第四章 信源编码 习题解答

合集下载

信息论、编码与密码学课后习题答案

信息论、编码与密码学课后习题答案
《信息论、编码与密码学》课后习题答案
第1章 信源编码
1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS。求信源熵H(X)。
解: 信源熵
H(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]
10100+11110=01010 10100+00111=10011
10100+01101=11001
11110+00111=11001 11110+01101=10011
00111+01101=01010
满足第一条性质
2、全零码字总是一个码字
{00000,01010,10011,11001,10100,11110,00111,01101}
(1)给出此信源的霍夫曼码并确定编码效率。
(2)每次考虑两个符号时,给出此信源的霍夫曼码并确定编码效率。
(3)每次考虑三个符号时,给出此信பைடு நூலகம்的霍夫曼码并确定编码效率。
解:
(1)本题的霍夫曼编码如下图所示:
图1.11 霍夫曼编码
则霍夫曼码如下表:
符号
概率
码字
x1
0.5
1
x2
0.4
00
x3
0.1
01
该信源的熵为:
(2)全零字总是一个码字,
(3)两个码字之间的最小距离等于任何非零码字的最小重量,即
设 ,即 , , , ,
首先证明条件(1):
, , , , , ,
很明显,条件(1)是满足的。条件(2)也是显然成立的。

信息编码习题答案或提示

信息编码习题答案或提示

第二章部分习题2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?答:2倍,3倍。

2.2 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同, 能得到多少信息量?解:(1) !52log 2 (2) 任取13张,各点数不同的概率为1352!13C ,信息量:9.4793(比特/符号)2.3 居住某地区的女孩子有%25是大学生,在女大学生中有75%是身高160厘米上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 答案:1.415比特/符号。

提示:设事件A 表示女大学生,事件C 表示160CM 以上的女孩,则问题就是求p(A|C),83214341)()|()()()()|(=⨯===C p A C p A p C p AC p C A p2.4 设离散无忆信源()123401233/81/41/41/8X a a a a P X ====⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭,其发出的消息为(2021201302130012032101103210100223210),求(1) 此消息的自信息量是多少?(2) 在此消息中平均每个符号携带的信息量是多少?解:(1)87.81比特,(2)1.951比特。

提示:先计算此消息出现的概率,再用自信息量除以此消息包含的符号总数(共45个)。

2.5 从大量统计资料知道,男性中红绿色盲的发病率为7% ,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含有多少信息量?平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?(1) 男性回答是的信息量为2log 0.07 3.8369-=比特,回答否的信息量是0.1047比特,平均每个回答含的信息量(即熵)是0.36596比特。

清华《信源编码》第四章

清华《信源编码》第四章

b 1 4e b e 2b
要使D最小, 令 e-b=0.293, D=0.657,则 =R(D)=60.6%, 比分别量化有所提高. 三维四维联合量化尚可进一步提高.
30
进一步提高压缩比的探讨(7)
K维情况,Zador得下列结果:
Lim n 2 / k G ห้องสมุดไป่ตู้ [ p( x ) k ,
21
语声的脉码调制(6)
A=87.65, y’(0)=16, =20log1016=24 db, 可压缩4比特,仍能满足小信号信扰比。 y’(1)=0.183, =-15db, 大信号时量化 噪声仍可满足。 实际用13线段来近似,均匀量化后用数 字逻辑电路实现
22
语声的脉码调制(7)
1
y
信号功率 W=2/2, 量化噪声 L 2 n L2 L Wq pi L p( x)dx 3n 2 (1 e ) 12 i 1 12
18
语声的脉码调制(3)
过载噪声
2 Wo 2 ( x L ) p( x )dx 2 L

2 L L 2 2 ( } n n
26
进一步提高压缩比的探讨(3)
要后处理,也可不用先达到最小平均失真, p(y)=p(-y)=z/2, H(Y)=z+H(z) =-log(1-2z+2z)/[z+H(z)] 取导置零,可得z=0.41, =69%. 对于独立序列,后处理虽能提高编码效率, 但效果不明显,如何能快速逼近R(D)也不 知. 对于相关信源,后处理以消除相关性, 可取得很大压缩比,以后讨论.
13
2
最佳标量量化(7)
绝对失真
( 2i 1) L dx L D |x | n L 4n 4 i 1 ( i 1) L

