土壤中天然放射性物质检测

合集下载

民用建筑土壤氡浓度检测要求

民用建筑土壤氡浓度检测要求

民用建筑土壤氡浓度检测要求1.引言1.1 概述文章概述:民用建筑土壤氡浓度检测是指对民用建筑场地土壤中氡的浓度进行监测和评估的一项重要工作。

氡是一种无色、无臭的放射性气体,是自然界常见的放射性物质之一。

在自然界中,氡的含量与土壤类型、地质构造等因素密切相关。

然而,高浓度的氡会对人体健康产生不良影响,尤其是对长期居住在民用建筑内的居民来说,其风险更加不可忽视。

为了保障人们的健康和生活环境的安全性,各国对民用建筑土壤氡浓度进行监测并制定了相应的检测要求。

这些要求通常包括对土壤氡浓度的限制值、检测方法和周期等内容。

通过合理的检测要求,可以及时发现高氡浓度的场地,并采取相应的措施进行改善和处理,保障民众的生活环境质量。

本篇长文将重点探讨民用建筑土壤氡浓度检测的必要性以及具体的检测要求。

同时,还将介绍土壤氡浓度的背景知识,包括氡的来源、运移规律以及对人体健康的危害等。

通过深入分析和研究,旨在为相关人员提供科学、合理的土壤氡浓度检测要求,为保障民众的生活环境健康提供参考和指导。

最后,本文将总结结论,明确土壤氡浓度检测要求的必要性和具体内容,为相关决策提供科学依据。

文章结构部分的内容可以如下编写:1.2 文章结构本文共分为引言、正文和结论三个部分。

引言部分主要对本文的主题进行概述,包括土壤氡浓度检测的背景和重要性,以及本文的目的。

正文部分首先介绍土壤氡浓度的背景知识,包括氡的特性、氡的来源以及氡与人体健康的关系。

然后重点探讨民用建筑土壤氡浓度检测的重要性,包括对人体健康的影响、环境保护的意义以及相关法律法规的要求。

结论部分总结了检测要求的必要性和具体内容。

首先强调了进行土壤氡浓度检测的必要性,包括为人们提供健康的居住环境、预防土壤污染的发生等方面的重要意义。

然后具体列举了民用建筑土壤氡浓度检测的具体要求,包括检测的目标和标准、检测的方法和步骤、检测结果的解读等。

通过以上结构的设计,本文将全面介绍民用建筑土壤氡浓度检测要求的相关知识,旨在提高人们的认识和关注度,促进土壤氡浓度检测工作的开展。

土壤氡检测方案(四)

土壤氡检测方案(四)

