苏教版七年级数学代数式知识点汇总及练习题
苏教版七年级数学 第三章代数式知识点与典题

夯实基础融会贯通 苏教版七年级数学精准训练提升能力 第三章代数式知识点与典题 第一节字母表示数 一、知识点1、用字母表示数,能更简便、更清晰地表示有关数量关系。
2、用字母表示数,还可以表示有关规律性的数量关系。
二、典题1、小明今年n 岁,小明比小丽大2岁,小丽今年________岁。
2、小丽5h 走了Skm ,那么她的平均速度________km/h 。
3、一件羊毛衫标价a 元,若按标价的8折出售,则这件羊毛衫的售价是______元。
4、某水果市场规定:苹果批发价为每千克2.5元,小王携带现金3 000元到这个市场采购苹果,并以批发价买进,如果购买了苹果x 千克,用x•表示小王付款后的剩余现金.5、如图,上列图形都是由面积为1的正方形按一定的规律组成,其中,第 (1)个图形中面积为1的正方形有2个,第 (2) 个图形中面积为1的正方形有5个,第 (3)个图形中面积为1的正方形有9个……按此规律.则第 (n ) 个图形中面积为1的正方形的个数为 .第二节代数式 一、知识点1、代数式的定义像n 、-2 、5s 、0.8a 、a m、2n +500、abc 、2ab+2bc +2ac 等式子都是代数式。
单独一个数或一个字母也是代数式。
2、列代数式的注意点列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。
3、单项式定义:像0.9a ,0.8b ,2a ,2a 2,15×1.5%m 等都是数与字母的积,这样的代数式叫单项式。
单独一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
单项式中所有字母的指数的和叫做它的次数。
4、多项式的相关概念几个单项式的和叫做多项式。
其中的每个单项式叫做多项式的一个项。
次数最高项的次数叫做这个多项式的次数。
单项式和多项式都是代数式. 5、 整式的定义单项式和多项式统称整式 二、典题1、王洁同学买m 本练习册花了n 元,那么买2本练习册要______元.2、如果陈秀娟同学用v 千米/时的速度走完路程为9千米的路,那么需_______•小时.3、在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a 公顷,那么,•到第三年的植树绿化为_______公顷.4、说出下列代数式的意义:(1)2a-3c ; (2) ab+1; (3)a-b 25、在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有……( )A 、5个整式B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同 6、甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米.如果从起点到终点的距离为m 千米,甲的速度比乙快,那么甲比乙提前到达终点 ( ) A .(m b -m a)小时 B .(m a -m b)小时C .ma b+小时 D .ma b-小时第三代数式的值 一、知识点1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值。
苏科版七年级上册数学 代数式(基础篇)(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.3.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
苏科版数学七年级上册 第三章代数式:整式的加减 知识点与同步训练 讲义(解析版)

整式的加减 一.同类项: 像100t 与252t -,23x 与22x ,9ab 与12ab 这样,如果两个单项式所含字母相同,并且相同字母的次数也相同,就称这两个单项式为同类项.二.合并同类项把同类项合并成一项的运算,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.例如:()22222312631263ab ab ab ab ab -+=-+=-. 注意:(1)几个常数项也是同类项.例如:()2593⎛⎫-++- ⎪⎝⎭,表示3个常数项合并同类项. (2)222342x x x +--合并同类项后得4,而不是204x +.三.整式的加减1.去括号与添括号(1)去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号.如()a b c a b c ++-=+-,()a b c a b c -+-=--+.(2)添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.如()a b c a b c +-=++-,()a b c a b c --+=-+-.注意:①拆开括号时要根据乘法分配律,将括号内的每一项分别乘以括号前的系数;②括号前没有其他数字,根据符号把系数看做1或1-;③括号外的系数是正数时,去括号后每一项系数的符号不变;④括号外的系数是负数时,去括号后每一项系数的符号与原符号相反;⑤对于多层括号,一般由里向外逐层去括号,有时也可根据“奇负偶正”的原则化简多重符号.2.整式的加减整式加减运算顺序:先去括号,再合并同类项,最后按要求排序.知识精讲方法点拨一.考点:同类项的概念,整式的加减 二.重难点:合并同类项三.易错点:1.去括号时出现错误.去括号时,括号前面是“-”,去括号时常忘记改变括号内每一项的符号,出现错误;或括号前有数字因数,去括号时没有把数字因数与括号内的每一项相乘,出现漏乘的现象.2.多项式含某项无关与含某字母项无关是不相同的;如多项式不含 项和多项式与 无关是不一样的.题模一:同类项 例2.1.1 下列单项式中,与a 2b 是同类项的是( )A . 2a 2bB . a 2b 2C . ab 2D . 3ab【答案】A【解析】 A 、2a 2b 与a 2b 所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B 、a 2b 2与a 2b 所含字母相同,但相同字母b 的指数不相同,不是同类项,故本选项错误;C 、ab 2与a 2b 所含字母相同,但相同字母a 的指数不相同,不是同类项,本选项错误;D 、3ab 与a 2b 所含字母相同,但相同字母a 的指数不相同,不是同类项,本选项错误.