概率论练习题第二章补充题1答案

合集下载

概率论与数理统计第二章补充题及答案

概率论与数理统计第二章补充题及答案

《概率论与数理统计》第二单元补充题一、 填空题:1、函数()f x 为连续型随机变量X 的概率密度函数的充要条件是12),)2、随机变量X 的分布律为5110321210PX ,则2X 的分布律为__________,2X +1的分布律为__________3、设离散型随机变量X 的分布律为 ,2,1,21}{===k k X P k,则随机变量X Y 2sin π=的分布律为4、设离散型随机变量X 的分布律为 k =1, 2, 3,…,则c= .5、设随机变量X 的概率密度函数为,则P (0<X <3π/4)= .6、随机变量)31,10(~b X ,则{}0P X ==,{}1P X ≥=7、随机变量X 的分布律为{}1,2,3,4,5)5a P X k k ===,(, 则a =,(2.5)F =8、随机变量X 服从(0,)b 上的均匀分布,且{}1133P X <<=,则b =9、已知随机变量X 服从参数为2的泊松分布,则{}1P X ==,{}1P X ≤=二、选择题:1、下列命题正确的是 。

( A )连续型随机变量的密度函数是连续函数 ( B )连续型随机变量的密度函数()0()1f x f x ≤≤满足 ( C )连续型随机变量的分布函数是连续函数 ( D )两个概率密度函数的乘积仍是密度函数2、设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,则为使12()()()F x aF x bF x =-是某随机变量的分布函数,下列结果正确的是________( A ) 32,55a b ==- ( B ) 22,33a b ==- ( C ) 13,22a b =-= ( D ) 13,22a b =-=-三、计算题1、已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P{ξ<1|ξ≠0}.2、已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P{ξ≤0.5}; P(ξ=0.5);F(x).3、设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Axx x F 求:(1)、系数A; (2)、P (0.3<ξ<0.7); (3)、 概率密度φ(x ).4、设随机变量X 的密度函数⎩⎨⎧<<=其他0102)(x x x f 用Y 表示对X 的三次独立重复观察中事件}21{≥X 出现的次数,求(1)P {Y =2};(2)P {Y ≥1}.5、已知离散型随机变量X 的概率分布为 ,2,1,32}{===n n X P n ,求随机变量X Y )1(1-+=的分布律和分布函数.6、(1)、已知随机变量X 的概率密度函数为1(),2xX f x e x -=-∞<<+∞,求X 的分布函数。

概率论第二章习题答案

概率论第二章习题答案

概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。

求X的分布律。

解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。

由于骰子是公正的,每个面出现的概率都是1/6。

因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。

求Y的概率密度函数。

解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。

解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。

解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。

求X的分布律和期望值。

解答:X服从参数为n和p的二项分布。

其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。

概率论与数理统计第二章课后习题及参考答案

概率论与数理统计第二章课后习题及参考答案
{ X k} A1 A2 Ak 1 Ak ,
于是
P ( X k ) p (1 p ) k 1 ,
所以 X 的分布律为 P ( X k ) p (1 p ) k 1 , k 1,2, . (2) Y 的所有可能取值为 0,1,2,…, k ,…,于是
Y 的分布律为 P (Y k ) p (1 p ) k 1 , k 0,1,2, .
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 , X 的分布律为 X P
1000000 0.16
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
由题知, { X k} A B , AB ,则
P ( A) p k 1 (1 p ) , P ( B ) (1 p ) k 1 p , P ( X k ) P ( A B ) P ( A) P ( B ) p k 1 (1 p ) (1 p ) k 1 p ,

x 0, 0, 2 2x x F ( x ) 2 ,0 x a , . a a x a. 1, a a 1 1 (3) P ( X a ) F (a ) F ( ) 1 (1 ) . 2 2 4 4
12.设随机变量 X 在 [2,6] 上服从均匀分布,现对 X 进行三次独立观察,试求至 少有两次观测值大于 3 的概率. 解:由题意知

