初一数学:代数式知识点和题型

合集下载

初一上册数学代数式知识点

初一上册数学代数式知识点

初一上册数学代数式知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或者字母也是代数式。

2. 用具体的数值代替代数式中的字母,按照代数式中指明的运算计算得出的结果,叫做这个代数式的值。

二、代数式的书写1. 代数式中如果有乘号,应写在字母的前面;2. 代数式中如果有乘方,应写在外面的括号里;3. 代数式中如果是加减运算,添括号时,括号前面是加号,括号里面不变号,括号前面是减号,括号里面要变号;4. 代数式中如果是乘方运算,加括号时要注意顺序。

先写底数,再写指数。

三、代数式的值1. 用数值代替代数式中的字母,按照代数式中的运算关系计算出来的结果叫做代数式的值。

2. 求代数式的值一般有三种方法:直接代入数值求值;变形后代入求值;变形后整体代入求值。

四、代数式的计算1. 代数式的加减运算主要是合并同类项。

合并同类项时把系数相加,字母和字母的指数不变。

2. 代数式的乘法运算主要是乘法分配律的应用。

3. 代数式的除法运算主要是乘除同一数的倒数。

五、整式的加减运算1. 整式的加减运算主要是去括号和合并同类项。

去括号时要注意:括号前面是负号,去掉括号和负号,括号里的每一项都要变号。

合并同类项时要注意系数相加,字母和字母的指数不变。

2. 整式的加减运算要按照运算顺序先做符号运算,再做乘除运算,最后做加减运算。

具体的代数式初步知识如下所示:1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

初一数学:代数式知识点和题型

初一数学:代数式知识点和题型

代数式知识点和题型一、代数式的概念(非常重要)代数式:没有等号、没有不等号。

整式:首先必须是代数式,其次,分母中无字母,根号下无字母。

【字母的确定】①如果代数式中既有x, V,也有其他字母,一般只把x, y当做字母,其他的(比如a、b、c、d)当做数字②如果代数式中没有x, v,只有a、b、c、d等,这些都当做字母来看待。

③题目中明确说是关于那几个字母的代数式。

单项式:没有涉及字母的加减运算,或者合并同类项之后,没有涉及字母的加减运算。

比如:3ab、2x、2x &多项式:有涉及字母的加减运算2a 5b比如:一-——、3 4y、2x 7y单项式次数:所有字母的次数和。

单项式系数:单项式中的数字部分(包含正负号)。

多项式次数:多项式中次数最高的单项式的次数。

多项式项数:多项式中包含的单项式个数。

同类项:字母相同,同一个字母的次数也相同(合并同类项)二、题型1、列代数式(非常重要)利润问题:利润、价格、打折数字位数问题:数字x位数值(例如:1234 = 1 X 1000+2 X 100+3 X 10+4 X 1)面积体积问题:面积公式(圆、三角形、长方形、正方形、梯形),体积公式分段收费问题:2、同类项判断:已知两个单项式是同类型,计算参数值【方法:】根据同类项定义,写出等式。

(字母相同,同一个字母的次数也相同。

)例如:已知3a2m1b3和5a4b n 2是同类项,写出2m 1 4, n 2 3,计算即可(如果题目中说,两个单项式的和还是单项式,或者两个单项式可以合并成一项,本质上还是在说,这两个单项式是同类项,解题方法完全一样)几次几项式判断,方法类似。

缺项计算:先化简、缺哪一项,哪一项的系数值为零。

3、整式运算①合并同类项和加减运算。

去括号运算,括号前面是负号,去括号之后,每个数都变号。

②先化简再求值。

(非常重要)例如:先化简,再求值:(a26ab 9) 2(a2 4ab 4.5),其中|a 1| 屈一2 0【方法:】无论题目中是否明确说,先化简再求值。

初一数学第三章《代数式》知识点及测试题

初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由或的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5 a。

·单项式的系数:单式项中的叫做单项式的系数。

·单项式的次数:单项式中叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例:232a b-的系数是________,次数是_______。

②多项式:几个的和叫做多项式。

其中,每个单项式叫做多项式的,不含字母的项叫做。

·多项式的次数:多项式里的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n-+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

七年级代数式知识点及例题

七年级代数式知识点及例题

七年级代数式知识点及例题代数式在初中数学中占有重要地位,是进一步学习高中数学和其他科学学科的基础。

本文将为大家介绍七年级代数式的知识点,并通过例题让大家更好地掌握这些知识点。

一、代数式的概念代数式指用数字和字母以及运算符号组成的式子,例如:2x+3y或a²-b²等。

其中数字和字母都被称为代数项,符号+、-、×和÷被称为代数式的运算符号。

二、代数式的基本运算1. 合并同类项合并同类项是代数式基本原则之一。

同类项有相同的字母部分,其指数可以不同,例如:3x、5x和-2x就是同类项。

将同类项相加或相减得到的结果称为合并同类项。

例如:2x²+3x²=5x²,6xy-2xy=4xy。

2. 去括号一般情况下,可以使用分配律去掉括号,从而简化代数式。

例如:3(x+2)=3x+6。

3. 移项移项是指将代数式中的各个式子移到等式两边,通过加、减或乘、除等运算来求解。

三、代数式的解题方法1. 代入法代入法是求解代数式的一种简单方法。

将给定的数值代入代数式中,然后通过基本运算得出最终结果。

例如:已知x=2,求2x+3,将x=2代入得:2*2+3=7。

2. 整理法整理法是指通过基本运算对代数式进行化简,化简后的代数式更符合求解要求,从而实现对代数式求解的目的。

例如:已知3x+2=8,将式子化简为3x=6,然后得出x=2的解。

四、常见的七年级代数式例题1. 合并同类项:将3x+5x+2y-7y合并同类项,并化简为最简代数式。

解:同类项3x和5x的和是8x,同类项2y和-7y的和是-5y,因此合并同类项后得到8x-5y。

2. 去括号:化简3(x+2)+2(x-1),并将其化简为最简代数式。

解:根据分配律,展开式子3(x+2)+2(x-1)得到3x+6+2x-2。

将同类项3x和2x合并,同类项6和-2合并,得到最简代数式5x+4。

3. 求解未知数:已知3x+2=8,求x的值。

初中数学知识点(代数)

