三相异步电动机等效电路分析 ppt课件
三相异步电动机等效电路及解析

7.2 三相异步电动机的空载运行三相异步电动机的定子与转子之间是通过电磁感应联系的。
定子相当于变压器的一次绕组,转子相当于二次绕组,可仿照分析变压器的方式进行分析。
7.2.1 空载运行的电磁关系当三相异步电动机的定子绕组接到对称三相电源时,定子绕组中就通过对称三相交流电流,三相交流电流将在气隙内形成按正弦规律分布,并以同步转速n 1弦转的磁动势F 1。
由旋转磁动势建立气隙主磁场。
这个旋转磁场切割定、转子绕组,分别在定、转子绕组内感应出对称定子电动势,转子绕组电动势和转子绕组电流。
空载时,轴上没有任何机械负载,异步电动机所产生的电磁转矩仅克服了摩擦、风阻的阻转矩,所以是很小的.电机所受阻转矩很小,则其转速接近同步转速,n ≈n 1,转子与旋转磁场的相对转速就接近零,即n 1—n ≈0。
在这样的情况下可以认为旋转磁场不切割转子绕组,则E 2s ≈0(“s"下标表示转子电动势的频率与定子电动势的频率不同),I 2s ≈0.由此可见,异步电动机空载运行时定子上的合成磁动势F 1即是空载磁动势F 10,则建立气隙磁场B m 的励磁磁动势F m 0就是F 10,即F m 0=F 10,产生的磁通为Φm 0.励磁磁动势产生的磁通绝大部分同时与定转子绕组交链,这部分称为主磁通,用φm 表示,主磁通参与能量转换,在电动机中产生有用的电磁转矩。
主磁通的磁路由定转子铁心和气隙组成,它受饱和的影响,为非线性磁路.此外有一小部分磁通仅与定子绕组相交链,称为定子漏磁通φ1σ.漏磁通不参与能量转换并且主要通过空气闭合,受磁路饱和的影响较小,在一定条件下漏磁通的磁路可以看做是线性磁路。
为了方便分析定子、转子的各个物理量,其下标为“1”者是定子方,“2”者为转子方。
异步电动机在正常工作时的一些电磁关系在转子不转时就存在,利用转子不动时分析有助于理解其电磁过程。
一、转子不转时(转子绕组开路)异步电动机内的电磁过程转子绕组开路时,转子电流为零,定子电势和转子电势的大小、频率1E •、2E •和1f ;1)转子绕组开路,定子绕组接三相交流电源, 定子绕组中产生三相对称正弦电流(空载电流),形成幅值固定的气隙旋转磁场,旋转速度为1160f n p =; 2)由于转子不动,旋转磁场在定子绕组、转子绕组中感生频率均为1f 的正弦电动势; 11111222224.444.44{N N E j f k N E j f k N =-Φ=-Φ (7.2)式中k N1、 N 1 ——定子 每相有效串联匝数。
三相异步电机的等效电路

结论: 无论转子旋转与否,转子磁动势 F 2 相对于定子
磁动势 F 1 总是静止的,也就是说转子磁动势 F 2 转速 总是为 n 1 。
正方向的规定
规定定、转子各相电气物理量的正方向; 规定磁动势、磁通的正方向; 确定定转子绕组空间坐标。
正方向的规定(下页图)
X1
气隙磁密 旋转方向
B1 B2
Z1 Z2
n X2
T
A1 TL
A2
A2
2
A1
C2
Y2
1
n1
0
Y1
C1
0
A 1
U1
I1
E1
X1
B1
C1
A2
0
U2
I 2 E2
C2
B2
Es2s ( f2 )
E s2 I2 sR 2 s jI2 sX 2 s
说明:
1)转子回路的频率为: f2 sf1 ; 2)转子电阻:R2s R2;转子漏电抗和频率成正比,因
此有: X 2 s 2f2 L s 2 2 s f 1 L s 2 s X 2;转子电动势大小和
频率成正比,因此有: E 2 s 4 .4 4 s f1 N 2 k d p 2 m s E 2
R1
jX 1
R
' 2
jX
' 2
U1
I0