例2.1.2 如果单项式-12x a y 2与 13x 3y b 是同类项,那么a ,b 分别为( ) A . 2,2 B . -3,2 C . 2,3 D . 3,2【答案】D【解析】单项式 -12x a y 2 与 13x 3y b 是同类项,则a=3,b=2. 故选D .例2.1.3 若435m n x y +与963x y -是同类项,那么m n +的值为_______.【答案】 5或1【解析】 本题考查的是同类项的定义.同类项:所含字母相同,相同字母的指数相同.∵435m n x y +和963x y -是同类项,∴有3946n m =⎧⎪⎨+=⎪⎩三点剖析解得3n =,2m =±,题模二:合并同类项例2.2.1 计算:a 2b-2a 2b=( )A . -a 2bB . ab (b-2a )C . a 2bD . 3a 2b【答案】A【解析】a 2b-2a 2b ,=(1-2)a 2b ,=-a 2b .故答案为:-a 2b .例2.2.2 下列合并同类项,结果正确的是( )A . 23534a a a -=-B . 222426mn m n m n+= C . 22213222x x x -= D . 22a a -=【答案】C【解析】 该题考查的是合并同类项.A :23534a a a -≠-,二者不是同类项,不能合并,故错;B :()224222mn m n mn n m +=+,二者不是同类项,不能合并,故错;C :正确;D :2a a a -=;故选C .例2.2.3 计算:22223232x y xy xy x y -++-【答案】 2255x y xy -+【解析】 22223232x y xy xy x y -++-题模三:去括号、添括号例2.3.1 计算﹣3(x ﹣2y )+4(x ﹣2y )的结果是( )A . x ﹣2yB . x+2yC . ﹣x ﹣2yD .﹣x+2y【答案】A【解析】 原式=﹣3x+6y+4x ﹣8y=x ﹣2y例2.3.2 下列各式去括号正确的是( )A . ()2222a a b c a a b c --+=--+B . ()()11x y xy x y xy --+-=--+-C . .()3232a b c a b c --=--D . ()22954954y x z y x z --+=-++⎡⎤⎣⎦【答案】D【解析】 该题考查的是去括号.A 项中,()2222a a b c a a b c --+=-+-,故A 项错误;B 项中,()()11x y xy x y xy --+-=-++-,故B 项错误;C 项中,()3232a b c a b c --=-+,故C 项错误;D 项中,()2222a a b c a a b c --+=-+-,故D 项正确;所以本题的答案是D .例2.3.3 去括号与添括号:(1)去括号:()2x y z +-=_________________,()23a b c d -+-=_________________(2)添括号:()2221696116a b b a ++-=-【答案】 (1)22x y z +-;2333a b c d --+(2)2961b b --+;3y z -;3y z -【解析】 (1)去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号;(2)添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变符号;所添括号前面是“-”号,括到括号里的各项都改变符号例2.3.4 323214212x x x x ⎡⎤⎛⎫----+ ⎪⎢⎥⎝⎭⎣⎦ 【答案】 362x +【解析】 该题考查的是多项式的化简.题模四:整式的加减例2.4.1 一个多项式减去3a 的差为2234a a --,则这个多项式为( )A . 2264a a --B . 2264a a -++C . 224a -+D . 224a -【答案】D【解析】 该题考查的是多项式的计算.该多项式()22323424a a a a =+--=-,故该题答案为D .例2.4.2 若()()22233233x x x x Ax Bx C -+--+-=++,则A 、B 、C 的值为( )A . 4,6-,5B . 4,0,1-C . 2,0,5D . 2,6-,1- 【答案】A【解析】 该题考查的是整式的加减.即22465x x Ax Bx C -+=++,比较系数可知4A =,6B =-,5C =,所以本题的答案是A .例2.4.3 张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误的结果为26xy yz xz -+,试求出正确答案.【答案】 正确答案为12125xy yz xz -+【解析】 由题意不难发现,正确结果与错误的结果相差()2532xy yz xz -+,因此正确答案应该为()26253212125xy yz xz xy yz xz xy yz xz -++-+=-+ 随练2.1 已知12x n-2m y 4与-x 3y 2n 是同类项,则(nm )2019的值为( ) A . 2019 B . -2019 C . 1 D . -1【答案】C【解析】 本题考查的是同类项的定义,能根据同类项的定义列出关于m 、n 的方程组是解答此题的关键.先根据同类项的定义列出方程组,求出n 、m 的值,再把m 、n 的值代入代数式进行计算即可.∵12x n-2m y 4与-x 3y 2n 是同类项, 解得212n m ⎧=⎪=-⎨⎪⎩,∴[2×(-12)]2019=(-1)2019=1. 故选C .随练2.2 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2019= . 【答案】 1【解析】 由同类项的定义可知a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2019=1.随练2.3 下面计算正确的是( )A . 2233x x -=B . 235325a a a +=C . 33x x +=D . 10.2504ab ba -+= 【答案】D【解析】 该题考查的是整式的计算.A 项中,22232x x x -=,故A 项错误;B 项中,23a 和32a 不是同类项,不能合并,故B 项错误;C 项中,3和x 不是同类项,不能合并,故C 项错误;D 项中,10.2504ab ba -+=,故D 项正确;故选D . 