初中数学知识点(代数)

初中数学知识点(代数)一、代数式代数式是由数、字母和运算符号组成的表达式。

代数式可以分为单项式和多项式。

1. 单项式:只包含一个字母和它的指数的代数式,如:5x²、3a³等。

2. 多项式:由若干个单项式相加或相减组成的代数式,如:3x² + 2x 1、4a³ + 5ab²等。

二、代数式的运算1. 加法:将两个或多个代数式相加,如:3x² + 2x 1 + 4x²3x + 2。

2. 减法:将两个或多个代数式相减,如:3x² + 2x 1 (4x²3x + 2)。

3. 乘法:将两个或多个代数式相乘,如:(3x² + 2x 1) ×(4x² 3x + 2)。

4. 除法:将一个代数式除以另一个代数式,如:(3x² + 2x 1) ÷ (4x² 3x + 2)。

三、方程方程是含有未知数的等式。

解方程就是求出未知数的值,使得等式成立。

初中阶段主要学习一元一次方程和一元二次方程。

1. 一元一次方程:未知数的最高次数为1的方程,如:2x + 3 = 7。

2. 一元二次方程:未知数的最高次数为2的方程,如:x² 5x +6 = 0。

四、不等式不等式是表示两个数之间大小关系的式子。

初中阶段主要学习一元一次不等式和一元二次不等式。

1. 一元一次不等式:未知数的最高次数为1的不等式,如:2x + 3 > 7。

2. 一元二次不等式:未知数的最高次数为2的不等式,如:x²5x + 6 ≥ 0。

五、函数函数是描述变量之间关系的数学概念。

初中阶段主要学习一次函数和二次函数。

1. 一次函数:函数表达式为y = kx + b(k ≠ 0)的函数,其中k是斜率,b是截距。

2. 二次函数:函数表达式为y = ax² + bx + c(a ≠ 0)的函数,其中a、b、c是常数。

初一数学《代数式》知识点精讲

初一数学《代数式》知识点精讲

初一数学《代数式》知识点精讲知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。

特别地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a 米,(2a-b)kg。

六、系数与次数单项式的系数和次数,多项式的项数和次数。

1.单项式的系数:单项式中的数字因数叫做单项式的系数。

注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。

七年级数学 第三四章知识点代数式整式知识点

七年级数学 第三四章知识点代数式整式知识点

七年级数学第三四章知识点(一)一、知识点:考点一代数式1.代数式:用连接组成的式子叫做代数式,单独的一个或也叫代数式.2.代数式的书写规范:二、完成项目:(一)代数式1.下列式子中代数式的个数有()﹣2a﹣5,﹣3,2a+1=4,3x3+2x2y4,﹣b.A.2个B.3个C.4个D.5个2.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m3.代数式a2﹣的正确解释是()A.a与b的倒数是差的平方B.a与b的差是平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差4.用代数式表示“x的两倍与y的和的平方”,是5.两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x+3 D.12x﹣36.全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数是()A.a•3a+2 B.3a(a+2)C.a+3a+2 D.a(3a+2)7.a个学生按每8个人一组分成若干组,其中有一组少3人,共分成()A.组B.组C.组D.组8.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,则第三天销售了件9.某粮食公司2018年生产大米总量为a万吨,比2017年大米生产总量增加了10%,那么2017年大米生产总量为()A.a(1+10%)万吨B.万吨C.a(1﹣10%)万吨D.万吨10.某食堂有煤m吨,计划每天用煤n吨,实际每天节约用煤b吨,节约后可多用的天数为( )A.m mn b n-+B.m mn n b--C.m mn n b-+D.m mn b n--11.一种商品的售价为20元,每个月可卖出110件;如果每件商品的售价每降价1元,则每月多卖5件.设每件商品的售价为a元时,每月的销售量是件.12.某商品的进价是a元,商场标出的售价比进价提高30%,后又按标价的九折出售,现在这种商品售价为_________元,每件商品盈利___________元.13.一个正方形和四个全等的小正方形按图①②两种方式摆放,若把图②中未被小正方形覆盖部分(图②中的阴影部分)折成一个无盖的长方体盒子,则此长方体盒子的体积为()A.B.C.D.14.用黑白两种颜色的地板砖按如图所示的规律,拼成若干个图案.第n个图形中有白色地板砖块15.如图,图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.2616.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A .21B .24C .27D .3017.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1 B .2,1,4 C .1,4,2 D .2,4,1第17题18. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( ) A .135 B .170 C .209D .252考点二 整式的有关概念1.单项式:由 组成的式子叫做单项式;单项式中的 叫做单项式的系数;单项式中 叫做单项式的次数.2.多项式:几个单项式的 叫做多项式;多项式中,每一个单项式叫做多项式的 ,其中不含字母的项叫做 ;多项式中 就是这个多项式的次数.3.整式: 与 统称为整式.(二)整式1.-5x ,-a ,13+m ,x -2xy ,23n m -,x 1,0,212x -,3ab ,21+a b单项式集合:{ …} 多项式集合:{ …}2.单项式522bca π-的系数是 ,次数是 .3. 若n mx y -是关于x y ,的一个单项式,且系数为3,次数为5,则m =_____,n =_____. 4.多项式123243-+-x x x 有___ 项,其中次数最高的项是____ _ . 5.下列说法正确的是( )A .232xy 的次数是6B .单项式a 的系数为1,次数是0.C . 733yzx π单项式的系数是73, D .数字0是单项式6.关于x 的多项式1)2(5)1(3236+---++x n x x m x 不含x 的二次项和三次项,则m = , n = . 7.(1)观察下列关于x 的单项式:⋅⋅⋅6543211,9,7,5,3,x x x x x x ,按此规律写出第2018个单项式是_________.(2)观察下列关于x 的单项式:0, 3x 2, 8x 3, 15x 4, 24x 5,…,按此规律写出第13个单项式是______;(3)观察下列关于x 的单项式: x ,-2x 2 , 4x 3 ,-8x 4,....根据发现的规律,写出第n 个式子是__________;七年级数学 第三四章知识点(二)考点三 整式的加减一、知识点:1.同类项:所含 相同,并且 指数也相同的单项式.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项;几个常数项都是同类项.2.合并同类项:把多项式中的同类项合并成一项。