信息论与编码技术第四章课后习题答案

信息论与编码技术第四章课后习题答案

解:(1) D =
∑ P(u,υ )d (u,υ ) = (1 − p)q
UV
(2)根据题4.5,可知R(D)的最大值为H(p),此时q=0,平均失真D=0; (3)R(D)的最大值为0,此时q=1,平均失真D=(1-p); 4.7 设连续信源 X ,其概率密度分布为
p ( x) =
a − a | x| e 2
达到
D
min
的信道为
⎡1 ⎡1 0 ⎤ ⎡1 0 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢1 [ P (υ j | u i )] = ⎢ ⎢ 0 1 ⎥ , ⎢1 0 ⎥ 或 ⎢ 2 ⎢ ⎣0 1 ⎥ ⎦ ⎢ ⎣0 1⎥ ⎦ ⎢0 ⎣
4.2 已知二元信源 ⎢
0⎤ 1⎥ ⎥ 2⎥ 1⎥ ⎦
1 ⎤ ⎡ X ⎤ ⎡ 0, ⎡0 1⎤ =⎢ =⎢ 以及失真矩阵 ⎡ dij ⎤ ⎥ ⎥ ⎥ ,试求: ⎣ ⎦ ⎣ p ( x ) ⎦ ⎣ p, 1 − p ⎦ ⎣1 0 ⎦
g (θ ) 的傅立叶变换
G s(w) = ∫
+∞ −∞
g
s
(θ )e
− jwθ
dθ =
s
2
s
2 2
+w
, (3)
得: Q( w) = P ( w) + w2 P( w), (4)
2
s
求式(4)的傅立叶反变换,又根据式(2)得
p( y ) = p( x = y) − D 所以 p( y ) =
2
p ( x = y), (5)
⎡0 ⎢1 定义为 D = ⎢ ⎢1 ⎢ ⎣1
解:
1 0 1 1
1 1 0 1
1⎤ 1⎥ ⎥ ,求 Dmax , Dmin 及信源的 R ( D ) 函数,并作出率失真函数曲线(取4到5个点)。 1⎥ ⎥ 0⎦

第四章习题答案

第四章习题答案

第4章习题4-1 对信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡01.010.015.017.018.019.02.0s s s s s s s P S 7654321进行二元编码,编码方案为(1)计算平均码长L ; (2)编码后信息传输率R ;(3)编码信息率R '; (4)编码效率η。

解:(1)()14.3Ls p L iq1i i=⋅=∑=(码元/信源符号)(2)()61.2S H =(比特/信源符号)()831.014.361.2L S ===H R (bit/码元) (3)logr L R ='=3.14( bit/信源符号) (4)831.0R Rmax==η 或者()831.0R S H ='=η 4-2 设离散无记忆信源的概率空间为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡4143s s S 21P ,若对信源采取等长二元编码,要求编码效率96.0=η,允许译码错误概率510-≤δ,试计算需要的信源序列长度N 为多少?解:信源熵为()811034log 434log 41S .Η=+=(bit/符号)自信息量的方差()()()[]22i q1i i 2S H logp p S -=∑=σ4715.0811.041log 4143log 43222=-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛= 因为编码效率96.0=η,由()()ε+=S S H H η可得()3379.0811.096.004.0S H 1=⨯=-=ηηε 可得()752221013.4103379.04715.0S N ⨯=⨯=≥-δεσ 所以,信源序列长度达到71013.4⨯以上,才能实现给定的要求,因此等长编码没有实际的意义,一般统计编码都是采用不等长编码。

4-6设离散无记忆信源的概率空间为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1.09.0s s S 21P ,对信源进行N 次扩展,采用霍夫曼编码。