I 1 E1 E2'
Rm
jX m
I
电气自动化技术《任务3.2三相异步电动机的等效电路7》

任务3.2三相异步电动机的等效电路一、学习目的与要求1.分析三相异步电动机空载运行特征、空载运行参数和空载等效电路。
2.三相异步电动机负载运行参数、负载运行T型等效电路和平衡方程式。
二、学习方法1.学习本课程,首先要精读教材和讲义,了解三相异步电动机空载和负载运行的特征。
2. 充分利用学习资源,对三相异步电动机空载和负载的电路进行分析,进而掌握两个运行方式的特征。
三、授课内容1、三相异步电动机空载运行三相异步电动机的定子和转子之间只有磁的耦合,没有电的直接联系,它是靠电磁感应作用,将能量从定子传递到转子。
这一点和变压器完全相似。
三相异步电动机的定子绕组相当于变压器的一次绕组,转子绕组那么相当于变压器的二次绕组。
因此,分析变压器内部电磁关系的根本方法也同样适用于异步电动机。
三相异步电动机定子绕组接在对称的三相电源上,转子轴上不带机械负载的运行称空载运行。
空载运行的特点:异步电动机空载运行时,由于轴上不带机械负载,其转速很高,接近同步转速,即n≈n1,s很小。
此时定子旋转磁场与转子之间的相对切割速度几乎为0,于是转子的感应电动势E2≈0,转子的电流I2≈0,转子磁动势F2≈0。
〔1〕主漏磁通的分布当三相异步电动机定子绕组通入三相对称交流电时,将产生旋转磁动势,该磁动势产生的磁通绝大局部穿过气隙,并同时交链于定转子绕组,这局部磁通称为主磁通。
主磁通的路径为:定子铁心→气隙→转子铁心→气隙→定子铁心,构成闭合回路。
主磁通同时交链定转子绕组并在其中分别产生感应电动势。
由于异步电动机的转子绕组为三相或多相短路绕组,在转子的感应电动势的作用下,转子绕组中有电流产生,转子电流与定子磁场相互作用产生电磁转矩,实现异步电动机的机电能量转换。
除主磁通外的磁通称为漏磁通,包括定子绕组的槽部漏磁通和端部漏磁通等,漏磁通沿磁阻很大的空气隙形成闭合回路,因此它比主磁通小很多。
漏磁通仅在定子绕组中产生漏磁感应电动势,不起能量转换的媒介作用,只起电抗压降的作用。
chap5 第5章 三相异步电动机原理2-1

第一节 三相异步电动机运行时的电磁过程 当三相异步电动机的定子绕组接到对 称三相电源时,定子绕组中就通过三相 交流电流。若不计谐波和齿槽影响,这 个对称三相交流电流将在气隙内形成按 正弦规律分布、并且以同步转速ns旋转 的旋转磁动势F1,由旋转磁动势F1建立 旋转的气隙主磁场Bm。 这个旋转磁场切割定子、转子绕组, 分别在定子、转子绕组内感应出定子电 动势和转子电动势。在转子电动势作用 下转子回路中有对称三相电流流过。于 是,在气隙磁场和转子电流的相互作用 下,产生了电磁转矩,转子就顺着旋转 磁场的方向转动。
异步电动机 的电流比
励磁电流
m1 N1kW 1 m2 N 2 kW 2 F2 0.9 I 2 0.9 I2 2 p 2 p
(二)电动势平衡方程式
U1 ( E1 ) ( E1 ) I1r1 E2 s ( E2 s ) I 2 (r2 R )
异步电动机带有负载后,转子转速降低,设转子以 转速 旋转,此时显然,旋转磁场的同步转速和转 子转速之间有一个同方向的相对运动,即旋转磁场 以转速差 n n 在切割转子绕组,电磁关系也将发 s 生变化。
n
I2 负载时,不再认为 E 2s 0 , 0 ,且 I 2 也形成 了磁动势 F 2 ,要弄清异步电机负载的物理情况,首 先要分析转子磁动势的性质。
m1 N1kW 1 m2 N 2 kW 2 m1 N1kW 1 0.9 I1 0.9 I 2 0.9 Im 2 p 2 p 2 p
ki
令 I 1 I 则 2 2