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)

代数式的值【知识梳理】(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值. 题型简单总结以下三种:①已知条件不化简,所给代数式化简; ②已知条件化简,所给代数式不化简; ③已知条件和所给代数式都要化简.【考点剖析】 一、用代数式数、图形的规律 一、单选题1.(2021秋·上海·七年级期中)某影院第一排有20个座位,每退一排就多1个座位,则第n 排有座位( ) A .()20n +个 B .()21n +个C .()19n +个D .()18n +个【答案】C【分析】根据后面每一排都比前一排多1个座位表示出前几排的座位数,即可得出规律,然后求解即可. 【详解】第一排有20个座位,第二排有21个座位,第三排有22个座位,…,第n 排有(n+19)个座位. 故选C .【点睛】本题考查了列代数式,是规律探寻题,比较简单.二、填空题2.(2022秋·上海·七年级专题练习)七(1)班共有n 名同学,每两人握一次手,他们一共握了____次手.【答案】()21n n −【分析】自己不能跟自己握手,所以需要握手的人数应该是除自己外的(n−1)个人.【详解】每个人都要和另外的n−1个人握一次手,n 个人共握手n×(n−1)次,由于每两人握手,应算作一次,需去掉重复的情况,实际只握了n×(n−1)÷2=()21n n −次.故答案为()21n n −【点睛】本题目考查的是握手问题,如果人数比较少,可以用枚举法解答;如果人数比较多,可以用公式:()21n n −解答.【答案】4x +16/164x +【分析】日历中任意框出4个数,设其中最小的数为x ,并用x 分别表示出其他三个数,然后4个数相加即可.【详解】解:最小的数为x ,则其它3个分别是1x +,7x +,8x +, 这4个数之和为178416x x x x x ++++++=+, 故答案为:416x +【点睛】本题考查了代数式的应用,理解日历中任意框出4个数的关系是解题关键.【答案】 32 76 (1)1(1)n n n n +++12=3212-13=761134−=13121145−=2120()()11111+11n n n n n n ++−=++【答案】(4n+1).【分析】根据题目中的图形变化规律可知,每一次变化增加四个三角形,从而可以解答本题. 【详解】解:由图可得, 图(1)所得三角形总个数为:1+4=5; 图(2)所得三角形总个数为:1+4×2=9; 图(3)所得三角形总个数为:1+4×3=13; 所以第n 个图中共有(4n+1)个三角形; 故答案为:(4n+1).【点睛】本题主要考查图形的变化类,解答本题的关键是发现题目中图形的变化规律,求出相应的三角形的个数.6.(2022秋·上海·七年级专题练习)如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,…,当字母C 第()21n −次出现时(n 为正整数),恰好数到的数是______(用含n 的代数式表示).【答案】63n −【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A →B →C →D →C →B →A →B →C →…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,当循环n 次时,字母C 第2n 次出现时(n 为正整数),此时数到最后一个数为6n , 当字母C 第()21n −次出现时(n 为正整数),再数3个数为63n −.故答案为:63n −.【点睛】本题考查代数式、数的规律,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(2)a n = (用含n 的代数式表示)(3)按照上述方法,能否得到2019个正方形?如果能,请求出n ;如果不能,请简述理由. 【答案】(1)10,13;(2)3n-2;(3)不能,【分析】根据已知图形可以发现:每次剪开,都会增加3个正方形,所以可以得到此题的规律为:第n 个图形中的正方形个数为:3n-2.【详解】(1)根据已知图形可以发现:每次剪开,都会增加3个正方形, ∴第4个图中为7+3=10个,第5个图中为10+3=13个;(2)根据(1)中的数据规律可知:第n 个图形中的正方形个数为:32n −; (3)不能.∵若能得到2019个正方形,则有322019n −=,则32021n =,但是2021不能被3整除,∴不能得到2019个正方形.【点睛】本题考查了图形的变化类问题,关键是要通过观察图形,分析、归纳发现其中的规律. (2019++2022+++2019+2020+2021=++【答案】(1)12n (n+1)(2)12(n+1)2【分析】(1)根据题目中的方法进行求解即可; (2)仿照题目中的方法进行求解即可. (1)解:由题意得:1+2+3+…+(n-2)+(n-1)+n=12n(n+1);(2)1+3+5+…+(2n+1)=12×12(1+2n+1)(n+1)=12(n+1)2.【点睛】本题主要考查规律型:数字的变化类,列代数式,解答的关键是总结出存在的规律.【答案】(1)-3(2)5;-20;42k−【分析】尝试:(1)将前4个数字相加可得;(2)根据“相邻四个台阶上数的和都相等”列出方程求解可得;应用:根据“台阶上的数字是每4个一循环”求解可得;发现:由循环规律即可知数“2”所在的台阶数为4k﹣2.(1) 解:尝试: (1)()()52193++−+−=−答:前4个台阶上数的和是3−.(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k − (2)解:(2)∵任意相邻四个台阶上数的和都相等, ∴()()2193x +−+−+=−,解得5x =第5个台阶上的数x 是5.应用:由题意知台阶上的数字4个一循环, ∵3849÷=……2 ∴()935220⨯−++=−即从下到上前38个台阶上数的和20− 发现:数“2”所在的台阶数42k −.【点睛】本题主要考查了列代数式,解一元一次方程,解题的关键是根据相邻四个台阶上数的和都相等得出台阶上的数字是每4个一循环. 二、已知字母的值,求代数值的值 一、单选题1.(2022秋·上海青浦·七年级校考期中)已知()42251A x =+,则当1x =时,3A 的值为( ) A .8000 B .1000C .1000±D .8000±【答案】D【分析】利用乘方的逆运算以及已知条件求出A 的值,然后利用乘法运算法则求出3A 的值即可. 【详解】解:∵()4222[5(51]21)x A x ++=±=,1x =,∴225(1)5(11)20A x =±+=±⨯+=±,∴33(20)8000A =±=±.故选:D .【点睛】本题主要考查了乘法运算、乘方的逆运算以及代数式求值,解题关键是熟练掌握相关运算法则.二、填空题【答案】119/9【分析】直接代入求值即可.【详解】解:当13x =-时,原式2111913⎛⎫=⎪+ =−⎝⎭, 故答案为:119.【答案】8−/0.125−【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而代入得出答案. 【详解】解:∵230.2504a b ⎛⎫−++= ⎪⎝⎭, ∴30.250,04a b −=+=,∴30.25,4a b ==−,∴222233139120.2520.2544168168a ab b ⎛⎫⎛⎫−−=−⨯⨯−−−=+−=−⎪ ⎪⎝⎭⎝⎭.故答案为:18−.【点睛】此题主要考查了非负数的性质,代数式求值,正确得出a ,b 的值是解题关键.