随练2.4 与()a b c --+相等的结果是( ) A . ()a b c -++ B . ()a b c -+-随堂练习C . ()a b c --+D . ()a b c --- 【答案】B【解析】 该题考察的是去括号法则.括号前面是+号,去掉括号,里面各项不变号,括号前面是-号,去掉括号,里面各项均变号.()()a b c a b c a b c --+=-+-=-+-,故选B .随练2.5 已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A . 51x --B . 51x +C . 131x -D . 26131x x +-【答案】A【解析】 该题考查的是多项式的加减.根据题意得出所求多项式为两多项式之差,所以所求多项式为()()223x 413x 951x x x +--+=--.所以本题的答案是A .随练 2.6 下面是小明做的一道多项式的加减运算题,但他不小心吧一滴墨水滴在了上面.2222221131342222x xy y x xy y x y ⎛⎫⎛⎫-+---+-=-++ ⎪ ⎪⎝⎭⎝⎭,阴影部分即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A . xy -B . xy +C . 7xy -D . 7xy + 【答案】A【解析】 该题考查的是整式的计算.故被墨汁遮住的一项应是xy -,故选A .随练2.7 计算:22323624452x x x x x x x +-+-+--+【答案】 3-52x x ++【解析】 22323624452x x x x x x x +-+-+--+随练2.8 化简(1)224(1)2(21)2x x x x ++---(2)115(23)(23)(32)236x y x y y x ---+- 【答案】 (1)226x +(2)423x y -+ 【解析】 该题考查的是整式的加减.(1)原式22444422x x x x =++-+-(2)原式32552323x y x y y x =--++- 随练2.9 计算:()()()22222232x xy x xy x x xy y ⎡⎤------+⎣⎦【答案】 2xy y +【解析】 ()()()22222232x xy x xy x x xy y ⎡⎤------+⎣⎦。
苏教版七年级代数式与方程经典例题复习

代数式与方程知识点及经典例题列代数式1.甲数比乙数的2倍大3,若乙数为x ,则甲数为………………………………………( )A .2x -3B . 2x+3C .21x -3D .21x+3 2.a 、b 两数的平方和: a 、b 两数的平方差:a 、b 两数和的平方: a 、b 两数差的平方:a 与b 的倒数的和: a 与b 的和的倒数:a 与b 的倒数的差: a 与b 的差的倒数:3.【打折问题】苹果每千克P 元,买10千克以上打9折,买20千克应 元。
4.【出租车问题】已知某市出租车的起步价是10元(3≤x 公里),超过3公里的路程,每公里收费1.8元,当x >3公里时,所付的费用是 元。
5.【水费问题】我市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民用户今年5月用水a 立方米,那么这户居民今年5月应交纳水费 元; 如果某居民用户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 .5.【风速、水流问题】某飞机无风航速为a 千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是 千米;逆风飞行3小时的行程是 千米考点三:解方程143312=---x x 154353+=--x x 352)63(61-=-x x 36)452(3)233(51=---x x 21131+-=--x x 15331++=--x x x 1255241345--=-++y y y 14126110312-+=+--x x x 方程的应用1.若23(2)0x y ++-=,则=yx __________。
2.代数式353x x x -+-与互为相反数,则的值为___________.3.如果23321133a b x y x y +--与是同类项,那么a=_________,b=___________. 4.方程423x m x +=-与方程662x -=-的解一样,则m =________. 【数字问题】○1三个连续偶数的和是60,那么其中最大的一个是 ○2一个两位数,个位上的数字是十位上数字的3倍,它们的和是12, 那么这个两位数是______ .○3一个两位数的个位数字与十位数字都是x ,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列方程是( )A. 2312x +=B. (10)10(1)(2)12x x x x +-+-+=C. 2312x +=D. 10(1)(2)1012x x x x +++=++○3一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.45○4有一列数,按一定规律排列成 8127931、、、、--其中某三个相邻的数之和是-1701,求这三个数分别为多少?【行程问题】○1一艘船从甲码头到乙码头顺水行驶,用了2小时;从乙码头返回甲码头逆水行驶,用了2.5小时,已知水流的速度是3千米/时。
苏教版初一数学第三章《代数式》综合练习(含答案)