当N=1,2,∞时的平均码长和编码效率为多少?解:(1)N=1时,将1s 编成0,2s 编成1,则1L 1=又因为信源熵()469.0))logp(s p(s S H q1i i i =-=∑=bit/符号所以()469.0L S H 11==η (2)N=2时,编码过程如下2S概率 霍夫曼编码11s s 0.81121s s 0.09 01 12s s 0.09 000 22s s 0.01001所以()=+⨯+⨯+⨯=0.090.0130.0920.811L 2则645.02L 2= 所以()==0.645X H 2η (3)N=∞时,由香农第一定理可知,必然存在唯一可译码,使()S H N L limr NN =∞→而霍夫曼编码为最佳码,即平均码长最短的码,故()()469.0S H S H N L limr NN ===∞→即1lim N N =∞→η4-7已知信源共7个符号消息,其概率空间为()⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡01.010.015.017.018.019.02.0s s s s s s s x P S 7654321试进行香农编码。

《信息论与编码》第四章习题解答

《信息论与编码》第四章习题解答

习题 4.4(3)图
(3)N 个相同 BSC 的积信道,求这时积信道容量 C N ,且证明 lim C N = ∞
N →∞
[证明] (1)见例 4.3.2 (2)首先因为
I ( X ; Y1 , Y2 ,L , YN ) = H ( X ) − H ( X | Y1 , Y2 LYN )
≤ H(X )
利用切比雪夫不等式
1 P[ Z N = 1| X = 0] = P Z ' N > | X = 0 2 1 = P Z ' N − p > − p | X = 0 2 1 ' ≤ P| Z N − p |> − p p 2 p(1 − p ) = 1 N ( − p )2 2
2
2
二元对称信道C2
4
退化信道容量为 C1 = 0 ,二元对称信道容量为 C2 = 1 − H (ε ) , 所以和信道的容量为
C = log 1 + 21− H ( ε )
达到信道容量的输入分布为
[
]
p ( X = 0) = 2 C1 − C 1 = 1 + 21− H (ε ) p ( X = 1) = p( X = 2)
所以满足定理 4.2.2 所规定的达到信道容量的充要条件,信道容量为
C=
(e)
3 bit/次 4
1 3 P = 0 1 3
1 3 1 3 0
0 1 3 1 3
1 3 1 3 1 3
信道是准对称信道,当输入分布为均匀分布时达到信道容量,即
p ( X = 0) = p( X = 1) = p ( X = 2) =
0 1
0 1

信息论与编码习题与答案第四章

信息论与编码习题与答案第四章

4-1 设有一个二元等该率信源{}1,0∈X ,2/110==p p ,通过一个二进制对称信道(BSC )。

其失真函数ij d 与信道转移概率ij p 分别定义为 j i j i d ij =≠⎩⎨⎧=,0,1 ,j i ji p ij =≠⎩⎨⎧-=,1,εε试求失真矩阵d 和平均失真D 。

解:由题意得,失真矩阵为d ⎥⎦⎤⎢⎣⎡=0110d ,信道转移概率矩阵为P ⎥⎦⎤⎢⎣⎡--=εεεε11)(i j 平均失真为εεεεε=⨯-+⨯+⨯+⨯-==∑0)1(211211210)1(21),()()(,j i d i j p i p D ji 4-3 设输入符号与输出符号X 和Y 均取值于{0,1,2,3},且输入符号的概率分布为P(X=i)=1/4,i=0,1,2,3,设失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0111101111011110d 求)(),(,,max min max min D R D R D D 以及相应的编码器转移概率矩阵。

解:由题意,得 0min =D则symbol bit X H R D R /24log )()0()(2min ====这时信源无失真,0→0,1→1,2→2,3→3,相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001)j (i P ∑===33,2,1,0max ),()(min i j j i d i p D,,141141041141141141141041min{⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯=}041141141141141041141141⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯, 43}43,43,43,43min{==则0)(max =D R此时输出概率分布可有多种,其中一种为:p(0)=1,p(1)=p(2)=p(3)=0则相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001)(i j P4-5 具有符号集{}10,u u U =的二元信源,信源发生概率为:2/10,1)(,)(10≤<-==p p u p p u p 。