【答案】8【分析】直接把12x =代入计算即可. 【详解】解:当12x =时,()113131922228x x ⎛⎫⨯⨯+ ⎪+⎝⎭==故答案为:98【点睛】本题主要考查了代数式求值,有理数的混合运算法则,在解题时要根据题意代入计算即可. 5.(2022秋·上海嘉定·七年级校考期中)当2x =−,3y =时,代数式22x xy y ++的值是___________. 【答案】7【分析】将x 、y 的值代入计算即可. 【详解】解:当2x =−,3y =时, 22x xy y ++()()222233=−+−⨯+469=−+ 7=.故答案为7.【点睛】考查了代数式求值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值,正确进行计算是解题的关键.6.(2022秋·上海静安·七年级校考阶段练习)当2a =−时,代数式3(1)a a +的值等于__________. 【答案】6【分析】根据题意,直接将2a =−代入代数式进行计算即可求解. 【详解】解:当2a =−时,代数式3(1)a a +()()32216=⨯−⨯−+=,故答案为:6.【点睛】本题考查了代数式求值,正确的计算是解题的关键.7.(2023秋·上海静安·七年级新中初级中学校考期末)当a =5,b =-3时,a -b 的值为__________. 【答案】8【分析】根据已知字母的值,直接代入求值即可. 【详解】解:∵a=5,b=-3, ∴a-b=5-(-3)=8; 故答案为:8.【点睛】此题主要考查了代数式求值,掌握代数式求值方法是解题的关键.【答案】2或18/18或2【分析】根据a 与b 都为正整数即可求得. 【详解】解:根据题意得,只有当2b =和18时, 17a =和1,故答案为:2或18.【点睛】本题考查了正整数的定义(大于0的整数),准确的计算是解决本题的关键.【答案】41【分析】把a 、b 、c 的值代入代数式进行计算即可. 【详解】解:把2a =,3b =−,4c =−代入得:()()224342441b ac −=−−⨯⨯−=,故答案为:41.【点睛】本题考查了代数式求值,准确计算是解题的关键.10.(2022秋·上海·七年级校考阶段练习)当1x =,代数式31px qx ++的值为2022,则当=1x −,代数式31px qx ++的值是_______.【答案】2020−【分析】根据“当1x =,代数式31px qx ++的值为2022”可得2021p q +=,再将=1x −代入31px qx ++可得()p q −++1,再整体代入计算即可.【详解】解:∵当1x =,代数式31px qx ++的值是2022.∴把1x =代入31px qx ++得,12022p q ++=∴2021p q +=∴把=1x −代入31px qx ++得,1()1202112020p q p q −−+=−++=−+=−故答案为:2020−.【点睛】本题考查代数式求值,根据题意得出2021p q +=是解决问题的关键.三、解答题【答案】(1)2212x x −+;(2)218m . 【分析】(1)根据题意“目”字形的窗框,长有4段,总长为4AD =4x 米,则AB =2442x−米,再根据长方形面积计算公式即可得出答案;(2)把x =3代入(1)中关于面积的代数式中即可得出答案.【详解】(1)根据题意得AB=2441222x x −=−,∴S 长方形ABCD ()2122212x x x x =−⋅=−+.(2)当3x =时,221229123x x −+=−⨯+⨯1836=−+218m =.答:长方形ABCD 面积为218m .【点睛】本题主要考查了列代数及代数式的求值,根据题意列出合理的代数式是解决本题的关键.【答案】(1)22ab b −(2)222a ab b −+ (3)7800【分析】(1)根据题意表示出十字路的面积即可;(2)根据题意表示出铺设的草坪的面积即可;(3)根据(1)表示出的式子,把a 与b 的值代入计算即可得出答案.【详解】(1)根据题意可得,()222ab b a b ab ab b ab b +−=+−=− ∴修建的道路是22ab b −平方米;铺设的草坪的面积为()2222a b a ab b −=−+;(3)当20a =,1b =时, 2222201139ab b −=⨯⨯−=(平方米),392007800⨯=(元).∴需要投资7800元修建道路.【点睛】本题考查代数式求值,以及列代数式,整式的混合运算,熟练掌握运算法则是解题的关键. (1)试用含a 的代数式表示(2)当12a =时,比较S 阴影【答案】(1)213182a a −+(2)BGF S S ∆=阴【分析】(1)根据图形,把阴影的面积表示出来ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴,化简即可解得. (2)把当12a =代入求值,即可解得.【详解】(1)解:∵22ABCD ECGF S S a b +=+,212ABD S a ∆=,()()1632BGF S a b a b ∆=⨯+⨯=+, ∴ABCD ECGF ABD BGF S S S S S ∆∆=+−−阴()221332a b a a b =+−−+213182a a =−+;()2131832BGF S S a a a b ∆−=−+−+阴 ()21122a a =−将12a =代入,0BGF S S ∆−=阴, ∴BGF S S ∆=阴.【点睛】此题考查了列代数式求阴影的面积,解题的关键是把阴影部分的面积表示出来. 14.(2022秋·上海徐汇·七年级上海市徐汇中学校联考期末)已知52345670123456721)x a a x a x a x a x a x a x a x −=+++++++((1)求01234567a a a a a a a a −+−+−+−的值.(2)求0246a a a a +++的值.【答案】(1)243−(2)121−【分析】(1)根据已知条件,=1x −代入即可解得.(2)把1x =代入进行计算,最后再与(1)中所得等式进行相加即可求解.【详解】(1)52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(把=1x −代入,01234567a a a a a a a a −+−+−+−()521=--243=− (2)把1x =代入,52345670123456721)x a a x a x a x a x a x a x a x −=+++++++(,解得:012345671a a a a a a a a +++++++=①,根据第一问可得∶01234567243a a a a a a a a -+-+-+-=-②, ①+②得:()02462242a a a a +++=-∴0246121a a a a +++=- 【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键. (1)求这个无盖长方体纸盒的表面积(用含(2)求这个无盖长方体纸盒的容积(用含【答案】(1)2604a −(2)3243260a a a −+,31.5 【分析】(1)根据题意易知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积;(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高,再将32a =代入即可.【详解】(1)解:由题意可知,无盖长方体纸盒的表面积即长方形纸片的面积减去四个小正方形的面积, 221064604S a a =⨯−=−,∴这个无盖长方体纸盒的表面积为2604a −.