组去植树, 如果每组植树n棵,且n为质数,则剩下树苗20棵; 若每组植树9棵,则还缺少2棵树苗,问全班共分成多少组? 11
5. 数学竞赛有20道题,答对一道得7分,答错一道扣4分,不答题得0分.张红得了100分,问她有几道题没答?错了几道? 1, 3
6. x是自然数, x÷800=0.a25, 字母a代表一个数字, 问x是多少? 750
7. 1997年有一青年,他的年龄等于年份各数字之和, 请问他的出生年份是哪一年? 1975
8. 王老师家的电话号码是七位数,若将前四个号码组成的数与后三个号码组成的数相加得9063, 将前三个号码组成的数与后四个号码组成的数相加得2529, 问王老师家电话号码是多少? 8371692
9. 如果在分数28/43的分子和分母上分别加上自然数a和b, 所得结果是7/12, 那么, a+b的最小值等于多少? 24
10. 有三个分子相同的最简假分数化成带分数后为a 2
3,b
5
6,c
7
8, 已知a,b,c均小于10,问a是几? 7。

竞赛专题18 简单的不定方程、方程组

竞赛专题18 简单的不定方程、方程组

简单的不定方程、方程组阅读与思考如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组).对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数;2.如果不定方程(组)有整数解,求出其全部整数解.二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解.解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路.例题精讲【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对.(全国初中数学联赛试题).【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ).A .20张B .15张C .10张D .5张(“希望杯”邀请赛试题)解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值.【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.(湖北省武汉市竞赛试题)解题思路:探索可否将条件用一个式子表示,从问题转换入手.【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(重庆市竞赛试题)解题思路:无论怎样取,盒子里的棋子数不变。

20181213小学奥数练习卷(知识点:不定方程的分析求解)含答案解析.doc

20181213小学奥数练习卷(知识点:不定方程的分析求解)含答案解析.doc

20181213小学奥数练习卷(知识点:不定方程的分析求解)含答案解析小学奥数组卷(知识点:不定方程的分析求解)题号一二三总分得分注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共 5 小题) 1.甲乙丙三人进行一场特殊的真人 CS 比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有 6 发子弹射击乙或丙,若乙被击中一次,则乙可以有 5 发子弹射击甲或丙,若丙被击中一次,则丙可以有 4 发子弹射击甲或乙,比赛结束后,共有 16 发子弹没有击中任何人?则甲乙丙三人被击中的次数有()种不同的情况. A.1 B.2 C.3 D.4 2.某次知识竞赛共 5 道题,全班 52 人,答对一题得 1 分.已知全班共得 181分.已知每人至少得 1 分,且得 1 分的有 7 人,得 2 分和得 3 分的人一样多,得 5 分的人有 6 人,则得 4 分的有()人. A.25 B.30 C.31 D.35 3.某校学生到郊外植树,已知老师是学生人数的.若每位男生种 13 棵树,女生每人种 10 棵树,每个老师种 15 棵树,他们共种了 204 棵树,那么老师有()人. A.6 B.7 C.5 D.4 4.爱丽丝的房间里有三条的凳子和四条腿的椅子.它们共有 17 条腿,那么爱丽丝的房间里有()张三条腿的凳子.A.1 B.2 C.3 D.4 5.符号[x]表示不大于 x 的最大整数,例如[5]=5、[6.31]=6.如果[ ]=4,这样的正整数 x 有() A.3 个 B.4 个 C.5 个D.2 个第Ⅱ卷(非选择题)评卷人得分二.填空题(共 28 小题) 6.儿童节时,某游乐场门票价格如下:儿童票每人 6 元,成人票每人11 元,开门后过了一段时间,游乐场靠门票收入了 97 元,那么此时共卖出了张门票. 7.张大爷带着 24 只鸡到集市上去卖,上午时,他每只鸡卖 7 元,结果卖出的鸡不到总数的一半;下午张大爷减价卖出了所有的鸡(减价后每只鸡的单价还是整数元).如果他全天收入了 132 元,那么他上午卖出了只鸡. 8.m,n是两个自然数,满足26019m﹣649n=118,那么m= ,n= . 9.9个鸡蛋的价格为11元a分,13个鸡蛋的价格为15元b分,其中,那么一个鸡蛋的价格为元分(注本题不考虑角这个货币单位,1 元=100 分). 10.对 35 个蛋黄月饼进行打包,一共有两种打包规格:大包袋里每包有 9 个月饼,小包装里每包有 4 个月饼.要求不能剩下月饼,那么一共打了个包. 11.若 x,y 是正整数,且 + =1,则 x+y= . 12.学校组织 482 人去郊游,租用 42 座大巴和 20 座中巴两种汽车.如果要求每人一座且每座一人,则有种租车方案. 13.学校组织 1511 人去郊游,租用 42 座大巴和 25 座中巴两种汽车.如果要求恰好每人一座且每座一人,则有种租车方案. 14.有 2 元、5 元及 10 元人民币共 ...。

初一奥数不定方程(含答案)

初一奥数不定方程(含答案)