第三章《代数式》综合练习一.选择题1.若a+2b=3,则代数式2a+4b的值为()A.3 B.4 C.5 D.62.已知5a x﹣3b与a5b y+5的和是单项式,则|x+y|等于()A.﹣5 B.4 C.3 D.53.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1 B.0 C.1 D.24.按如图所示的运算程序,能使输出m的值为8的是()A.x=﹣7,y=﹣2 B.x=5,y=3 C.x=3,y=﹣1 D.x=﹣4,y=35.下列各式中,是5x2y的同类项的是()A.x2y B.﹣3x2yz C.3a2b D.5x36.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab7.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a8.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x9.下列对代数式a的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数10.已知对于任意正整数n,都有a1+a2+a3+…+a n=n3,则()A.B.C.D.二.填空题11.已知﹣5a3x b5+y和a7﹣y b3x是同类项,则x+y的值是.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.已知a+b=2,ab=1,求a﹣2ab+b的值为.14.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.15.若m=20,按下列程序计算,最后得出的结果是.16.已知2a﹣5b=﹣4,则13﹣4a+10b的值为.17.观察下面的变化规律:1,,,,…根据上面的规律计算:.三.解答题18.先化简,再求值:(1)5a2bc abc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.19.先化简再求值:3a2b﹣[2ab2﹣2(ab a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b|=0.20.已知a﹣2b=3,求代数式2(3a2b+a﹣b)﹣3(2a2b﹣a+b)﹣5b的值.21.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a亩,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3亩.问:(1)水稻种植面积;(含a的式子表示)(2)水稻种植面积和玉米种植面积哪一个大?为什么.22.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?23.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a5=0,求代数式的值.24.某移动通讯公司开设了两种通讯业务:全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话),2.快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q 元.(1)请你写出P,Q与x之间的关系;(2)某用户一个月内通话时间为120分钟,你认为选择何种移动通讯较合适?25.按如图程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.(1)当输入的数是10时,请求出输出的结果;(2)当输入的数是x时,经过第一次运算,结果即符合要求,请求出x的最小整数值.26.某农户几年前承包荒山若干亩,投资8000元种桃树,农户精心照料,收获季节桃树上硕果累累.今年桃子总产量为20000千克,桃子在市场上每千克售m元,在桃园每千克售n元(n<m).该农户将桃子拉到市场出售平均每天出售1000千克,需4人帮忙,每人每天付工资50元,农用车运费及其他各项费用平均每天100元.(1)分别用m,n表示两种方式出售桃子的纯收入?(2)若m=2元,n=1.5元,且两种出售桃子的方式都在相同的时间内售完全部桃子,请你通过计算说明选择哪种出售方式获利多.27.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+…+(2n﹣1)=(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)1.若a+2b=3,则代数式2a+4b的值为()A.3 B.4 C.5 D.6【解答】D【解析】∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选D.2.已知5a x﹣3b与a5b y+5的和是单项式,则|x+y|等于()A.﹣5 B.4 C.3 D.5【解答】B【解析】∵5a x﹣3b与a5b y+5的和是单项式,∴5a x﹣3b与a5b y+5是同类项,∴x﹣3=5,y+5=1,解得x=8,y=﹣4,∴|x+y|=|8﹣4|=4.故选B.3.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1 B.0 C.1 D.2【解答】D【解析】∵x2a y4﹣b与﹣x3﹣b y3a是同类项,∴,解得,∴a+b=1+1=2.故选D.4.按如图所示的运算程序,能使输出m的值为8的是()A.x=﹣7,y=﹣2 B.x=5,y=3 C.x=3,y=﹣1 D.x=﹣4,y=3 【解答】C【解析】A、当x=﹣7,y=﹣2时,xy>0,m=x2+y2=53,不合题意,B、当x=5,y=3时,xy>0,m=x2+y2=34,不合题意;C、当x=3,y=﹣1时,xy<0,m=x2﹣y2=8,符合题意;D、当x=﹣4,y=3时,xy<0,m=x2﹣y2=7,不合题意;故选C.5.下列各式中,是5x2y的同类项的是()A.x2y B.﹣3x2yz C.3a2b D.5x3【解析】A.5x2y与x2y,所含的字母相同:x、y,它们的指数也相同,所以它们是同类项,故本选项符合题意;B.5x2y与﹣3x2yz,所含的字母不相同,所以它们不是同类项,故本选项不合题意;C.5x2y与3a2b,所含的字母不相同,所以它们不是同类项,故本选项不合题意;D.5x2y与5x3,所含的字母不相同,所以它们不是同类项,故本选项不合题意.故选A.6.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab【解答】C【解析】∵﹣2(a﹣b)=﹣2a+2b,故选项A错误;∵2c2﹣c2=c2,故选项B错误;∵x2y﹣4yx2=﹣3x2y,故选项C正确;∵3a+2b不能合并,故选项D错误;故选C.7.按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【解答】A【解析】∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选A.8.