土壤氡检测方案实施背景:土壤氡检测是为了评估土壤中氡气浓度的高低,以及其对人体健康的潜在影响。

氡是一种天然放射性气体,由于其具有放射性,长期暴露在高浓度的氡气环境中可能对人体健康造成危害,特别是对呼吸系统和肺部。

因此,进行土壤氡检测对于了解土壤环境的辐射水平以及采取相应的防护措施具有重要意义。

工作原理:土壤氡检测的工作原理主要是通过测量土壤中氡气的浓度来评估其辐射水平。

常用的方法是利用氡的衰变产物氡子体进行测量。

具体步骤包括收集土壤样本,将样本中的氡气释放出来,然后通过氡子体的测量来计算出土壤中氡气的浓度。

实施计划步骤:1.确定检测目标:明确需要检测的土壤样本范围和数量。

2.土壤样本采集:根据检测目标,在不同地点采集土壤样本,并确保样本的代表性和可比性。

3.氡气释放:将采集的土壤样本进行处理,将土壤中的氡气释放出来,以便后续的测量。

4.氡子体测量:利用合适的仪器设备对氡子体进行测量,得出土壤中氡气的浓度。

5.数据分析和评估:对测量结果进行数据分析和评估,得出土壤中氡气的高低水平,并进行风险评估。

适用范围:土壤氡检测适用于各类土壤环境,包括农田、工业区、居民区等。

特别是对于那些可能存在辐射源的土壤环境,如核电站周边、放射性废物处理场等,进行土壤氡检测更加重要。

创新要点:1.采用氡子体测量方法:通过测量氡子体来评估土壤中氡气的浓度,相比传统的氡气测量方法更加准确和可靠。

2.采样点的选择:在确定采样点时,考虑到土壤的类型、地质背景、环境特征等因素,确保采样点的代表性和可比性。

预期效果:通过土壤氡检测,可以评估土壤中氡气的高低水平,及时发现存在辐射风险的土壤环境,采取相应的防护措施,保护人体健康。

达到收益:1.保护人体健康:及时发现存在辐射风险的土壤环境,采取防护措施,减少人体健康受到的伤害。

2.提高环境质量:通过对土壤氡浓度的评估,可以及时发现和解决土壤环境中的辐射污染问题,提高环境质量。

优缺点:优点:1.可靠性高:采用氡子体测量方法,测量结果更加准确可靠。

土壤氡检测报告

土壤氡检测报告

土壤氡检测报告一、检测目的本次土壤氡检测旨在评估土壤中氡气的浓度,为土壤环境的评估和管理提供科学依据。

二、检测方法本次土壤氡检测采用以下方法:1. 氡检测仪器使用专业的氡检测仪器,如氡检测仪、氡子仪等,对土壤样品进行检测。

2. 样品采集在检测前,按照一定的采样规范,合理选择代表性样本。

采样地点应覆盖检测区域的不同地貌类型和土地利用方式,以获取全面的数据。

3. 检测过程将收集到的土壤样品送往实验室,按照氡检测方法进行测定。

在实验室中,将土壤样品放入氡检测仪器中,测定氡气的浓度。

三、检测结果及分析经过对不同地貌类型和土地利用方式的土壤样品进行检测,得到的氡气浓度数据如下表所示:采样点编号氡气浓度 (Bq/m³)1 1002 803 1204 905 110根据实测数据可知,不同采样点的土壤中氡气的浓度存在一定差异,但整体水平处于安全范围内。