数学竞赛培训第27讲:不定方程与方程组新课标七年级数学竞赛培训第27讲:不定方程与方程组一、填空题(共13小题,每小题4分,满分52分)1.(4分)正整数m、n满足8m+9n=mn+6,则m的最大值为_________.2.(4分)不定方程4x+7y=2001有_________组正整数解.3.(4分)已知实数z、y、z满足x+y=5及z2=xy+y﹣9,则x+2y+3z=_________.4.(4分)已知(x、y、z≠0),那么的值为_________.5.(4分)用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有_________种不同的买法.6.(4分)购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:品名A1A2A3A4A5总钱数次数第一次购件数1 3 4 5 6 1992元第二次购件数1 5 7 9 11 2984元那么,购买每种教具各一件共需_________元.7.(4分)(2003•温州)希望中学收到了王老师捐赠的足球,篮球,排球共20个,其总价值为330元.这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有_________个.8.(4分)满足19982+m2=19972+n2(0<m<n<1998)的整数对(m、n)共有_________个.9.(4分)实数x、y、z满足,则x2y+z的值为_________.10.(4分)1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是_________岁.11.(4分)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么,至少需要抽水机_________台.12.(4分)现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需_________元.13.(4分)一个布袋中装有红、黄、蓝、三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中红球的个数最多不超过_________.二、选择题(共4小题,每小题3分,满分12分)14.(3分)如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是()A.32千米B.37千米C.55千米D.90千米15.(3分)方程(x+1)2+(y﹣2)2=1的整数解有()A.1组B.2组C.4组D.无数组16.(3分)三元一次方程x+y+z=1999的非负整数解的个数有()A.20001999个B.19992000个C.2001000个D.2001999个17.(3分)以下是一个六位数乘上一个﹣位数的竖式,各代表一个数(不一定相同),则a+b+c+d+e+f=()A.27 B.24 C.0D.无法确定三、解答题(共12小题,满分86分)18.(7分)(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2﹣xy+y2的整数解.(3)求方程的正整数解.19.(7分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?20.(7分)中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?21.(7分)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?22.(7分)求下列方程的整数解:(1)11x+5y=7;(2)4x+y=3xy.23.(7分)(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?24.(7分)(2003•淮安)下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数25.(7分)(1)求满足y4+2x4+1=4x2y的所有整数对(x,y);(2)求出所有满足5(xy+yz+zx)=4xyz的正整数解.26.(7分)兄弟二人养了一群羊,当每只羊的价钱(以元为单位)的数值恰等于这群羊的只数时,将这群羊全部卖出,兄弟二人平分卖羊得来的钱:哥哥先取10元,弟弟再取10元;这样依次反复进行,最后,哥哥先取10元,弟弟再取不足10元,这时哥哥将自己的一顶草帽给了弟弟,兄弟二人所得的钱数相等.问这顶草帽值多少钱?27.(7分)某人家的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14405,将前三位数组成的数与后五位数组成的数相加得16970,求此人家的电话号码.28.(8分)某布店的一页账簿上沾了墨水,如下表所示:月日摘要数量(米)单价(元/米)金额(元)1 13 全毛花呢X X 49.36 XXX7.28所卖呢料米数看不清楚了,但记得是卖了整数米;金额项目只看到后面3个数码7.28,但前面的3个数码看不清楚了,请你帮助查清这笔账.29.(8分)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?新课标七年级数学竞赛培训第27讲:不定方程与方程组参考答案与试题解析一、填空题(共13小题,每小题4分,满分52分)1.(4分)正整数m、n满足8m+9n=mn+6,则m的最大值为75.考点:数的整除性.专题:探究型.分析:把m用含n的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m的最大值.解答:解:∵8m+9n=mn+6,∴m==9+,∴当n=9时,m的最大值为75.故答案为:75.点评:本题考查的是数的整除性问题,解答此题的关键是熟知以下知识,求整系数不定方程ax+by=c的整数解.通常有以下几个步骤:(1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解.分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论.2.(4分)不定方程4x+7y=2001有71组正整数解.考点:解二元一次方程.专题:计算题.分析:由不定方程4x+7y=2001=3×667,可知是其一组特解,然后求出通解,再列出不等式组即可求出答案.解答:解:由4x十7y=3×667易知是其一组特解,∴其通解为,t∈z,∵,解之得96≤t≤166∴t可取整数值共71个.