I1 I m ( I 2 )
负载电流
m1 N1kW 1 ki m2 N 2 kW 2
异步电动机等效电路_理论说明

异步电动机等效电路理论说明1. 引言1.1 概述异步电动机作为一种常见的电动机类型,在现代工业生产中扮演着重要的角色。
它被广泛应用于各个领域,如制造业、交通运输、能源等,其高效率和可靠性使其成为首选设备之一。
理解异步电动机的基本原理以及建立有效的等效电路模型对于设计、控制和故障诊断都具有重要意义。
1.2 文章结构本文将对异步电动机的等效电路进行深入研究,并介绍建立等效电路模型的方法和理论。
首先,我们将简要介绍异步电动机的基本原理,包括其工作原理、特点和应用领域。
然后,我们将详细讨论等效电路建模方法和参数确定方法,并说明定子绕组等效参数计算的意义。
接下来,通过具体案例研究,我们将分析和探讨等效电路在启动过程中、负载变化时以及故障诊断中的应用。
最后,在结论部分总结主要研究成果,并指出存在问题及未来改进方向与研究方向。
1.3 目的本文旨在提供关于异步电动机等效电路的理论说明,探讨建立等效电路模型的方法和参数确定方法,并应用实例分析其在启动、负载变化和故障诊断中的应用。
通过本文的阐述,读者将能够深入了解异步电动机的工作原理和特点,并学习到建立有效等效电路模型的重要性以及其在工程实践中的应用价值。
2. 异步电动机的基本原理:2.1 三相异步电动机简介:三相异步电动机是一种常见的交流电动机,通常由定子和转子两部分组成。
其特点在于定子绕组与AC电源产生旋转磁场,而转子则通过感应来产生运动。
这种类型的电动机广泛应用于各种领域,包括工业、农业和住宅等。
2.2 异步电动机的工作原理:异步电动机的工作基于“感应”现象。
当三相交流电源通过定子绕组时,会在定子上产生一个旋转磁场。
这个磁场会切割到转子导体中,并在导体中引起感应电流。
根据楞次定律,这个感应电流会形成一个反向磁场,与定子旋转磁场互相作用。
这个互相作用导致了转子开始旋转,并因为变化的磁场而保持运动。
由于存在滑差(即旋转速度不同造成的差异),异步电动机无法实现同步运行。
电气自动化技术《任务3.2三相交流异步电动机的等效电路 》

?电机设备运行与控制?课程教案NO. 3-02授课班级周次日期任课教师复习提问三相异步电动机的种类有哪些?铭牌参数的种类及意义是什么?学习模块模块三三相异步电动机的检修学习任务任务3.2 三相异步电动机的等效电路授课内容三相异步电动机的工作原理及参数分析课时 4教学载体教学目标知识目标:1.了解旋转磁场的特点;2.掌握三相异步电动机的运转原理;3.掌握三相异步电动机的等效电路组成。
能力目标:1.通过观看教学使学生掌握三相异步电动机的运转原理掌握;2.增强学生对理论知识的掌握能力3.培养学生自主学习能力。
素质目标:1.培养学生实事求是的科学态度、严谨的工作作风和勇于进取的精神。
重点难点本课题重点是三相异步电动机的运转原理;通过课程动画及多媒体课件进行讲解;本课题的难点是三相异步电动机的等效电路分析;利用电路根本知识尽量让学生掌握其电路结构。
授课过程步骤内容方法、资源运用1 旋转磁场产生及特点启发式、多媒体课件2 异步电动机的运转原理启发式、多媒体课件3 异步电动机的等效电路启发式、多媒体课件授课方式学做一体的教学方式教学地点电工技能实训室教学资源投影系统,课程动画资源资料:?电机设备运行与控制?教材、PPT电子课件教学时间教学内容注释5分钟回忆上节课内容,进行复习提问。
5分钟一、任务描述掌握三相异步电动机的运转条件及等效电路,了解生产设备中三相电机的运转情况及原理。
明确学习任务,结合分析说明,让学生明确学习的主要内容。