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x【解答】D【解析】由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选D.9.下列对代数式a的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数【解答】C【解析】用数学语言叙述代数式a为a与b的倒数的差,故选C.10.已知对于任意正整数n,都有a1+a2+a3+…+a n=n3,则()A.B.C.D.【解答】C【解析】∵a1+a2+…+a n﹣1+a n=n3,a1+a2+…+a n﹣1=(n﹣1)3,两式相减,得a n=3n2﹣3n+1,∴,∴,.故选C.二.填空题11.已知﹣5a3x b5+y和a7﹣y b3x是同类项,则x+y的值是.【解答】3【解析】根据题意得:,解得,∴x+y=3.故答案为3,12.若3x n y3和﹣x2y m是同类项,则n﹣m=.【解答】﹣1【解析】根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为﹣1.13.已知a+b=2,ab=1,求a﹣2ab+b的值为.【解答】0【解析】∵a+b=2,ab=1,∴a﹣2ab+b=a+b﹣2ab=2﹣2=0,故答案为0.14.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.【解答】0或8【解析】∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为0或8.15.若m=20,按下列程序计算,最后得出的结果是.【解答】21【解析】由题意得,当m=20时,原式.故答案为21.16.已知2a﹣5b=﹣4,则13﹣4a+10b的值为.【解答】21【解析】∵2a﹣5b=﹣4,∴13﹣4a+10b=13﹣2(2a﹣5b)=13﹣2×(﹣4)=13+8=21.故答案为21.17.观察下面的变化规律:1,,,,…根据上面的规律计算:.【解答】【解析】由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1=1.故答案为.三.解答题18.先化简,再求值:(1)5a2bc abc﹣2a2bc﹣3a2abc,其中a=2,b=3,c;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y.【解答】(1)﹣1;(2)0【解析】(1)5a2bc abc﹣2a2bc﹣3a2abc,=(5a2﹣2a2﹣3a2)+(abc abc)+(bc bc)=abc,当a=2,b=3,c时,原式=2×3×()=﹣1;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),=7(x+y)2﹣2(x+y)当x+y时,原式=72=0.19.先化简再求值:3a2b﹣[2ab2﹣2(ab a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b|=0.【解答】﹣3【解析】原式=3a2b﹣2ab2+2(ab a2b)﹣ab+3ab2=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=(3a2b﹣3a2b)+(﹣2ab2+3ab2)+(2ab﹣ab)=ab2+ab,∵(a+4)2+|b|=0,∴a+4=0,b0,解得:a=﹣4,b,原式=﹣4×()2+(﹣4)=﹣1﹣2=﹣3.20.已知a﹣2b=3,求代数式2(3a2b+a﹣b)﹣3(2a2b﹣a+b)﹣5b的值.【解答】15【解析】原式=6a2b+2a﹣2b﹣6a2b+3a﹣3b﹣5b=5a﹣10b,∵a﹣2b=3,∴原式=5(a﹣2b)=15.21.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a亩,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3亩.问:(1)水稻种植面积;(含a的式子表示)(2)水稻种植面积和玉米种植面积哪一个大?为什么.【解答】(1)4a;(2)水稻种植面积大【解析】(1)由题意得:水稻种植面积是4a;(2)由题意得:玉米种植面积是2a﹣3,∵2a﹣3﹣4a=﹣3﹣4a<0,∴2a﹣3<4a,∴水稻种植面积大.22.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?【解答】(1)木地板:10ab(平方米);地砖:15ab(平方米);(2)35abk(元)【解析】(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.23.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a5=0,求代数式的值.【解答】(1)3y+2020;(2)2023;(3)1【解析】(1)∵x2﹣2x=y,∴3x2﹣6x+2020=3(x2﹣2x)+2020=3y+2020;故答案为3y+2020;(2)∵y=1,∴3x2﹣6x+2020=3y+2020=3×1+2020=2023;故答案为2023;(3)设,则.∵,∴b﹣5=0,解得:b=5.∴.24.某移动通讯公司开设了两种通讯业务:全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话),2.快捷通用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q 元.(1)请你写出P,Q与x之间的关系;(2)某用户一个月内通话时间为120分钟,你认为选择何种移动通讯较合适?【解答】(1)P=50+0.4x,Q=0.6x;(2)快捷通【解析】(1)P=50+0.4x,Q=0.6x;(2)当x=120时,50+0.4x=50+0.4×120=98,0.6x=0.6×120=72,∵98>72,∴某用户一个月内通话时间为120分钟,选择快捷通较合适.25.按如图程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.