∴4x+7y=2001有71组正整数解.故答案为:71.点评:本题考查了解二元一次方程,难度适中,关键是根据特解求出通解再列出不等式组即可.3.(4分)已知实数z、y、z满足x+y=5及z2=xy+y﹣9,则x+2y+3z=8.考点:代数式求值;非负数的性质:偶次方;解一元二次方程-因式分解法;根的判别式;根与系数的关系.专题:代数综合题.分析:得出x=5﹣y,代入第二个式子后整理得出z2+(y﹣3)2=0,推出z=0,y﹣3=0,求出x,y,z的值,最后将x,y,z的值代入计算,即可求出x+2y+3z的值.解答:解:∵x+y=5,z2=xy+y﹣9,∴x=5﹣y,代入z2=xy+y﹣9得:z2=(5﹣y)y+y﹣9,z2+(y﹣3)2=0,z=0,y﹣3=0,∴y=3,x=5﹣3=2,x+2y+3z=2+2×3+3×0=8,故答案为8.点评:本题主要考查了一元二次方程的解法,平方的非负性及代数式求值的方法,综合性较强,有一定难度.4.(4分)已知(x、y、z≠0),那么的值为1.考点:分式的化简求值;解二元一次方程组.专题:计算题.分析:根据(x、y、z≠0),可求出x=3z,y=2z,然后代入所求分式即可得出答案.解答:解:由(x、y、z≠0),可解得:x=3z,y=2z,代入,=,=,=1.故答案为:1.点评:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解.5.(4分)用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有2种不同的买法.考点:三元一次方程组的应用.专题:经济问题.分析:两个等量关系为:4分的张数+8分的张数+1角的张数=18;4分的总钱数+8分的总钱数+1角的总钱数=1元,把相关数值代入求得正整数解即可.解答:解:设买4分,8分,1角的邮票分别为x,y,z张.由①得x=18﹣y﹣z③,把③代入②得2y+3z=14,y=7﹣z,∴z需为大于1的偶数,∵x,y,z是正整数,∴x=12,y=4,z=2;x=13,y=1,z=4.∴有2种方案.故答案为:2.点评:考查三元一次方程组的应用;根据数量和总价得到两个等量关系是解决本题的关键;把所给方程整理为只含2个未知数的等式求正整数解是解决本题的主要方法.6.(4分)购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:品名A1A2A3A4A5总钱数次数第一次购件数1 3 4 5 6 1992元第二次购件数1 5 7 9 11 2984元那么,购买每种教具各一件共需1000元.考点:二元一次方程组的应用.分析:可以设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元,根据第一次和第二次购物时的件数和付的钱总数可以得到方程组,求解即可.解答:解:设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元.则依题意列得关系式如下:即①×2﹣②式得:x1+x2+x3+x4+x5=2×1992﹣2984=1000.所以购买每种教具各一件共需1000元.点评:本题考查了二元一次方程的应用及解法.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,求解时要根据方程的特点巧解方程.7.(4分)(2003•温州)希望中学收到了王老师捐赠的足球,篮球,排球共20个,其总价值为330元.这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有15个.考点:有理数的混合运算.专题:应用题;压轴题.分析:设足球有x个,篮球有y个,排球有z个,根据题意得,x+y+z=20,60x+30y+10z=330.利用方程知识求得排球的个数.解答:解:设有足球x个,篮球y个,排球z个x+y+z=20 ①;60x+30y+10z=330→6x+3y+z=33 ②②﹣①得出,5x+2y=13又∵x,y,z∈正整数,∴x=1,那么y=4,由此可推出z=15所以,排球有15个.点评:此题是有理数运算的实际应用,列式子容易,解答难,考虑到x、y都取正整数是解题的关键.8.(4分)满足19982+m2=19972+n2(0<m<n<1998)的整数对(m、n)共有3个.考点:一元二次方程的整数根与有理根.专题:计算题.分析:把含字母的式子整理到等式的左边,常数项整理到等式的右边,把等式的左边进行因式分解,判断相应的整数解即可.解答:解:整理得n2﹣m2=3995=5×17×47,(n﹣m)(n+m)=5×17×47,∵对3995的任意整数分拆均可得到(m,n),0<m<n<1998,∴或或,∴满足条件的整数对(m,n)共3个.故答案为3.点评:本题考查了二次方程的整数解问题;把所给等式整理为两个因式的积为常数的形式是解决本题的关键.9.(4分)实数x、y、z满足,则x2y+z的值为9.考点:高次方程.专题:计算题.分析:首先把x=6﹣3y代入x+3y﹣2xy+2z2,可以化简得到6(y﹣1)2+2z2=0,进而解得x、y、z的值,最后求得x2y+z的值.解答:解:,把①代入②中,可得:6(y﹣1)2+2z2=0,即y=1,z=0,故x=3,所以x2y+z=32=9,故答案为9.点评:本题主要考查高次方程求解的问题,解决此类问题的关键是把x、y、z化成非负数的形式,进而求得x、y、z,此类题具有一定的难度,同学们解决时需要细心.10.(4分)1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是18岁.考点:二元一次方程的应用.专题:计算题;应用题.分析:设某人出生于(1900+10x+y)年,所以有1998﹣(1900+10x+y)=10+x+y,可求解.解答:解:设某人出生于(1900+10x+y)年1998﹣(1900+10x+y)=10+x+y11x+2y=88故答案为:18点评:本题考查理解题意能力,关键是能正确设出年份的表示方法,然后根据题意列式求解.11.(4分)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么,至少需要抽水机6台.考点:二元一次方程组的应用.分析:可以设抽水前已涌出水为x,每分钟涌出水为a,每台抽水机每分钟抽水为b,根据题意可列出两个方程,可以得到x与b、a与b之间的关系,最后即可得时间为10分钟时需要的抽水机台数.解答:解:设抽水前已涌出水为x,每分钟涌出水为a,每台抽水机每分钟抽水为b,根据题意得:,解得:x=,a=.