(2)长方形纸盒的长为102a −,宽为62a −,高为a ,容积=长⨯宽⨯高()()321026243260a a a a a a=−⨯−⨯=−+, 将32a =代入,得:323334326031.5222⎛⎫⎛⎫⎛⎫⨯−⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答:容积为31.5.【点睛】本题考查了列代数式,解题的关键是正确表示纸盒的长,宽,高.三、已知式子的值,求代数式的值一、单选题1.(2023秋·上海静安·七年级新中初级中学校考期末)已知x − 2y = 2,则2x — 4y 的值是( )A .5B .2C .4D .7【答案】C 【分析】先根据x−2y =2,再变形,最后代入求出即可.【详解】解:∵x−2y =2,∴2x−4y =2(x−2y )=2×2=4,故选:C .【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.二、填空题2.(2023秋·上海嘉定·七年级上海市育才中学校考期末)如果34a b −=,那么261a b −−的值是________.【答案】7【分析】用整体代入法求解即可.【详解】解:∵34a b −=,∴()261231817a b a b −−=−−=−=.故答案为:7.【点睛】此题考查了代数式求值,代数式中字母的值没有明确告知,而是隐含在已知条件中,首先应从条件“整体代入法”求代数式的值. 3.(2023秋·上海浦东新·七年级校考期中)已知3x =时,代数式38ax bx ++的值是12;那么当3x =−时,代数式35ax bx +−的值为__________.【答案】9−【分析】将3x =代入38ax bx ++,求出273a b +值,将3x =−,以及273a b +值,代入35ax bx +−进行求值即可.【详解】解:∵3x =时,代数式38ax bx ++的值是12,即:273812a b ++=,∴2734a b +=;当3x =−时:()3527352735459ax bx a b a b +−=−−−=−+−=−−=−.故答案为:9−.【点睛】本题考查代数式求值.解题的关键是利用整体思想,代入求值. 4.(2022秋·上海·七年级校考期末)已知231x y +=,那么代数式()()72345x y x y +−−−的值是___________.【答案】7【分析】去括号,合并同类项,再代入求值即可.【详解】解:()()72345x y x y +−−−72345x y x y =+−++465x y =++()2235x y =++231x y += 原式215=⨯+7= 故答案为:7.【点睛】本题考查了整式的化简和整体代入法求值;解题的关键是去括号,根据已知构造相同整式.【答案】5/0.8【分析】由题意易得2x y =,然后代入求解即可.【详解】解:由2x y =可知2x y =,∴2224365x y y y x y y y ++==−−; 故答案为45.【点睛】本题主要考查代数式的值,解题的关键是得到2x y =.6.(2022秋·上海·七年级校考期中)已知210a a −−=,则代数式326a a −+=_____.【答案】7【分析】根据已知条件得到2a a −=1,再把原式变形,代入即可求解.【详解】解:∵210a a −−=,∴2a a −=1,326a a −+32226a a a a −+−+=()2226a a a a a −+−+=226a a a +−+=26a a −+= 16+=7=.故答案为:7.【点睛】此题主要考查代数式求值以及利用提取公因式求式子的值,将式子转化为32226a a a a −+−+,以及利用()322a a a a a −−=是解题的关键.【答案】36−【分析】由相伴数的定义分别计算[]a ,[]b 的值,再计算3b a −=−,最后利用整体思想解题.【详解】根据题意得,111a b −=++,则3b a −=−,()()()3333327936b a a b b a b a −−+=−+−=−−=−.故答案为:36−.【点睛】本题考查新定义计算、已知式子的值,求代数式的值,理解题意是解题关键.【答案】5或11−/11−或5【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以得到0a b +=,1cd =,2m =±,然后代入所求式子计算即可.【详解】解:依题意0a b +=,1cd =,||2m =,2m ∴=±,当2m =时,22043423152121a bm cd m m ++−=+⨯−⨯=++;当2m =−时,()20434231112121a bm cd m m ++−=+⨯−−⨯=−++;故答案为:5或11−.【点睛】本题考查代数式求值,绝对值,相反数和倒数的性质,解答本题的关键是求出0a b +=,1cd =,2m =±.三、解答题【答案】(1)b −(2)-2,2(3)-9【分析】(1)根据每行、每列的3个代数式的和相等,可得a 与b 的关系;(2)根据第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值;(3)根据“等和格”的定义可得方程,分别进行整理代入可求出b 的值.【详解】(1)解:如图2,根据题意得232−+=+a a b a ,33a b ∴−=,解得a b =−,故答案为:b −;(2)解:如图3,可得2322283a a b a a a b b −+=+⎧⎨−+=−+⎩,解得22a b =−⎧⎨=⎩,故答案为:2,2−;(3)解:如图4,可得2222223a a a a a a a ++−=++−,∴23a a +=,又22223322a a a b a a a a ++−=++++,2223b a a ∴=−−−,∴22()32339b a a =−+−=−⨯−=−,故答案为:9−.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等”,得出等式求解.10.(2022秋·上海·七年级专题练习)在某班小组学习的过程中,同学们碰到了这样的问题:“已知【答案】(1)7 (2)34【分析】(1)由已知115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,可得111111536a b b c c a +++++=++,即可得出答案;(2)由已知216m m +=,可得16m m +=,m 4+1m 2=m 2+1m 2=(m +1m)2−2,即可得出答案.【解答】解:(1)115a b ab a b +=+=,113b c bc b c +=+=,116c a ca c a +=+=,∴111111536a b b c c a +++++=++, ∴22214a b c ++=,∴1a+1b+1c=ab+bc+ca abc=7;(2)216m m +=,∴16m m +=,422211m m m m +=+,∴m 2+1m 2=(m +1m)2−2=62−2=34.∴42134m m +=.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.11.(2022秋·上海·七年级专题练习)已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位. (1)根据题意,m =________.【答案】(1)2或-2;(2)5.【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可. 