(1)当输入的数是10时,请求出输出的结果;(2)当输入的数是x时,经过第一次运算,结果即符合要求,请求出x的最小整数值.【解答】(1)16;(2)8【解析】(1)当输入的数是10时,10×2﹣4=16>10,∴输出的结果为16;(2)由题可得,2x﹣4>10,解得x>7,∴x的最小整数值为8.26.某农户几年前承包荒山若干亩,投资8000元种桃树,农户精心照料,收获季节桃树上硕果累累.今年桃子总产量为20000千克,桃子在市场上每千克售m元,在桃园每千克售n元(n<m).该农户将桃子拉到市场出售平均每天出售1000千克,需4人帮忙,每人每天付工资50元,农用车运费及其他各项费用平均每天100元.(1)分别用m,n表示两种方式出售桃子的纯收入?(2)若m=2元,n=1.5元,且两种出售桃子的方式都在相同的时间内售完全部桃子,请你通过计算说明选择哪种出售方式获利多.【解答】(1)(20000m﹣6000)元,20000n元;(2)应选择将桃子拉到市场出售【解析】(1)将这批水果拉到市场上出售收入为20000m4×50100=20000m﹣4000﹣2000=(20000m﹣6000)(元)在果园直接出售收入为20000n元;(2)当m=2时,市场收入为20000m﹣6000=20000×2﹣6000=34000(元).当n=1.5时,果园收入为20000n=20000×1.5=30000(元)因30000<34000,所以应选择将桃子拉到市场出售.27.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+...+(2n﹣1)=(用含n的代数式表示);(2)请根据你的发现计算:①1+3+5+7+...+99;②101+103+105+ (199)【解答】(1)n2;(2)①2500,②7500【解析】(1)∵第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有1+3+5+7=16小正方形;……∴1+3+5+7+…+(2n﹣1)=()2=n2;故答案为n2;(2)①1+3+5+7+…+99=()2=502=2500;②∵1+3+5+7+…+199=()2=10000,∴101+103+105+…+199=10000﹣2500=7500.。
苏科版七年级数学上册第三章 代数式知识点归纳

苏科版七年级数学上册第三章代数式知识点归纳(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
3、整式: 单项式和多项式统称为整式。
4、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .知识点二:整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。
(同类项与系数无关,与字母排列的顺序也无关)。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
不能合并的项单独作为一项,不可遗漏3.整式加减实质就是去括号,合并同类项。
注:去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
4、几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 .2018-2019学年七年级上数学《代数式》单元测试卷班级姓名一、选择题:(36分)1.计算-2x2+3x2的结果是()A.-5x2B.5x2C.-x2D.x22.足球每个m元,篮球每个n元,桐桐为学校买了4个足球,7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元3.已知代数式-3x m-1y3与y n x n+1是同类项,那么m,n的值分别是( )A. n=-3,m=-1B. n=-3,m=-3C. n=3,m=5D. n=2,m=3第11题图4.下列各组代数式中,是同类项的是( )A .5x 2y 与15xy B .-5x 2y 与15yx 2 C .5ax 2与15yx 2 D .83与x 35.下列式子合并同类项正确的是 ( )A .3x +5y =8xyB .3y 2-y 2=3C .15ab -15ba =0D .7x 3-6x 2=x 6.同时含有字母a 、b 、c 且系数为1的五次单项式有( )A .1个B .3个C .6个D .9个 7.右图中表示阴影部分面积的代数式是 ( )A .ab +bcB .c(b -d)+d(a -c)C .ad +c(b -d)D .ab -cd 8.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( )A .97π cm 3B .18π cm 3C .3π cm 3D .18π2 cm 39.下面选项中符合代数式书写要求的是( )A .213cb 2aB .ay·3C .24a bD .a×b+c10.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果 是( )A.1B.23b +C.23a -D.-111.在排成每行七天的月历表中取下一个33⨯方块(如图所示).若所有日期数之和为189,则n 的值为( )A.21B.11C.15D.912. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图 形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中 一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.30二、填空题:(30分)13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式500-3a-2b 表示的意义为 。
苏教数学七上的复习知识点总结及练习