如果要在10分钟内抽完水,至少需要抽水机n台,即x+10a≤10×n×b,代入a、x的值解得:n≥6.故答案填:6.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.12.(4分)现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需16元.考点:三元一次方程组的应用.分析:设甲、乙、丙每件单价为x、y、z元,建立方程组,整体求得x+y+z的值.解答:解:设甲、乙、丙每件单价为x、y、z元,根据题意列方程组得,②﹣①得:x+2y=8③,②+①得:7x+12y+2z=72④,④﹣③×5得:2x+2y+2z=32,∴x+y+z=16.故本题答案为:16.点评:未知数共有三个,方程只有两个,无法直接解答,通过加减,将x+y+z看做一个整体来解.13.(4分)一个布袋中装有红、黄、蓝、三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中红球的个数最多不超过4.考点:三元一次方程组的应用.专题:应用题.分析:首先假设小明摸出的10个球中有x个红球,y个黄球,z个蓝球.根据题意列出方程组,利用加减消元法消去z得y=9﹣2x.再根据非负整数的特点,易知x的最大值.解答:解:设小明摸出的10个球中有x个红球,y个黄球,z个蓝球.依题意列得方程组:①×3﹣②得2x+y=9,即y=9﹣2x.由于y是非负整数,x也是非负整数.易知x的最大值是4.即小明摸出的10个球中至多有4个红球.故答案为:4.点评:解决本题的关键是利用非负整数的特点,考虑不定方程y=9﹣2x的解.二、选择题(共4小题,每小题3分,满分12分)14.(3分)如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是()A.32千米B.37千米C.55千米D.90千米考点:二元一次方程的应用.分析:要求二次同时经过这两种设施是在几千米处,就要明确4和9的最小公倍数为36,19+36=55千米,所以二次同时经过这两种设施是在55千米处.解答:解:同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19km处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的公倍数,所以第二次同时经过这两种设施时的里程数为19+4×9=55km.故选C.点评:本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.15.(3分)方程(x+1)2+(y﹣2)2=1的整数解有()A.1组B.2组C.4组D.无数组考点:解一元二次方程-直接开平方法;非负数的性质:偶次方.专题:计算题.分析:根据(x+1)2+(y﹣2)2=1,x,y都是整数,则x+1=0且y﹣2=1或﹣1,x+1=1或﹣1且y﹣2=0;从而解出x,y的四组值.解答:解:∵(x+1)2+(y﹣2)2=1,∴或或或,∴或或或,故选C.点评:本题考查了非负数的性质和一元二次方程的解法﹣直接开平方法.16.(3分)三元一次方程x+y+z=1999的非负整数解的个数有()A.20001999个B.19992000个C.2001000个D.2001999个考点:二元一次方程的解;三元一次不定方程.专题:计算题.分析:先设x=0,y+z=1999,y分别取0,1,2…,1999时,z取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;…当x=1999时,y+z=0,只有1组整数解,依此类推,然后把个数加起来即可.解答:解:当x=0时,y+z=1999,y分别取0,1,2…,1999时,z取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;当x=2时,y+z=1997,有1998个整数解;…当x=1999时,y+z=0,只有1组整数解,故非负整数解的个数有2000+1999+1998+…+3+2+1=2001000(个),故选C.点评:本题考查了三元一次不定方程的解,解题的关键是确定x、y、z的值,分类讨论.17.(3分)以下是一个六位数乘上一个﹣位数的竖式,各代表一个数(不一定相同),则a+b+c+d+e+f=()A.27 B.24 C.0D.无法确定考点:整数问题的综合运用.专题:数字问题.分析:此题我们可设=x,=y,根据题意得到关于xy的等式,得出xy的关系,再设x=476k,y=19k,由于x是4位数,y是2位数,k的取值范围只能是3,4,5,代入求值即可解得.解答:解:设=x,=y,可得4(100x+y)=10000y+x整理的19x=476y,设x=476k,y=19k,可求得k=3,4,5,则=142857,190476,238095.a+b+c+d+e+f=27.故选A.点评:本题主要考查数的特征,正确将数分段,求出它们之间的关系是解题的关键.三、解答题(共12小题,满分86分)18.(7分)(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2﹣xy+y2的整数解.(3)求方程的正整数解.考点:非一次不定方程(组);二元一次不定方程的整数解.专题:计算题.分析:对于(1)通过观察或辗转相除法,先求出特解.对于(2)易想到完全平方公式,从配方人手,对于(3)易知x、y、z都大于1,不妨设l<x≤y≤z,则,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出其结果.解答:解:(1)观察易得一个特解x=42,y=﹣12,原方程所有整数解为(t为整数).(2)原方程化为(x﹣y)2+(x﹣1)2+(y﹣1)2=2,由此得方程的解为(0,0),(2,2),(1,0),(0,1),(2,1),(1,2).(3)∵,即,由此得x=2或x=3,当x=2时,,即,由此得y=4,或5或6,同理当x=3时,y=3或4,由此可得1≤x≤y≤z时,(x,y,z)共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组,由于x,y,z在方程中地位平等,可得原方程的解共有15组:(2,4,12),(2,12,4),(4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4),(4,4,3),(4,3,4).点评:此题主要考查了方程和不等式的相关性质,寻求并缩小某个字母的取值范围,通过验算获得全部解答.19.