【详解】解:(1)∵m 到原点距离2个单位, ∴m=2或-2, 故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2, 当m=2时,()202022a b m xy +++−=22+0+(-1)2020=4+1=5; 当m=-2时,()202022a b m xy +++−=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++−的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 四、程序流程图与代数式的值 一、单选题【答案】C【分析】输入4,计算234x x −=,判断40>,输出4,输入2,计算232x x −=−,判断20−<,输出12,最后计算142+的和即可.【详解】解:输入4,计算22343416124x x −=−⨯=−=,40>∴输出4;输入2,计算223232462x x −=−⨯=−=−,20−<计算112x = ∴输出12;19422∴+=故选:C .【点睛】本题考查已知字母的值,求整式的值,是基础考点,掌握相关知识是解题关键.2.(2020秋·上海·七年级上海市进才中学北校校考阶段练习)如图,是一个运算程序的示意图,如果开始输入的x 的值为81,那么第2020次输出的结果为( )A .3B .27C .81D .1【答案】Dx ,输出27;输入27,输出9;输入9,输出3;输入3,输出1;输入1,输出3L 直至出现循环规律,分奇数次与偶数次输入,据此解题.【详解】根据题意,第1次输入x 的值为81,1x ≠,计算11=81=2733x ⨯,输出27,第2次输入x 的值为27,1x ≠,计算11=27=933x ⨯,输出9, 第3次输入x 的值为9,1x ≠,计算11=9=333x ⨯,输出3, 第4次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第5次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,第6次输入x 的值为3,1x ≠,计算11=3=133x ⨯,输出1,第7次输入x 的值为1,=1x ,计算+2=1+2=3x ,输出3,L从第3次开始,第奇数次输出的结果为3,第偶数次输出的结果为1,2020>3且为偶数,第2020次输出的结果为1,故选:D.【点睛】本题考查代数式求值,是重要考点,难度较易,掌握相关知识是解题关键.3.(2019秋·上海杨浦·七年级校考阶段练习)在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【答案】D【详解】A.把x=4代入得:42=2,把x=2代入得:22=1,本选项不合题意;B.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项不合题意;C.把x=1代入得:3+1=4,把x=4代入得:42=2,本选项不合题意;D.把x=2代入得:22=1,把x=1代入得:3+1=4,本选项符合题意,故选:D.【过关检测】一.选择题(共6小题)1.(2020秋•虹口区校级期末)当x=3,y=2时,代数式的值是()A.B.2C.0D.3【分析】当x=3,y=2时,直接代入代数式即可得到结果.【解答】解:==.故选:A.【点评】此题较简单,代入时细心即可.2.(2020秋•浦东新区校级月考)如图,是一个运算程序的示意图,若开始输入x的值为81,则第2020次输出的结果是()A.3B.27C.9D.1【分析】分别求出第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环.【解答】解:由题可知,第一次输出27,第二次输出9,第三次输出3,第四次输出1,第五次输出3,第六次输出1,……由此可得,从第三次开始,每两次一个循环,∵(2020﹣2)÷2=1009,∴第2020次输出结果与第4次输出结果一样,∴第2020次输出的结果为1,故选:D.【点评】本题考查数字的变化规律;能够通过所给例子,找到循环规律是解题的关键.3.(2022秋•闵行区期中)当x=2时,整式ax3+bx﹣1的值等于﹣19,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.19B.﹣19C.17D.﹣17【分析】将x=2代入整式,使其值为﹣19,列出关系式,把x=﹣2代入整式,变形后将得出的关系式代入计算即可求出值.【解答】解:∵当x=2时,整式ax3+bx﹣1的值为﹣19,∴8a+2b﹣1=﹣19,即8a+2b=﹣18,则当x=﹣2时,原式=﹣8a﹣2b﹣1=18﹣1=17.故选:C.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键.4.(2019秋•浦东新区期末)已知:(2x+1)3=ax3+bx2+cx+d,那么代数式﹣a+b﹣c+d的值是()A.﹣1B.1C.27D.﹣27【分析】在(2x+1)3=ax3+bx2+cx+d中,令x=﹣1,求出代数式﹣a+b﹣c+d的值是多少即可.【解答】解:当x=﹣1时,﹣a+b﹣c+d=(﹣2+1)3=﹣1故选:A.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.(2019秋•乐亭县期末)当x=﹣1时,3x2+9x﹣1的值为()A.0B.﹣7C.﹣9D.3【分析】把x=﹣1代入3x2+9x﹣1,转化为有理数的混合运算,计算求值即可.【解答】解:把x=﹣1代入3x2+9x﹣1得:原式=3×(﹣1)2+9×(﹣1)﹣1=3﹣9﹣1=﹣7,故选:B.【点评】本题考查了代数式求值,正确掌握代入法和有理数的混合运算是解题的关键.6.(2019秋•浦东新区期中)如果﹣x=1,那么3x2﹣3x﹣2的值是()A.1B.﹣1C.2D.﹣2【分析】把x2﹣x=1整体代入原式=3(x2﹣x)﹣2,计算可得.【解答】解:∵x2﹣x=1,∴3x2﹣3x﹣2=3(x2﹣x)﹣2=3×1﹣2=1.故选:A.【点评】本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.二.填空题(共12小题)7.(2022秋•静安区月考)当a=﹣2时,代数式3a(a+1)的值等于.【分析】直接把a=﹣2代入代数式中进行计算即可.【解答】解:原式=3×(﹣2)×(﹣2+1)=﹣6×(﹣1)=6.故答案为:6.【点评】本题考查了代数式求值:把字母的值代入代数式进行计算得到对应的代数式的值.8.(2022秋•闵行区校级期中)当x=﹣时,代数式x2+1的值是.【分析】把x=﹣代入原式计算即可.【解答】解:当x=﹣时,原式=+1=1,故答案为:1.【点评】本题考查了代数式的求值,掌握用数值代替代数式里的字母进行计算,正确计算结果是解题关键.9.(2022•闵行区校级开学)已知x﹣5=y+4=z+1,代数式(y﹣x)2+(z﹣x)2+(y﹣z)2的值为.【分析】先加减法求出z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,进而代入解答即可.【解答】解:∵x﹣5=y+4=z+1,∴z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3,把z﹣x=﹣6,y﹣x=﹣9,y﹣z=﹣3代入(y﹣x)2+(z﹣x)2+(y﹣z)2=81+36+9=126,故答案为:126.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.10.(2022秋•嘉定区校级期末)如果a﹣3b=4,那么2a﹣6b﹣1的值是.【分析】首先把2a﹣6b﹣1化成2(a﹣3b)﹣1,然后把a﹣3b=4代入化简后的算式计算即可.