概率论第二章习题参考解答1

概率论第二章习题参考解答1

概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下:5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4. 不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P P8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.010)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为12. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x e x F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布:得的边缘分布如下表所示:当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: 试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p23. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下即η的边缘分布率如下表所示24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:26. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:28. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么?: , 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.=p i (1)p j (2), 算得联合分布律如下表所示 根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06η的分布.解: 因周长=2πR , 面积=πR , 因此当半径R 取值10,11,12,13时, ξ的取值为62.83, 69.12,32. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: 则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, 35. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P{ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示36. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xxee x F x 212)()(+⋅='=πϕηη。

概率论与数理统计答案第二章

概率论与数理统计答案第二章

= 1 e 1.2 e 1.6 (5)P{恰好 2.5 分钟}= P (X=2.5)=0
0, x 1, 18.[十七] 设随机变量 X 的分布函数为 FX ( x) ln x,1 x e, , 1, x e.
求(1)P (X<2), P {0<X≤3}, P (2<X< 5 2 ); (2)求概率密度 fX (x). 解: (1)P (X≤2)=FX (2)= ln2, P (0<X≤3)= FX (3)-FX (0)=1,
第二章
随机变量及其分布
1.[一] 一袋中有 5 只乒乓球,编号为 1、2、3、4、5,在其中同时取三只,以 X 表示取出的三只球中的最大号码,写出随机变量 X 的分布律 解:X 可以取值 3,4,5,分布律为
2 1 C2 3 C5
P ( X 3) P (一球为3号, 两球为 1,2号)
P( X 1) 1 P( X 0) 1 0.59049 0.40951
[五] 一房间有 3 扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的 窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。 假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。 (1)以 X 表示鸟为了飞出房间试飞的次数,求 X 的分布律。 (2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。 以 Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求 Y 的分布 律。 (3)求试飞次数 X 小于 Y 的概率;求试飞次数 Y 小于 X 的概率。
38 81
8.[八] 甲、乙二人投篮,投中的概率各为 0.6, 0.7,令各投三次。求 (1)二人投中次数相等的概率。 记 X 表甲三次投篮中投中的次数 Y 表乙三次投篮中投中的次数 由于甲、乙每次投篮独立,且彼此投篮也独立。 P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3) = P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3)

概率论与数理统计(经管类)第二章课后习题答案

概率论与数理统计(经管类)第二章课后习题答案
1−
(2)只有一次误差绝对值不超过30m的概率为:
习题2.4
1.设X的分布律为
X
-2
0
2
3
P
0.2
0.2
0.3
0.3
求(1) 的分布律.
解: (1) 的可能取值为5,1,-3,-5.
由于
从而 的分布律为:
X
-5
-3
1
5
0.3
0.3
0.2
0.2
(2) 的可能取值为0,2,3.
由于
从而 的分布律为:
X
0
P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))
P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))
P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)
P(X=8)=5*(1/36)=5/36
P(X=9)=4*(1/36)=1/9

解: 注:
习题2.3
1.设随机变量X的概率密度为:
求: (1)常数a; (2) ; (3)X的分布函数F(x).
解:
(1)由概率密度的性质
A=
(2)
一些常用特殊角的三角函数值
正弦
余弦
正切
余切
0
0
1
0
不存在
π/6
1/2
√3/2
√3/3
√3
π/4
√2/2
√2/2
1
1
π/3
√3/2
1/2
√3
√3/3
π/2
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,

概率论第二章练习答案

概率论第二章练习答案

《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。

2. 设连续型随机变量的概率密度函数为:ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。

3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕ 0b ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = ,b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

2100xx≥100 ∴ϕ(x)=0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。

概率论第二章习题解答(全)

概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。

若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。

解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。

在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。

解(1)在袋中同时取3个球,最大的号码是3,4,5。

每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。

因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档