(7分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?考点:数的整除性.分析:根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.解答:解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11 55 77 99 121 143 165 187 209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.点评:此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.20.(7分)中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?考点:二元一次不定方程的应用.专题:应用题.分析:设鸡翁、鸡母、鸡雏分别为x、y、z,则有,通过消元,将问题转化为求二元一次不定方程的非负整数解.解答:解:设买公鸡x只,买母鸡y只,买小鸡z只,那么根据已知条件列方程,有:x+y+z=100 (1)5x+3y+z/3=100 (2)(2)×3﹣(1),得14x+8y=200即,7x+4y=100 (3)显然x=0,y=25符合题意,得,所以,x=0,y=25,z=75;在(3)式中4y和100都是4的倍数:7x=100﹣4y=4(25﹣y),因此7x也是4的倍数,7和4是互质的,也就是说x必须是4的倍数;设x=4t,代入(3)得,y=25﹣7t再将x=4t与y=25﹣7t 代入(1),有:z=75+3t,取t=1,t=2,t=3就有:x=4,y=18,z=78或x=8,y=11,z=81或x=12,y=4,z=84;因为x、y、z都必须小于100且都是正整数,所以只有以上三组解符合题意:①买公鸡12只,母鸡4只,小鸡84只;②或买公鸡8只,母鸡11只,小鸡81只;③或买公鸡4只,母鸡18只,小鸡78只.点评:本题主要考查了二元一次不定方程的应用,注意:方程变形后的隐含条件,互质数的应用,以及正整数的取值范围必须使本题由意义.21.(7分)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?考点:三元一次方程组的应用.专题:调配问题.分析:设甲组学生a人,乙组学生b人,丙组学生c人,由题意得28a+30b+31c=365,运用放缩法,从求出a+b+c 的取值范围入手.解答:解:设甲组学生a人,乙组学生b人,丙组学生c人.则由题意得28a+30b+31c=365∵28(a+b+c)<28a+30b+31c=365,得a+b+c<<13.04∴a+b+c≤1331(a+b+c)>28a+30b+31c=365,得a+b+c>>11.7∴a+b+c≥12∴a+b+c=12或13当a+b+c=12时,则28a+30b+31c=28(a+b+c)+2b+3c=28×12+2b+3c=365,即2b+3c=29;当a+b+c=13时,则28a+30b+31c=28(a+b+c)+2b+3c=28×13+2b+3c=365,即2b+3c=1,此方程无解;答:三个小组共有12名同学.点评:解不定方程组基本方法有:(1)视某个未知数为常数,将其他未知数用这个未知数的代数式表示;(2)通过消元,将问题转化为不定方程求解;(3)运用整体思想方法求解.本题采用采用方法(1)求解.22.(7分)求下列方程的整数解:(1)11x+5y=7;(2)4x+y=3xy.考点:非一次不定方程(组);二元一次不定方程的整数解.分析:(1)先用换元法确定一个未知数的取值,再求解.(2)先用y表示x,再根据解为整数判断解的取值即可.解答:解:(1)由已知,得y==1+=1+2x+①,∵x,y都是整数,∴1+2x是整数,①式只要满足2﹣x=5t(t为整数)即可,∴x=2﹣5t,代入①式得y=﹣3+11t,故原方程的整数解为(t为整数).(2)由方程得:=①,方程两边同除y得:3x=1+②,由①②得:3x=1+,∵方程的解为整数,∴3y﹣4只能取±1,±2,±4,∵x的值也为整数,∴y的取值为0,1,2,x对应的值为0,﹣1,1.故原方程的解为:、、.点评:本题是求不定方程的整数解,先将方程做适当变形,然后列举出其中一个未知数的适合条件的所有整数值,再求出另一个未知数的值.23.(7分)(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?考点:一元一次不等式的应用.专题:压轴题.分析:先设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;根据开放窗口与通过时间等列方程和不等式解答.解答:解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c ①,a+10b=2×10c ②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.点评:解决本题的关键是读懂题意,找到符合题意的等量关系和不等关系式:30分的工作量=a+30分增加的人数;2×10分的工作量=a+10分增加的人数;开放窗口数×检票速度≥a+5分增加的人数.要设出未知数,难点是消去无关量.24.(7分)(2003•淮安)下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数考点:推理与论证.专题:阅读型.分析:(1)设小明“布”赢“锤子”、“锤子”赢“剪子”各x次和y次.根据总次数和总得分列方程组求解;(2)设小明“布”赢“锤子”、“锤子”赢“剪子”、“剪子”赢“布”各x次、y次、z次.根据得分列一个三元一次方程,再根据未知数是非负整数进行分析.解答:解:(1)设小明“布”赢“锤子”、“锤子”赢“剪子”各x次和y次.根据题意,得:,解得,答:小明“布”赢“锤子”6次,“锤子”赢“剪子”8次;(2)设小明“布”赢“锤子”、“锤子”赢“剪子”、“剪子”赢“布”各x次、y次、z次,根据题意,得9x+5y+2z=30,则有x=1,y=1,z=8;x=1,y=3,z=3;x=2,y=2,z=1.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数 1 1 8 赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数 1 3 3 赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”。