【解答】解:∵a﹣3b=4,∴2a﹣6b﹣1=2(a﹣3b)﹣1=2×4﹣1=8﹣1=7.故答案为:7.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.(2022秋•宝山区期末)当a=3时,代数式﹣2a2+a的值是.【分析】未知数的值已给出,直接代入求解.【解答】解:根据题意,直接将a=3代入,得(﹣2)×32+3=﹣18+3=﹣15.故答案为:﹣15.【点评】本题考查了用代入法求解,掌握代入法求解的方法是关键.12.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.【分析】先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.【解答】解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.【点评】本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.13.(2022•闵行区校级开学)当x时代数式ax2+bx﹣3的值为5,当x=1时代数式(2ax2+bx﹣5)4的值为.【分析】直接把x=2代入进而得出4a+2b=8,再把x=1代入求出答案.【解答】解:∵当x=2时,代数式ax2+bx﹣3的值为5,∴4a+2b=8,∴2a+b=4,∴当x=1时,代数式(2ax2+bx﹣5)4=(4﹣5)4=1.故答案为:1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.14.(2022秋•宝山区校级月考)当a=﹣2时,﹣a2﹣2a+1=.【分析】把a的值代入代数式进行计算即可得解.【解答】解:当a=﹣2时,﹣a2﹣2a+1=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1.故答案为:1.【点评】本题考查了代数式求值,比较简单,把a的值代入代数式进行计算即可.15.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例=,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.【分析】根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.【解答】解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.【点评】本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.16.(2022秋•长宁区校级期中)当x=3时,代数式2x3+3x2﹣x+3的值是.【分析】将x=3代入运算即可.【解答】解:当x=3时,原式=2×33+3×32﹣3+3=2×27+3×9﹣3+3=54+27=81,故答案为:81.【点评】本题主要考查了求代数式的值,正确利用有理数的混合运算的法则运算是解题的关键.17.(2022秋•青浦区校级期中)当x=﹣2时,代数式的值为.【分析】将x=﹣2代入代数式,按照代数式要求的运算顺序和运算法则计算可得.【解答】解:当x=﹣2时,==3,故答案为:3.【点评】本题考查了代数式的求值,属于基础题,只要将已知条件代入求值即可.18.(2022秋•闵行区期中)如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.【分析】根据﹣2a2+3b+8的值为1,可得:﹣2a2+3b+8=1,所以﹣2a2+3b=﹣7,据此求出代数式4a2﹣6b+2的值等于多少即可.【解答】解:∵﹣2a2+3b+8的值为1,∴﹣2a2+3b+8=1,∴﹣2a2+3b=﹣7,∴4a2﹣6b+2=﹣2(﹣2a2+3b)+2=﹣2×(﹣7)+2=14+2=16故答案为:16.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三.解答题(共8小题)19.(2021秋•松江区期中)如图所示,已知正方形的边长为2a.(1)用含有a的代数式表示阴影部分的面积;(2)当a=2时,求阴影部分的面积.(保留π)【分析】(1)先表示出半圆的面积,再表示出大三角形的面积,最后用正方形的面积减去半圆和大三角形的面积即可得出阴影部分的面积;(2)把a=2代入(1)中的结论,即可得出答案.【解答】解:(1)由题意得,半圆的面积为=,大三角形的面积为=a2,∵正方形的面积为2a×2a=4a2,∴阴影部分的面积为==(3﹣)a2;(2)当a=2时,(3﹣)a2=(3﹣)×22=12﹣2π,∴阴影部分的面积为12﹣2π.【点评】本题主要考查的是列代数式求值的问题,关键是要牢记圆,三角形和正方形的面积公式.20.(2021秋•浦东新区期中)某中学有一块长30m,宽20m的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x米.(1)请用含x的式子表示空白部分长方形的面积;(要化简)(2)当花带宽2米时,空白部分长方形面积能超过400m2吗?请说明理由.【分析】(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.得空白部分长方形的面积;(2)通过有理数的混合运算得结果与400进行比较.【解答】解:(1)空白部分长方形的两条边长分别是(30﹣2x)m,(20﹣x)m.白部分长方形的面积:(30﹣2x)(20﹣x)=2x2﹣70x+600.(2)答:超过.∵2×22﹣70×2+600=468(m2),∵468>400,∴空白部分长方形面积能超过400 m2.【点评】本题考查有代数式表示实际问题,掌握用代数式表示长方形的边长,读懂题意列出代数式是解决此题关键.21.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知=5,=3,=6,求的值”.根据已知条件中式子的特点,同学们会想起+=,于是问题可转化为:“已知=+=5,=+=3,=+=6,求=++的值”,这样解答就方便了.(1)通过阅读,试求的值;(2)利用上述解题思路请你解决以下问题:已知=6,求的值.【分析】(1)由已知=+=5,=+=3,=+=6,可得+++++=5+3+6,即可得出答案;(2)由已知=6,可得m+=6,=(m+)2﹣2,即可得出答案.【解答】解:(1)∵=+=5,=+=3,=+=6,∴+++++=5+3+6,∴,∴++==7;(2)∵=6,∴,,∴m2+=(m)2﹣2=62﹣2=34.∴.【点评】本题主要考查了代数式求值,合理应运题目所给条件是解决本题的关键.22.(2021秋•金山区期中)如图,正方形ABCD的边长等于a,正方形BEFG的边长等于b(a>b),其中,点G、E分别在AB、BC上.(1)用a、b的代数式表示图中的阴影部分面积;(2)当a=5,b=2时,求图中的阴影部分面积.【分析】(1)用正方形ABCD的面积减去正方形BEFG的面积再减去直角三角形AGD与在直角三角形DCE的和即可得出结论;(2)将a=5,b=2代入(1)中的代数式计算即可.【解答】解:S阴影=S正方形ABCD﹣S正方形BEFG﹣(S△ADG+S△DEC)==ab﹣b2.(2)当a=5,b=2时,ab﹣b2=5×2﹣4=6.【点评】本题主要考查了列代数式,求代数式的值,正确使用图形的面积公式是解题的关键.23.(2021秋•黄浦区期中)老王想靠着一面足够长的旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式知识点和题型
一、代数式的概念(非常重要)
代数式:没有等号、没有不等号。