初一数学(上)知识点代数初步知识1.代数式:用运算符号+-× ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)2.几个重要的代数式:(m、n 表示整数)(1)a 与 b 的平方差是: a 2-b 2;a与b差的平方是:(a-b)2;(2)若 a、b、c 是正整数,则两位整数是: 10a+b , 则三位整数是: 100a+10b+c;(3)若 m、n 是整数,则被 5 除商 m余 n 的数是: 5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1 、n、n+1;有理数1.有理数:(1) 凡能写成q(p, q为整数且 p 0) 形式的数,都是有理数. 正整数、0、负整数统称整数;正分数、负分数p统称分数;整数和分数统称有理数 . 注意:0 即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零(2) 有理数的分类:① 有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数(3)注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数0 和正整数;a>0 a 是正数; a<0 a 是负数;a≥0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线 .3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是 b-a;a+b 的相反数是-a-b ;(3)相反数的和为0a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:a( a0)a( a0)0( a0)或 a a (a0) ;绝对值的问题经常分类讨论;aa (a0)(3)a a1a0 ;1 a 0 ;aa(4) |a|是重要的非负数,即|a|a a≥0;注意:|a| ·|b|=|a · b|,.b b5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数- 小数> 0 ,小数- 大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么a的倒数是1;倒数是本身的 a数是±1;若 ab=1 a 、b 互为倒数;若 ab=-1 a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b ). 10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a( b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义 . 013.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a) n=-a n或(a -b) n=-(b-a) n , 当n 为正偶数时 : (-a)n =a n或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即 a2≥0;若 a2+|b|=0a=0,b=0 ;15.科学记数法:把一个大于 10 的数记成 a×10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 .17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字 .18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法 , 但不能用于证明 .整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]
![苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/37486ae5250c844769eae009581b6bd97f19bc35.png)
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。
要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。
代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。
2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。
多项式是几个单项式的和,每个单项式叫做多项式的项。
在多项式中,不含字母的项叫做常数项。
多项式中次数最高的项的次数,就是这个多项式的次数。
如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版七年级代数式知识点汇总及练习题
姓名 日期:
代数式章节知识点汇总
1、代数式:用运算符号(加、减、乘、除、乘方和开方等)将 的式子;单独的
2、同类项:所含字母相同,并且相同字母的指数也分别相同的项。
3、整式:单项式和多项式统称为整式。
(1)单项式:由数字与字母的积或字母与字母的积所组成的代数式(单独的一个数字或字母也是单项式)。
①单项式中的数字因数叫做这个单项式的系数。
②所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1。
(2)多项式:几个单项式的和组成的式子(减法中有:减一个数等于加上它的相反数)。
①多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
4、整式的加减: 几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:
(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。
(ii )合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
一、选择题。
1.下列代数式表示a 、b 的平方和的是( )
A .(a+b )2
B .a+b 2
C .a 2
+b D .a 2
+b 2
2.下列各组代数式中,为同类项的是( ) A .5x 2
y 与-2xy 2
B .4x 与4x
2
C .-3xy 与
32
yx D .6x 3y 4
与-6x 3z 4 3.下列各式中是多项式的是 ( ) A.2
1-
B.y x +
C.3ab
D.22b a -
4.下列说法中正确的是( ) A.x 的次数是0 B.