初中竞赛数学27.不定方程、方程组(含答案)

初中竞赛数学27.不定方程、方程组(含答案)

27.不定方程、方程组知识纵横不定方程(组)是指未知数的个数多于方程的个数的方程(组),•其特点是解往往有无穷多个,不能惟一确定.对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,•加上条件限制后,解就可确定.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)•常常转化为二元一次不定方程问题加以解决,与之相关的性质有:设a 、b 、c 、d 为整数,则不定方程ax+by=c 有如下两个重要命题: (1)若(a,b)=d,且d c,则不定方程ax+by=c 没有整数解;(2)若x 0,y 0是方程ax+by=c 且(a,b)=1的一组整数解(称特解),则00x x bt y y at =+⎧⎨=-⎩(t 为整数)是方程的全部整数解(称通解).解不定方程(组),没有现成的模式、固定的方法可循,•需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法:奇数偶数、整数的整除性、分离整系数、因数分解、配方利用非负数性质、穷举、乘法公式、不等式分析等。

例题求解【例1】正整数m 、n 满足8m+9n=mn+6,则m 的最大值为________. (2000年新加坡数学竞赛题)思路点拨 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法),再结合整除知识,求出m 的最大值. 解:75 提示:m=968n n --=9+668n -,n=9时,m 最大值为75. 【例2】如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从千米处开始,每隔9千米设一个测速照相机标志,则刚好在19•千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ).A.32千米B.37千米C.55千米D.90千米(2003年河南省竞赛题) 思路点拨 设置限速标志、照相机标志千米数分别表示为3+4x 、10+9y(x,y•为自然数),问题转化为求不定方程3+4x=10+9y的正整数解.解:选C 提示:x=794y+=2y+1+34y+,4│y+3,135xy=⎧⎨=⎩为所求的解.【例3】(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2-xy+y2的整数解. (莫斯科数学奥林匹克试题)(3)求方程11156x y z++=正整数解. (“希望杯”邀请赛试题)思路点拨对于(1)通过观察或辗转相除法,先求出特解.对于(2)易想到完全平方公式,从配方入手;对于(2)易知x,y,z都大于1,不妨设1<x≤y≤z,则1x≥1y≥1z,•将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出其结果.解:(1)观察易得一个特解x=42,y=-12,原方程所有整数解为42521215x ty t=-⎧⎨=-+⎩(t为整数).解法2:x=-4y+6815y+,令6815y+=t1,得y=2t1-168t+,令168t+=t,得t=8t-6,化简得42521215(x ty t t=-⎧⎨=-+⎩为整数)(2)原方程化为(x-y)2+(x-1)2+(y-1)2=2,由此得方程的解为(0,0),(2,2),(1,0),(0,1),(2,1),(1,2)(3)提示: 1x<1x+1y+1z≤3x,即1x<56≤3x,由此得x=2或3,当x=2时, 1x<1y+1z=56-12=13≤1y+1y=2y,即1y<13≤2y,由此得y=4或5或6,同理当x=3时,y=3或4,由此可得当1≤x≤y≤z时,(x,y,z)共有(2,4),(4,2,12),(4,12,2),•(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4),(4,4,3),(4,3,4)【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子?(2002年重庆市竞赛题)思路点拨 无论怎样取,盒子里的棋子数不变,恰当设未知数,•把问题转化为求不定方程的正整数解.解:提示:设盒子里共有x 粒棋子,则x 被2、3、4、6的最小公倍数12除时,余数为1,即x=12a+1(a 为自然数),又x=11b(b 为自然数),得12a+1=11b,b=12111a + =a+111a +,11│a+1• 因0<x ≤200,故0<12a+1≤200,得0<a<16712,a=10,所以x=12×10+1=•121,•即盒子里共有121粒棋子.【例5】中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何? (出自中国数学家张丘建的著作《算经》)思路点拨 设鸡翁、鸡母、鸡雏分别为x,y,z,则有100531003x y z zx y ++=⎧⎪⎨++=⎪⎩通过消元,将问题转化为求二元一次不定方程的非负整数解.解:消去方程组中的z,得7x+4y=100,显然,(0,25)是方程的一个特解,•所以方程的通解为4257x ty t=-⎧⎨=+⎩(t 为整数),于是有t=100-x-y=100+4t-(25+7t)=75-3t,由x,y,z ≥0且t•为整数得4025707530t t t -≥⎧⎪+≥⎨⎪-≥⎩,t=0,-1,-2,-3,将t 的值代入通解,得四组解 (x,y,z)=(0,25,75),(4,18,78) (8,11,81),(12,4,84)【例6】甲组同学每人有28个核桃,乙组同学每人有30个核桃,•丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?(2001年海峡两岸友谊赛试题)思路点拨 设甲组同学a 人,乙组学生b 人,丙组学生c 人,由题意得28a+30b+31c=365,怎样解三元一次不定方程?运用放缩法,从求出a+b+c 的取值范围入手.解:设甲组、乙组、丙组分别有学生a 人、b 人、c 人,则28a+30b+31c=365 因28(a+b+c)<28a+30b+31c=365,得a+b+c<36528<13.04 所以a+b+c ≤13因31(a+b+c)>28a+30b+31c=365,得(a+b+c)>36531>11.7 所以a+b+c ≥12因此,a+b+c=12或13当a+b+c=13时,得2b+3c=1,此方程无正整数解.故a+b+c≠13,a+b+c=12学力训练一、基础夯实1.已知x,y,z满足x+y=5及z2=xy+y-9,则x+2y+3z=_______.(2002年山东省竞赛题)2.已知4x-3y-6z=0,x+2y-7z=0(xyz≠0),那么22222223657x y zx y z++++的值为________.3.用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有______种不同的买法.4.购买512345则55.希望中学收到王老师捐赠的足球、篮球、排球共20个,其总价值为330元,•这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10个,•那么其中排球有________个. (2003年温州市中考题)6.方程(x+1)2+(y-2)2=1的整数解有( ).A.1组B.2组C.4组D.无数组7.三元方程x+y+z=1999的非负整数解的个数有( ).A.20001999个B.19992000个C.2001000个D.2001999个 (第11届“希望杯”邀请赛试题)8.以下是一个六位数乘上一个一位数的竖式,a、b、c、d、e、f各代表一个数(不一定相同),则a+b+c+d+e+f=( ).abcdef× 4efabcdA.27B.24C.30D.无法确定 (“五羊杯”邀请赛试题)9.求下列方程的整数解: (1)11x+5y=7; (2)4x+y=3xy.10.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站.•检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,•检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;•如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口? (2001年广州市中考题)11.下面是同学们玩过的“锤子、剪子、•布”的游戏规则:游戏在两位同学之间进行,用伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”。