整式:首先必须是代数式,其次,分母中无字母,根号下无字母。

【字母的确定】
①如果代数式中既有x ,y ,也有其他字母,一般只把x ,y 当做字母,其他的(比如a 、b 、c 、d )当做数字。

②如果代数式中没有x ,y ,只有a 、b 、c 、d 等,这些都当做字母来看待。

③题目中明确说是关于那几个字母的代数式。

单项式:没有涉及字母的加减运算,或者合并同类项之后,没有涉及字母的加减运算。

比如:3ab 、2x 、2x -
多项式:有涉及字母的加减运算
比如:253
a b +、34y -、27x y +
单项式次数:所有字母的次数和。

单项式系数:单项式中的数字部分(包含正负号)。

多项式次数:多项式中次数最高的单项式的次数。

多项式项数:多项式中包含的单项式个数。

同类项:字母相同,同一个字母的次数也相同。

(合并同类项)
二、题型
1、列代数式(非常重要)
利润问题:利润、价格、打折
数字位数问题:数字×位数值(例如:1234 = 1×1000+2×100+3×10+4×1)
面积体积问题:面积公式(圆、三角形、长方形、正方形、梯形),体积公式
分段收费问题:
2、同类项判断:已知两个单项式是同类型,计算参数值
【方法:】
根据同类项定义,写出等式。

(字母相同,同一个字母的次数也相同。

)
例如:已知213
3m a
b +和425n a b +-是同类项,
写出214m +=,23n +=,计算即可 (如果题目中说,两个单项式的和还是单项式,或者两个单项式可以合并成一项,本质上还是在说,这两个单项式是同类项,解题方法完全一样)
几次几项式判断,方法类似。

缺项计算:先化简、缺哪一项,哪一项的系数值为零。

3、整式运算
①合并同类项和加减运算。

去括号运算,括号前面是负号,去括号之后,每个数都变号。

②先化简再求值。

(非常重要)
例如:先化简,再求值:22(69)2(4 4.5)a ab a ab --++++,其中|1|0a +=
【方法:】
无论题目中是否明确说,先化简再求值。

在带入数字进行计算之前,必须先将代数式化简成最简形式,即:不含同类型的形式。

然后再将数字值带入化简之后的代数式中,算出结果。

③抄错问题。

题目中,两个代数式A (未知)和B (已知),原来应该是计算A +B 。

但是,学生粗心,抄成了A −B ,这样算出来的结果是C (已知),问题目的正确结果是多少?
【方法:】
题目的正确结果是A +B = (A −B )+2B = C +2B
即:
把“−”错看成“+”,就错误结果“−”两倍的B 得到正确结果。

把“+”错看成“−”,就错误结果“+”两倍的B 得到正确结果。

④整体带入计算(非常重要)
已知一个多项式的值,求另一个多项式的值。

例如:已知22310a
a -+=,求2465a a -- 【方法:整体带入】 把22310a a -+=,写成2231a a -=-
在2465a a --中,通过提取公因数来凑223a a -,然后再将2231a a -=-带入计算 224652(23)52(1)57a a a a --=--=⨯--=-
例如:已知22310a a -+=,求324895a a a --+
2231a a -=-
323222222248546252(23)252(1)2523(23)1
a a a a a a a a a a a a a a a a a a a -+=--+=--+=⨯--+=-+=--=
⑤赋值计算
已知55432543210(32)x a x a x a x a x a x a -=+++++是关于x 的恒等式。

求:
(1)0a ;
(2)543210a a a a a a +++++
(3)543210a a a a a a -+-+-+
【方法】
直接带特殊值,
(1)带入x = 0
(2)带入x = 1
(3)带入x = −1
此类题目,都是直接带入特殊值,并且基本都是带入1、−1、0
4、找规律
观察一组数字,或者一组图形,找出规律,写出第10项(或其他的第几项),写出第n 项。

①等差数列:前后两个数的差都一样。

例如:1
2,3,4,5,6,7,8,,...;1,3,5,7,9,11,13,...;3,6,9,12,15,18,...
②分数找规律
【常见规律】
分母成等差数列;
分子成等差数列;
分母分别是:12⨯、23⨯、34⨯、4 5....⨯,。

相关文档
最新文档