y 1是单项式 C.2
1
是单项式 D.a 5-的系数是5 5.-a+2b -3c 的相反数是( )
A .a -2b+3c
B .a 2
-2b -3c C .a+2b -3c D .a -2b -3c
6.当3≤m<5时,化简│2m -10│-│m -3│得( )
A .13+m
B .13-3m
C .m -3
D .m -13 7.已知-x+2y=6,则3(x -2y )2
-5(x -2y )+6的值是( )
A .84
B .144
C .72
D .360 8.如果多项式A 减去-3x+5,再加上x 2
-x -7后得5x 2
-3x -1,则A 为( )
A .4x 2
+5x+11 B .4x 2
-5x -11 C .4x 2
-5x+11 D .4x 2
+5x -11 9.下列合并同类项正确的是( )
A .2x+4x=8x 2
B .3x+2y=5xy
C .7x 2
-3x 2
=4 D .9a 2
b -9ba 2
=0 10.只含有z y x ,,的三次多项式中,不可能含有的项是( )
A.32x
B.xyz 5
C.3
7y - D.yz x 2
4
1 11.若代数式2x 2
+3x+7的值是8,则代数式4x 2
+6x+15的值是( )
A .2
B .17
C .3
D .16 12.一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( ) A .a (1+20%) B .a (1+20%)8% C .a (1+20%)(1-8%) D .8%a 13. 若a 、b 互为倒数,x 、y 互为相反数,则()()y x b a ab ++-的值为( )
A.0
B.1
C.-1
D.1或-1
14. 用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S 等于 ( )
A. 33-n
B. 3-n
C. 22-n
D. 32-n 二、填空题。
1.教室里有x 人,走了y 人,此时教室里有 人。
2.在代数式26358422
-+-+-x x x x
中,24x 和 是同类项,x 8-和 是同
类项,2-和 也是同类项。
合并后是 。
()3,2==S n ()6,3==S n ()9,4==S n ()12,5==S n
3.单项式34
57
ab c 系数是 ,次数是 。
4.若-
23
a 2
b m
与4a n b 是同类项,则m+n= 。
5.一个多项式减去3222+-a a ,差为a a 242-,则这个多项式为 。
6.当k=______时,代数式x 2
-8+
15
xy -3y 2
+5kxy 中不含xy 项. 7.已知a 2
+2ab=-10,b 2
+2ab=16,则a 2
+4ab+b 2
= ,a 2
-b 2
= 。
8.观察下列算式:21
=2,22
=4,23
=8,24
=16,25
=32,26
=64,27
=128, 28
=256,…观察后,用你所发现的规
律写出223
的末位数字是 。
三、计算题。
(1)-8x +2x 2
-3x -x 2 (2) x -(4x -5y )+(-x +y )
(3) 221231(2)()2323x x y x y -++-+ (4) 7a -{-2a +[2(a -b )+3b -a ]}
四、化简求值。
(1))522(2)624(2
2
-----a a a a 其中 1-=a
(2))3
123()21(22122b a b a a ----- 其中 32,2=-=b a
五、探索规律。
1、按下图方式摆放餐桌和椅子:
(1)按照上图的方式继续排列餐桌,完成下表。
桌子张数/张 1 2 3 4 n
可坐人数/人
(2)50张餐桌可以坐多少人?
2、观察下列等式,并回答问题:
23
)3
1(
6
3
2
1⨯
+
=
=
+
+
24
)4
1(
10
4
3
2
1⨯
+
=
=
+
+
+
25
)5
1(
15
5
4
3
2
1⨯
+
=
=
+
+
+
+
……
1+2+3+……+n= 。
并求1+2+3+……+998+999+1000的结果。