第四章信源编码习题解答

第四章信源编码习题解答

第四章信源编码习题解答1种编码方法:1)哪些是非奇异码哪些是唯一可译码哪些是即时码2)分别计算每个唯一可译码的平均码长和编码效率。

解:1)A、B、C、D、E、F是非奇异码。

A、B、C、F是唯一可译码(E不满足克拉夫特不等式)。

A、C、F是即时码(B是续长码)。

3)编码A:平均码长:3AL=码元/消息信源熵:111111()lb lb4lb222441616H X=---⨯=比特/消息编码效率:max ()/2/366.7% lb21AH H X L Hη====码码编码B和C:平均码长:11111123456 2.1252416161616B CL L==+⨯+⨯+⨯+⨯+⨯=码元/消息编码效率:max ()/2/2.12594.1% lb21B CH H X L Hηη=====码码编码F:平均码长:111234 2.52416FL⎛⎫=⨯+⨯+⨯=⎪⎝⎭码元/消息编码效率:max ()/2/2.580%lb21F H H X L H η====码码2、离散无记忆信源X 的概率空间为:1234567()0.200.190.180.170.150.100.01X x x x x x x x p X ⎧⎫⎡⎤=⎨⎬⎢⎥⎩⎭⎣⎦ 1)对其进行费诺编码,并计算其编码效率;2)对其进行哈夫曼编码,并将其编码效率与费诺编码相比较。