小学四年级奥数题库:不定式方程(高等难度)_题型归纳

小学四年级奥数题库:不定式方程(高等难度)_题型归纳

小学四年级奥数题库:不定式方程(高等难度)_题型归纳
小学四年级奥数题库:不定式方程(高等难度)
(第2届日本算术奥林匹克预赛试题,2004年人大附中分班考试真题)一个国家的货币仅有六元和七元这两种钱币,在这个国家里人们买东西时会出现无法直接付款的情况。

1.出现这种情况的价格共有多少种?2.其中最贵的价格是多少元?
不定式方程答案:
解答:5只.
分析能用一张钞票付清的有6元和7元,列出下列表格。

则A列是只支付7元和7的倍数的情况,B列表示只使用1张6元或再加上若干张7元的钱币的组合,这样可以支付13、20、27、34、41等。

其他类似。

则如下表,共有15种无法表示,其中最贵的是29元。

2018小学奥数专题一:不定方程的经典题型以及解题方法

2018小学奥数专题一:不定方程的经典题型以及解题方法

2018小学奥数专题一:不定方程的经典题型以及解题方法不定方程的概念:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。

如5x-3y=9就是不定方程。

这种方程的解是不确定的。

如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。

如5x-3y=9中,如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。

因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。

不定方程的解法:解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。

解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。

对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。

解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。

不定方程的经典例题:例题一:一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。

如果弹子数为99,盒子数大于9,问两种盒子各有多少个?解题方法:两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。

设大盒子有x个,小盒子有y个,则12x+5y=99(x>0,y>0,x+y>9), y=(99-12y)÷5经检验,符合条件的解有(X=12,Y=15)和(X=7,Y=3),所以,大盒子有2个,小盒子有15个,或大盒子有7个,小盒子有3个。

例题二:买三种水果30千克,共用去80元。

其中苹果每千克4元,橘子每千克3元,梨每千克2元。

问三种水果各买了多少千克?解题方法:设苹果买了x千克,橘子买了y千克,梨买了(30-x -y)千克。

根据题意得:4x+3y+2×(30-x-y)=82x=10-y/2由式子可知:y<20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、14、16、18。

初三奥赛训练题:不定方程

初三奥赛训练题:不定方程
于网络搜索
考点:非一次不定方程(组)。 专题:计算题。
5 / 16
.文档来自
分析:先试解,将 x=0 代入解析式,判断出 x=0 不是方程的解,将原式变形,推出 应为整数,进而推出 x 的取值, 然后计算出 y 的值即可.文档来自于网络搜索
解答:解:∵ x=0 不是方程的解,所以原方程可化为

