19.1.1变量与函数

合集下载

北师大版初二数学上册19.1.1变量与函数

北师大版初二数学上册19.1.1变量与函数
(1)请同学们根s 据题意填写下表:
(2)在以上这个/k过程中,变化的是_______,
不变化的量是m______.
时间t
速度
(3)试用含t的式子表示s 是_______. s=60t
新课 讲解 2、每张电影票的售价为10元,如果第一场售出150张票,
第二场售出205张票,第三场售出310 张票, (1)第一场电影的票房收入 _1_5_0_0_元;人教版 八年源自 下册19.1.1 变量与函数
课件制作 乐东县千家中学 周克标
新课 引入
列式表示: (1)汽车以60 km/h的速度匀速行驶,行驶时间为t h, 用式子表示路程s ;
S=60t
(2)电影票的售价为10元/张,设一场电影售出张x票, 用式子表示票房收入y元.若第一场售出150张票,则其 票房收入为多少元?第二场售出205张,其票房收入为 多少元?
训练
1、若矩形的宽为xcm,面 积36 cm 2,则这个矩形的长y 随x的变化而变化,其中常量是__3_6_,变量是__x_,__y_. 2、分别指出下列各式中的常量与变量.
(1)圆的面积公式 S r2 ;
常量:π ;变量:S、r
(2)正方形的周长 l 4a ;
常量:4;变量:l、a (3)大米的单价为2.50元/千克,则购买的大米 的数量 x(kg)与金额y的关系为y=2.5x.
解:常量是6,变量是h和S.
新课
讲解 4、用10 m长的绳子围一个矩形.当矩形的一边长x分别
为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多 少?y的值随x的值的变化而变化吗?
当x为3m时,y为2m; 当x为3.5m时,y为1.5m; 当x为4m时,y为1m; 当x为4.5m时,y为0.5m; y的值随x的值得变化而变化。

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?

19.1.1-变量与函数-教案

19.1.1-变量与函数-教案

19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。

2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。

方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。

本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。

3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。

类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。

另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。

19.1.1 变量与函数(第2课时)课件

19.1.1 变量与函数(第2课时)课件

(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
根据刚才问题的思考,你认为函数的自变量可 以取任意值吗?
在实际问题中,函数的自变量取值范围往往是 有限制的,在限制的范围内,函数才有实际意义; 超出这个范围,函数没有实际意义,我们把这种自 变量可以取的数值范围叫函数的自变量取值范围.
例3:下列函数中自变量x的取值范围是什么?
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
自变量的取值范围的求法
3.油箱中有油30L,油从管道中匀速流出,1h流完,则
油箱中剩余油量Q(L)与流出时间t(min)之间的
函数关系式是
Q
30
1 2
t
,自变量t的取值范围
是 0 t 60 .
4.某市乘坐出租车收费标准如下:乘坐里程不超 过3千米,收费8元;超过3千米时,超过3千米的 部分,每千米加收1.8元.设乘坐出租车的里程为x(公 里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x ≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;
解:当0<x ≤3时,y=8; 当x>3时,y=8+1.8(x-3)=1.8x+2.6. 当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.

人教八年级数学下册-变量与函数(附习题)

人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究二
函数
阅读P73思考,回答下列问题: ( 1 )在心电图中,对于x的每一个确定的值,y都有唯一确 定的值与其对应吗? ( 2 )对于表中每一个确定的年份x,都对应着一个确定的人 口数y吗?
(3)自学检测中对于x/t/r/x的每一个确定的值, y/w/C/y都有唯一确定的值与其对应吗?
(4)试说说自学检测中什么是函数、函数值、自变量、函
通过自学你有 什么收获或者疑问 呢?
自学检测1(P71的练习)
填写下列表格,并指出下列问题中的变量和常量
探究一
变量与常量
(1)问题(1)-(4)中是否各有两 个变量? (2)同一个问题中的变量之间有什 么联系
自学指导2
带着下列问题看课本P73-P74的内容,对重点的内容进 行圈点勾画,5分钟后尝试独立完成自学检测部分。
学以致用
一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L) 随行驶里程x(km)的增加而减 少,平均耗油量为0.1L/km. (1)写出表示y与x的函数关系的式子; (2)指出自变量x的取值范围; (3)汽车行驶200km时,油箱中还有多少汽油?
课堂小结
(1)变量:在一个变化过程中,数值发生变化的量 常量:在一个变化过程中,数值始终不变的量为常 量
(1)看课本P73-P74,划出并理解自变量,函数, 函数值以及函数解析式的概念.
通过自学你有 什么收获或者疑问 呢?
自学检测2
试写出下列函数解析式 (1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支 出情况,记某户月用水量为x t,月应交水费为y元。 (2)某地手机通话费为0.2元/min,李明在手机话费卡中存入 30元,记此后他的手机通话时间为t min,话费卡中的余额为w元 。 (3)水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周 长为C,圆周率(圆周长与直径之比)为π。 (4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个
19.1.1 变量与函数
学习目标
1.理解变量和常量的概念,能准确指 出实例中的变量和常量。
2.理解函数的相关概念,能列出函数 解析式。
Байду номын сангаас
自学指导1
带着下列问题看课本P71-P72的内容,对重点的内容进 行圈点勾画,5分钟后尝试独立完成自学检测部分。
(1)看课本P71-P72,划出并理解变量及常量的概 念.
(2)如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就 说x是自变量,y是x的函数。
请完成当堂训练反馈!
相关文档
最新文档