解:1平均码长:()()()0.20.1720.190.180.1530.10.014 2.74L =+⨯+++⨯++⨯=码元/符号 信源熵:()0.20lb0.200.19lb0.190.18lb0.180.17lb0.170.15lb0.150.1lb0.10.01lb0.01 2.60/874H X =-------= 比特符号编码后平均码元熵:() 2.608740.95212.74H X H L===码比特/码元编码效率:max 0.952195.21%lb2H H η===码码2)哈夫曼编码: 码长码字 信源X (X )2 10 x 1 2 11 x 2 3000 x 33 001 x 43 010 x 54 0110 x 64 0111x 7平均码长:()()()0.20.1920.180.170.1530.10.014 2.72L =+⨯+++⨯++⨯=码元/符号 编码后平均码元熵:() 2.608740.95912.72H X H L===码比特/码元编码效率:max 0.959195.91%lb2H H η===码码与费诺编码相比,哈夫曼编码的编码效率要高于费诺编码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:1)信源熵:
冗余度:
2)费诺编码:
信源S
p(S)
编码过程
码字
码长
s1
0、37
0
0
00
2
s2
0、25
1
01
2
s4
0、18
1
0
10
2
s3
0、1
1
0
110
3
s6
0、07
1
0
1110
4
s5
0、03
1
1111
4
3)哈夫曼编码:
4)香农-费诺-埃利阿斯编码:
信源S
p(S)
F(s)
得二进制数
码长
码字
s1
0、37
4、离散无记忆信源S描述为:
1)计算信源熵及其冗余度;
2)对其进行费诺编码;
3)对其进行哈夫曼编码;
4*)对其进行香农-费诺-埃利阿斯编码;
5*)对其进行香农编码;
6)计算哈夫曼码得平均码长、编码效率与码冗余度;
7)把哈夫曼编码器得输出瞧成一个新信源X,计算其概率分布p(x1)与p(x2);
8)H[p(x1),p(x2)]就是否等于H码(即平均码元熵)?为什么?
x3
0、18
3
001
x4
0、17
3
010
x5
0、15
4
0110
x6
0、10
4
0111
x7
0、01
平均码长: 码元/符号
编码后平均码元熵:比特/码元
编码效率:
与费诺编码相比,哈夫曼编码得编码效率要高于费诺编码。
一般情况下哈夫曼编码效率较高,但费诺编码如果每次划分概率很接近,则效率也很高。
3、离散无记忆信源X得概率空间为:
1100
010
101
0011
x5
1/16
100
01111
11110
1001
110
110
101
x6
1/16
101
011111
111110
1111
101
111
1001
1)哪些就是非奇异码?哪些就是唯一可译码?哪些就是即时码?
2)分别计算每个唯一可译码得平均码长与编码效率。
解:1)A、B、C、D、E、F就是非奇异码。A、B、C、F就是唯一可译码(E不满足克拉夫特不等式)。A、C、F就是即时码(B就是续长码)。
3)编码A:
平均码长:
信源熵:比特/消息
编码效率:
编码B与C:
平均码长:
编码效率:
编码F:
平均码长:
编码效率:
2、离散无记忆信源X得概率空间为:
1)对其进行费诺编码,并计算其编码效率;
2)对其进行哈夫曼编码,并将其编码效率与费诺编码相比较。
解:1)费诺编码:
信源X
p(X)
编码过程
码字
码长
x1
0、20
0
0
00
2
x2
0、19
1
0
010
3
x3
0、18
1
011
3
x4
0、17
1
0
10
2
x5
0、15
1
0
110
3
x6
0、10
1
0
1110
4
x7
0、01
1
1111
4
平均码长: 码元/符号
信源熵:
编码后平均码元熵:比特/码元
编码效率:
2)哈夫曼编码:
码长
码字
信源X
p(X)
2
10
x1
0、20
2
11
x2
0、19
3
000
0、37
0、185
0、00101、、
3
001
s2
0、25
0、62
0、495
0、01111、、
3
011
s4
0、18
0、80
0、71
0、101101、、
4
1011
s3
0、1
0、90
0、85
0、1101100、、
5
11011
s6
0、07
0、97
0、935
0、1110111、、
5
11101
s5
0、03
1、00
4
1110
s5
0、03
0、97
0、1111100、、、
6
111110
6)分析哈夫曼码,
其平均码长:
平均码元熵:
编码效率:
码冗余度:
7)把哈夫曼编码器得输出瞧成一个新信源X,计算其概率分布p(x1)与p(x2):
8)计算
相比平均码元熵:
可见,两者很相近,但理论上不相同。因为平均码元熵计算得就是算术平均值,而作得就是统计平均。
第四章信源编码习题解答
1、一个信源由6个消息组成,其概率分布已知,对其进行信源编码得如下表所示6种编码方法:
信源X
p(X)
A
B
C
D
E
F
G
x1
1/2
000
0
0
01
1
01
1
x2
1/4
001
01
10
10
000
001
01
x3
1/16
010
011
110
1101
001
100
101
x4
1/16
011
0111
1110
2
D
3/16
1
0
10
2
C
2/16
1
0
110
3
B
1/16
1
0
1110
4
A
1/16
1
1111
4
平均码长:码元/符号
信源熵: 比特/符号
编码后平均码元熵:比特/码元
二元信源最大码元熵为1比特/码元,故编码效率:
哈夫曼编码:
由于平均码长与费诺编码一样,故编码效率也为99%。一般情况下哈夫曼编码效率较高,但费诺编码如果每次划分概率很接近,则效率也很高。
5、设有6个消息,其出现概率分别为
A B C D E F
1/16 1/16 2/16 3/16 4/16 5/16
将它们分别进行费诺编码与霍夫曼编码,并比较编码效率。就是否在任何情况下费诺编码比霍夫曼编码效率都低?
解:信源:
费诺编码:
信源X
p(X)
编码过程
码字
码长
F
5/16
0
0
00
2
E
4/16
1
01
6、有一冗余位序列,=15,码字为0000,试将其编成L-D码,并将L-D码译回原序列。
解:0000 N=15
编码:
,于就是得L-D码:0010 0101111
译码:
修正:
故译码恢复出原序列:0000
作业:1、2、4
1)对其进行费诺编码;
2)对其进行哈夫曼编码。
解:1)费诺编码:
信源X
p(X)
编码过程
码字
码长
x1
0、22
0
0
00
2
x2
0、20
1
01
2
x3
0、18
1
0
0
100
3
x5
0、15
1
101
3
x4
0、1
1
0
110
3
x8
0、08
1
0
1110
4
x7
0、05
1
0
11110
5
x6
0、02
1
11111
5
2)哈夫曼编码:
0、985
0、111111000、、
7
5)香农编码:
信源S
p(S)
F(s)
F(s)得二进制数
码长
码字
s1
0、37
0
0、000、、、
2
00
s2
0、25
0、37
0、010、、、
2
01
s4
0、18
0、62
0、1001、、、
3
1Hale Waihona Puke 0s30、10、8
0、11001、、、
4
1100
s6
0、07
0、9
0、11100、、、
相关文档
最新文档