10 分钟二、任务分析假设要顺利完本钱次课的教学内容,首先应准备甚础知识:电路根本知识,电磁场的根底知识;其次结合电机结构分析出磁场产生的条件及特点,进而分析其工作原理。
教具数量由任课教师根据学生数量和分组情况自行确定100 分钟三、相关知识1、磁场的产生〔1〕2极旋转磁场如图3-1-2-1〔a〕所示为最简单的三相异步电动机的定子绕组,每相绕组只有一个线圈,三个相同的绕组U1-U2、V1-V2、W1-W2在空间的位置彼此互差120°,分别放在定子铁心槽中。
第5章异步电动机二
以变压器的运行理论为基础,分析异步电动 机运行时的电磁物理过程,导出电动势和磁动势 的平衡方程式,画出相量图,求出真等效电路。 最后分析它的电磁转矩和运行性能。
§5-1 三相异步电动机运行时的电磁过程
一、异步电动机空载运行时的物理情况
N1 N2 为定子、转子绕组一相串联的匝数
f1
是定子通电频率。
Kw 是绕组因数。
在这种运行状态下,转子绕组中呈有感应电动势,
但由于开路转子电流的为?不会产生电磁转矩,转子 呈禁止不动的( )n。 0同此转子绕组切割磁场的速 度和定子绕组相同。
由于定子电流除了产生磁通 m 之外,还产生定 子漏磁通 1 ,它必然在定子绕组中产生漏电动势和 变压器一样用漏抗压降来表示:
U1
I0 F10
I2 F2 0
1 E1 Fm0 m
E1 E 20
二、异步电动机负载运行时的物理情况
特点 转子绕组中出线电流,这一电流也要形成磁动
势和磁场。 (一) 转子磁动势的分析
转子磁动势 F2也是一个旋转磁动势,并在空间 按正弦规律分布,以绕线式异步电动机为例。
(二)绕组归算
用一个相数、每相串联的匝数以及绕组因数 和定子绕组一样的绕组代替经过频率归算后的转 子绕组。
归算后转子各量的归算值用加“ ′”表示。
1、转子电流的归算
根据转子磁动势不变,可得
0.9
m1 2
N1Kw1 p
I2
0.9
m2 2
N2Kw2 p
I2
I I I m2N2Kw2
F1 F2 Fm Bm (m )
或
F1 Fm (F2 )
第五章 三相异步电动机的运行原理及单相异步电动机
异步电动机空载运行时,建立气隙磁场Bm的励磁磁场Fm0就是定 子绕组产生的三相基波合成磁动势F10即Fm0=F10
第五章 三相异步电动机的运行原理及单相异步电动机 空载的情况下:n≈ns, I2≈0
当电机带有机械负载后:n<ns, I2增大。 (一)转子磁动势分析 不论转子是绕线型还是笼 型,转子磁动势F2都是一种旋 转磁动势。
f2 60 60 ns sf1
f2为转差频率,转子电流形成的转子磁 动势F2的旋转方向与F1的旋转方向相同, 它相对于转子的转速为Δ n,而相对于 定子的转速为Δ n+n=ns
第五章 三相异步电动机的运行原理及单相异步电动机 (二)磁动势平衡 转子磁动势F2与定子磁动势F1相对静止,得到合成磁动势F1+F2 负载时 F1 F2 Fm Bm (m )
RΩ 为转子电阻的外加电阻
E1 Im Zm Im (Rm jXm )
Zm为表征铁心磁化特性和铁耗的一个综合参数,称为励磁阻 抗;Xm称为励磁电抗;Rm为反映铁耗的励磁电阻。 E1 jI1 X1 E2s jI2 X 2s
定子漏电抗 转子漏电抗
E2s j4.44 f 2 N2kW 2m j4.44 f1N2kW 2m s
异步电动机的负载运 行时的电磁关系
4.5 三相异步电动机的折算、等效电路和相量图
=
E&2 s R2 + jX 2s
=
sE&2 R2 + jsX 2
=
R2 +
E&2
jX
2
+
1
s
s
R2
可见
,用一
个不转的转子并
且在转子
回路中串联一个电
阻
1
s
s
R2
,
就可以将转子频率折算为定子频率,同时保持转子磁动势F2不变.