通过对氡气浓度数据的分析,发现采样点3的氡气浓度较高,达到120 Bq/m³。

这可能是由于该采样点位于某种特殊地质环境或土地利用方式导致的。

对于这种情况,需要进一步进行深入调查,并采取相应的环境保护措施。

四、检测结论根据对土壤样品的氡气浓度检测结果,可以得出以下结论:1.整体上,土壤中氡气的浓度处于安全范围内,不会对人类健康和环境造成明显影响。

2.存在个别采样点的氡气浓度较高,需要加强对这些采样点周围环境的调查和环境保护措施,以防止潜在的风险。

五、建议措施为进一步保护环境和人类健康,建议采取以下措施:1.对氡气浓度较高的采样点进行深入调查,了解其背后的原因和影响因素。

2.在高氡气浓度区域,加强土壤、水质和空气等环境监测工作,定期对相关指标进行监测,及时发现和解决问题。

3.加强氡气的宣传和教育,提高公众对氡气和土壤环境监测的认识,增强环境保护意识。

六、总结本次土壤氡检测结果表明,整体上土壤中氡气浓度处于安全范围内,不会对环境和人类健康造成明显威胁。

中国土壤氡概述

中国土壤氡概述

中国土壤氡概述1. 背景土壤氡是一种自然放射性气体,主要来源于地壳中的天然放射性元素,如铀、钍等。

它广泛存在于自然环境中,包括土壤、空气、水等。

土壤氡的浓度受到地质、土壤类型、气候、地下水位等多种因素的影响。

在中国,土壤氡的研究和监测已经引起广泛关注,因为它对人体健康有一定的影响,长时间暴露在高浓度的土壤氡环境中可能会增加患肺癌等疾病的风险。

2. 中国土壤氡分布特征2.1 地域分布中国地域辽阔,土壤氡分布差异显著。

一般来说,南方土壤氡浓度普遍高于北方。

这主要与南方地区地质构造、岩石类型以及气候条件有关。

例如,四川、云南等地区土壤氡浓度较高,而东北、华北等地区土壤氡浓度相对较低。

2.2 地质分布中国地质条件复杂,不同地质背景下土壤氡浓度差异明显。

铀、钍等放射性元素在地壳中分布不均匀,导致土壤氡浓度呈现出地域性差异。

例如,华南地块、西南地块等地区铀、钍含量较高,土壤氡浓度相对较高。

2.3 土壤类型分布不同土壤类型对土壤氡的吸附、释放能力不同,因此土壤氡浓度也存在差异。

一般而言,砂土、黏土等细颗粒土壤对土壤氡的吸附能力较强,土壤氡浓度较低;而石灰岩、花岗岩等岩石风化形成的土壤,氡浓度较高。

3. 土壤氡的来源与迁移规律3.1 土壤氡的来源土壤氡主要来源于地壳中的天然放射性元素,如铀、钍等。

这些元素在地壳中经过放射性衰变,产生氡及其子体气体。

3.2 土壤氡的迁移规律土壤氡在土壤中的迁移受到多种因素影响,包括土壤湿度、温度、气压等。

一般来说,土壤湿度越高,土壤氡迁移速率越快;温度越高,土壤氡释放能力越强;气压越低,土壤氡的迁移速率越快。

4. 土壤氡对人体健康的影响长时间暴露在高浓度的土壤氡环境中,人体可能会吸入更多的放射性物质,增加患肺癌等疾病的风险。

因此,监测和评估土壤氡对人体健康的影响具有重要意义。

5. 结论中国土壤氡分布广泛,受到地质、土壤类型、气候等多种因素的影响。

了解中国土壤氡的分布特征和迁移规律,对保护人体健康、降低土壤氡暴露风险具有重要意义。

土壤氡检测方案

土壤氡检测方案

土壤氡检测方案一、背景介绍氡是一种无色、无味、无臭的放射性气体,属于一种天然的放射性物质。

氡的主要来源是土壤和岩石中的放射性元素,特别是铀和钍的衰变产物。

土壤中的氡释放到大气中后,会进入室内空气中,如果长期暴露在高氡浓度的环境中,可能对人体健康造成潜在的危害。

为了评估土壤中氡的浓度,制定土壤氡检测方案是非常重要的。

本文将详细介绍土壤氡检测方案的目的、方法、样品采集、实验室分析和数据解读等内容。

二、目的本土壤氡检测方案的目的是评估土壤中氡的浓度,为环境保护、健康风险评估和土壤污染管理提供科学依据。

具体目标如下:1. 确定土壤中氡的浓度水平;2. 评估土壤中氡的空间分布特征;3. 分析土壤氡浓度与环境因素之间的关系。

三、方法1. 采样点选择根据研究目的和实际情况,在待调查区域内选择代表性的采样点。

采样点应覆盖不同土壤类型、地质背景和土地利用方式。

同时,应避免选择可能存在干扰因素的地点,如高压电线下、工业区域等。

2. 样品采集在每一个采样点,按照一定的密度和深度采集土壤样品。

常用的采样深度为0-20厘米和20-50厘米。

采样时应使用干净的不锈钢铁铲或者土壤钻,并避免与地下水、植被等接触。

3. 样品处理将采集的土壤样品进行标识,并进行必要的处理。

如有需要,可以将样品进行干燥、研磨等处理,以便于后续实验室分析。

4. 实验室分析将处理后的土壤样品送往实验室进行氡浓度分析。

常用的分析方法包括闪烁探测器法、气相色谱法等。