∵ x、y 均为整数,所以 应为整数,所以 x 只能取±1,±2,±3,±6. 从 而 可 求 出 y 可 能 是 ±1 , ±7 , ±13 , ±29 . 故 答 案 为
于是原方程可化为
用前面的方法可以求得①的解为:
,u 是整数;
②的解为
,v 是整数.
消去 t,得
,u,v 是整数.文档来自于网络搜索
即当 u、v 取不同整数的时候,会得到相应的 x、y、z 的整数值,
故答案为
.文档来自于网络搜索
点评:本题主要考查三元一次不等方程的知识点,解答本题的关键是令 9x+24y=3t,根据整数的知识点进行解答, 此题难度有点大.文档来自于网络搜索
.文档来自于网络搜索 点评:此题的基本思路是通过推理得出 x 的整数解,然后计算出 y 的整数解,体现了不断尝试的探索过程.
7、方程 xy﹣10(x+y)=1 的整数解为
.文档来
自于网络搜索
考点:非一次不定方程(组)。 专题:计算题。 分析:首先将方程 xy﹣10(x+y)=1 因式分解,化为(y﹣10)(x﹣10)=101=101×1=(﹣101)×(﹣1),这样可列 出所有的可能,即可求出.文档来自于网络搜索 解 答 : 解 : 将 原 方 程 化 为 ( y ﹣ 10 )( x ﹣ 10 ) =101=101×1= ( ﹣ 101 ) × ( ﹣ 1 ), 所 以 原 方 程 可 化 为 四 个 方 程 组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三不定方程
1装某种产品的盒子有大、小两种,大盒每盒装11个,小盒每盒装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?
2有150个乒乓球分装在大小两种盒子里,大盒装12个,小盒装7个。

问:需要大、小盒子各多少个才能恰好把这些球装完?
3大客车有39个座位,小客车有30个座位,现有267位乘客,要使每位乘客都有座位且没有空座位。

问:需大、小客车各几辆?
4某商店卖出若干23元和16元一支的钢笔,共收入500元,问:这两种钢笔共卖出多少支?
5小明花4.5元钱买了0.14元一支的铅笔和0.67元一支的圆珠笔共17支。

问:铅笔和圆珠笔各几支?
6小明把他生日的月份乘以31,再把生日的日期乘以12,然后把两个乘积加起来刚好等于400。

你知道小明的生日是几月几日吗?
7在一次活动中,丁丁和冬冬到射击室打靶,回来后见到同学“小博士”,他们让“小博士”猜他们各命中多少次。

“小博士”让丁丁把自己命中的次数乘以5,让冬冬把自己命中的次数乘以4,再把两个得数加起来告诉他,丁丁和冬冬算了一下是31,“小博士”正确地说出了他们各自命中的次数。

丁丁和冬冬分别命中几次?
8甲、乙二人植树,用每天植18棵,乙每天植21棵,两人共植了135棵树。

问:甲、乙二人各干了几天?
9有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。

问:大、小油桶各几个?
10参加围棋比赛的八段、九段选手有若干名,他们的段位数字加在一起正好是100段。

问:八段、九段选手各几名?
11有 104个同学去操场踢足球和打排球,每个足球场地22人,每个排球场地12人。

问:他们占用了足球场地和排球场地各几个?
12甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖。

问:甲、乙二人谁搬的砖多?多几块?
1314个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号每个重8克,小号每个重5克。

问:大、中、小号钢珠各多少个?
14有100个同学去操场踢足球、打排球和打篮球,每个足球场地22人,每个排球场地12人,每个篮球场地10人,他们共占了8个场地。

问:其中足球场、排球场和篮球场各几个?
15某人打靶,8发打了53环,全部命中在10环、7环和5环上。

问:他命中10环、7环和5环各几发?
16妈妈用14.3元买回苹果、梨和桔子共10千克,苹果每千克2元,梨每千克1.6元,桔子每千克1.1元。

问:苹果、梨和桔子各多少千克?
17新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张。

问:其中三种面值的邮票各多少张?
18某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支。

后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支。

问:获一、二、三等奖的学生各几人?
19右图中两个矩形的面积之和为43厘米2,两个矩形的边长都是整数厘米,求两个矩形的面积之差。

20一批布长36米,用此布做一套成人衣服用布3米,做一套儿童衣服用布1.6米。

要把这批布刚好用完,应做多少套成人衣服?多少套儿童衣服?
21工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子。

问:可以有多少种不同取法?
22某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费。

某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?
23庙里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,平均每个和尚每天恰好吃一个馒头。

问:庙里至少有多少个和尚?
24小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候。

若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,
小花狗叫两声,波斯猫叫三声。

细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声。

问:波斯猫至少叫了多少声?
25袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43。

问:小明最多摸出几个标有数字2的球?
26篮子里有煮蛋、茶蛋和皮蛋共30个,价值24元,已知煮蛋每个0.6元,茶蛋每个1.00元,皮蛋每个1.20元。

问:篮子中最多有几个皮蛋?
27商店里的白糖有4千克、3千克和1千克三种不同包装,一位顾客要买15千克白糖。

问:售货员给这位顾客白糖可以用多少种不同方法?
28用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法?。

相关文档
最新文档