第4章 三相异步电动机
实际电机旋转时,转子轴上有机械损耗和机械功率输出。
(1)电阻的折算:
电动势变比 阻抗变比
折算前后转子铜损耗不变。
m1I22 R2
m2
I
2 2
R2
R2 kike R2
kike
(2)电抗的折算:
(3)阻抗的折算:
X 2 kike X 2
Z2 kikeZ2
第4章 三相异步电动机
结论: 转子侧各电磁量折算到定子侧时:
(1)电动势、电压乘以电动势变比 ke
(1)运行时的异步电动机与副边接有纯电阻负载的 变压器相似。
当S=1时,相当于副边短路的变压器。
当S=0时,相当于副边开路时的变压器。
(2)异步电动机可看作是一台广义的变压器,不仅 可以变换电压、电流和相位,而且可以变换频率和相 数,更重要的是可以进行机电能量转换。
等值电路中,
1s是s 模R2' 拟总机械功率的不等能值用电电感阻和电
第4章 三相异步电动机
4.5 三相异步电动机的折算、等效电路和相量图
教学内容:
4.5.1 折算 4.5.2 等效电路 4.5.3 相量图 4.5.4 笼型转子的极数、相数、匝数和绕组因数
电力拖动与控制课件:第三章 三相异步电动机的电力拖动
第Ⅰ象限为 电动机运行 状态
图3-2 异步电动机的机械特性
第Ⅱ象限为 发电回馈制 动状态
r2
T
m1 p
1
U12
r1
r2 s
2
s
x1
x2 2
几个特殊点:
1)起动点A
n 0, s 1
起动转矩
Tst
m1 p
1
U12
r1
r22
r2
x1
x2 2
起动转矩倍数
KT
Tst TN
KT反映了电动机的起动能力。
反比。
定义过载倍数
T
Tmax TN
它反映了电动机短时过载的极限。
3)额定运行点C
sN
n1 nN n1
4)同步转速点D
TN
9550
PN nN
s0
n
n1
60 f1 p
T 0
又称为理想空载点。
三、机械特性的实用表达式
将电磁转矩公式与最大转矩公式相除得
r2
T
m1 p
1
U12
r1
r2 s
2
s
m1 p 2
N1kw1
;
kw1—基波绕组系数
N1 —定子绕组每相串联匝数 cos2—转子侧的功率因数
物理表达式表明,三相异步电动机的电磁 转矩是由磁通与转子电流的有功分量相互作 用产生的。
物理表达式反映了异步电机电磁转矩产生 的物理本质,适用于对异步电动机机械特性 做定性分析。
二、机械特性的参数表达式
3)起动设备力求结构简单,运行可靠,操作方便; 4)起动过程的能量损耗越小越好,起动时间越短越
好。 最主要的要求是在起动电流比较小的情况下 得到较大的起动转矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 ——定子漏抗,由定子三相电流联合产
生的漏磁通,在定子每一相上引起的电抗。
三相异步电动机等效电路分析
一、转子旋转对转子各物理量的影响
转子转动后,转子绕组的电势和电流的频率与 转子的转速有关——取决于气隙旋转磁场与转 子的相对速度。
三相异步电动机等效电路分析
绕组归算——转子绕组的相数、每相有效串联匝 数与定子绕组一样;
频率归算——使转子绕组的频率与定子绕组一致。
m 2 m m I1 I2* 2 11E I0 2.'2 '9 2Irr* sr22 2'2N ' E E 1 2p k 2m jjsN m x2 x2 1 2E sI 22 'I2 I(2 2r2r2m r22 22 sr* E 2j0 1 2.E s9 s2 * 2xsN t)g2 p k2N j2 x2I2 xr22
三相异步电动机等效电路分析
E 2 s 4 .4f2 4 N 2 k N 2 m 4 .4s4 1N f2 k N 2 m s2 E
x 2 s2f2L 22s1 L f2s2 x
电压平衡式0 E 2 s I 2r 2j2 x s
频率 f2=sf1
U 1 E 1 I 1r 1 j1 x频f1 率
静势止 平时 衡: 式f1=f2(磁势速度为同步速一致),磁
m 2 1 * 0 .9 * N 1 p k N 1 I m m 2 1 * 0 .9 * N 1 p k N 1 I 1 m 2 2 * 0 .9 * N 2 p k N 2 I 2
三相异步电动机等效电路分析
转子绕组的归算——把实际相数为m2、绕组 匝数为N2、绕组系数为kN2的转子绕组,归算 成与定子绕组有相同相数、相同匝数和相同绕 组系数的转子绕组。
在进行归算时,有电压变比、电流变比和阻抗 变比。
(一)电流的归算 根据归算前后转子磁势应保持不变为条件
m 2 1*0.9*N 1 p kN 1I'2m 2 2*0.9*N 2p kN 2I2 (二)电势的归算 根据归算前后转子视在功率保持不变为条件
m 1E2 'I2 ' m2E2I2
(三)阻抗的归算
转子旋转磁势对定子旋转磁势产生去磁作用,二 者共同作用在主磁路中产生主磁通,决定于定子 电势El
E 14.4f4 1N 1kN 1 m
E1受到定子电压平衡支配,决定了基波磁通φm, 从而决定了激磁电流Im。
当转子有电流时,定子电流应包含两个分量
I1ImI1L
由定子电流所产生的磁势也包含两个分量
sE2 r2js2x
三相异步电动机等效电路分析
I2rs2 E 2jx2 (r2r21E s2s)j折转x2算子为电定势子频率的
三相异步电动机等效电路分析
三相异r2步1电s 动s 机等效电路分析
在实际转动的电机中,在转子回路中并无此项电阻, 但有机械功率输出。
在频率归算后的转子电路中,因已等效成静止转子,
F 1F mF 1L
第一项用以产生基波磁通;第二项为负载分量, 用以抵消转子磁势去磁作用,它与转子磁势大小 相等方向相反。
设定子绕组有m1相,磁势的振幅
F1m 21*0.9*N1pkN1 I1
转子绕组有m2相,磁势振幅
F2m 22*0.9*N2pkN2 I2 激磁磁势 Fmm 21*0.9*N1pkN1 Im
x2' r2'
三相异步电动机等效电路分析
频率归算——用一等效的转子电路替代实际转动的 转子电路,使与定子电路有相同频率。(转子静止)
保持频率归算后的转子电流的大小和相位不变,可 保持磁势平衡不变,保持定子电流的大小和相位不 变,保持了损耗和功率不变。
三相异步电动机等效电路分析
I2r2E2jsx2s
转子电势和电流的频率(转子频率,与转差率 成正比,又称为转差频率)为
f2pn16n 0n1n 1np6 n10s1f
转子转动后,由转子电流所产生的转子基波旋转磁 势相对于转子的转速为
n2
60f2 p
60s1f p
sn1
转子基波旋转磁势相对于定子的转速为
n2ns1n nn 1
由转子电流所产生的转子基波旋转磁势和由定子电 流所产生的定子基波旋转磁势没有相对运动。(磁 势平衡式不变)
绕线式转子有明显的相数和极对数,设计转子 绕组时,必须使转子极数等于定子极数。否则, 没有平均电磁转矩。
鼠笼转子的转子有鼠笼加端环组成。所有导条 在两头被端环短路,整个结构是对称的,实质 上是一个对称的多相绕组。鼠笼转子的极数恒 等于定子绕组的极数。
在转子不动时,定、转子电势有相同频率,由转 子电流所产生的基波旋转磁势与由定子电流所产 生的基波旋转磁势有相同转速,没有相对运动。
没有机械功率输出,但却串入附加电阻 1 s
ห้องสมุดไป่ตู้
电功率为
I
2
2r2
1
s
s
r2 s
,其
电功率
m2I22r2
1 s
s
模拟轴上的机械功率。
三相异步电动机等效电路分析
三相异步电动机等效电路分析
以下标1和2区别定子和转子电路的各物理量,各种 数量均取每相值。
从电路分析角度来看,转子不动时的异步电机的电 路方程与次级侧短路时的变压器的电路方程相似。
U1 E1I1r1j x1 0E2I2r2jx2
三相异步电动机等效电路分析
转子绕组是对称多相绕组,与定子绕组有相同 极数。
根据归算前后转子上的铜耗保持不变为条件
m1I2'2r2' m2I22r2
根据归算前后转子功率因数保持不变为条件
tg2
x2 r2
x2' r2'
三相异步电动机等效电路分析
三相异步电动机等效电路分析
rm——铁耗等效电阻core-less resistance xm——magnetizing reactance定子每相绕
三相异步电动机等效电路分析
三相异步电动机等效电路分析
分析前提: 把异步电机的磁通分成主磁通和漏磁通,并把
谐波磁通归并到漏磁通 假设:气隙中只有基波磁通,定、转子绕组上
只感应有基波电势 漏磁感应电势用漏抗压降表示
三相异步电动机等效电路分析
正方向按变压器惯例
U1 E1I1r1j x1 0E2I2r2jx2