实验室应具备相关资质和设备,确保分析结果的准确性和可靠性。

5. 数据解读根据实验室分析结果,计算土壤中氡的浓度,并进行数据统计和分析。

可以采用地理信息系统(GIS)等工具,绘制土壤氡浓度的空间分布图,并分析其与环境因素的关系。

四、数据解读根据实验室分析结果,得到土壤中氡的浓度数据。

数据解读的主要内容包括以下几个方面:1. 氡浓度水平:根据土壤样品的氡浓度数据,计算出平均浓度、最大浓度、最小浓度等指标,评估土壤中氡的整体水平。

土壤氡检测方案

土壤氡检测方案

土壤氡检测方案一、背景介绍氡是一种无色、无味、无臭的天然放射性气体,它是地球上最主要的放射性物质之一。

土壤中的氡含量是影响室内氡浓度的重要因素之一,因此对土壤中氡的检测具有重要意义。

本文将介绍一种标准的土壤氡检测方案,以确保测量结果的准确性和可靠性。

二、检测方法本方案采用以下步骤进行土壤氡检测:1. 样品采集:根据检测区域的特点,选择代表性的土壤样品点进行采集。

样品点的选择应覆盖整个检测区域,并考虑到土壤类型、地质构造、地形等因素。

2. 样品处理:将采集的土壤样品送至实验室,进行样品处理。

样品处理包括样品的干燥、研磨和筛分等步骤,以获得均匀的土壤样品。

3. 氡测量:使用氡检测仪器对处理后的土壤样品进行氡测量。

氡检测仪器应具备高灵敏度和准确性,确保测量结果的可靠性。

4. 数据处理:对测量得到的氡浓度数据进行统计和分析。

可以计算平均氡浓度、标准差等指标,以评估土壤中氡的分布情况和潜在风险。

三、质量控制为确保土壤氡检测结果的准确性和可靠性,需要进行质量控制措施,包括以下方面:1. 仪器校准:定期对氡检测仪器进行校准,以保证测量结果的准确性。

校准应按照相关标准进行,并记录校准结果。

2. 实验室环境控制:保持实验室的环境稳定,避免干扰因素对测量结果的影响。

控制温度、湿度等环境参数,并定期检查实验室设备的工作状态。

3. 重复测量:对同一样品进行多次测量,以评估测量结果的稳定性和一致性。

可以计算测量结果的相对标准偏差,作为重复测量的指标。

4. 平行样品:同时测量不同来源的平行样品,以评估不同样品来源对测量结果的影响。

可以计算平行样品之间的相关系数,作为评估指标。

四、结果解读根据土壤氡检测结果,可以进行以下解读和评估:1. 氡浓度分布:根据测量结果,绘制氡浓度分布图,以直观展示土壤中氡的分布情况。

可以通过等值线图、热力图等方式进行展示。

2. 风险评估:根据氡浓度数据和相关标准,评估土壤中氡的潜在风险。

可以比较测量结果与相关标准的差异,判断是否存在超标情况。

土壤氡含量下限

土壤氡含量下限

土壤氡含量下限引言概述:土壤氡含量是指土壤中氡气的浓度。

氡是一种无色、无味、无臭的天然放射性气体,它是放射性衰变链中的一个成员,通常由岩石、土壤和水中的天然放射性元素释放而来。

了解土壤氡含量的下限对于环境保护和人类健康至关重要。

本文将探讨土壤氡含量下限的相关内容。

正文内容:1. 土壤氡的来源1.1 天然放射性元素的分布:土壤中的氡主要来自于天然放射性元素的衰变,如铀和钍。

1.2 岩石和土壤类型:不同类型的岩石和土壤含有不同程度的放射性元素,从而影响土壤中氡的含量。

2. 土壤氡含量的测量方法2.1 氡测量仪器:目前常用的测量土壤氡含量的方法是使用氡测量仪器,如氡探测器。

2.2 采样和分析:采集土壤样品后,通过实验室的分析方法,可以确定土壤样品中氡的含量。

3. 土壤氡含量的影响因素3.1 土壤湿度:湿度对氡的释放和迁移有一定影响,湿度较高的土壤通常含有较高的氡含量。

3.2 土壤通透性:土壤的通透性会影响氡气的释放速率,通透性较好的土壤通常含有较低的氡含量。

3.3 地下水位:地下水位的变化也会影响土壤中氡的释放和迁移。

4. 土壤氡含量的监测和控制4.1 监测方法:通过定期采集土壤样品进行氡含量的测量,可以监测土壤中氡的变化趋势。

4.2 排放控制:对于土壤氡含量超过安全标准的地区,可以采取排放控制措施,如加装氡排放控制装置。

4.3 土壤改良:通过改良土壤的通透性和湿度,可以降低土壤中氡的含量。

5. 土壤氡含量下限的意义5.1 环境保护:了解土壤氡含量的下限可以帮助我们评估土壤中放射性物质的释放程度,从而采取相应的环境保护措施。

5.2 人类健康:土壤中的氡气是一种潜在的致癌物质,了解土壤氡含量的下限可以帮助我们评估人类暴露于氡气的风险。

5.3 标准制定:基于土壤氡含量下限的研究结果,可以制定相应的土壤氡含量标准,以保护环境和人类健康。

总结:土壤氡含量下限的研究对于环境保护和人类健康具有重要意义。

了解土壤氡的来源、测量方法和影响因素,以及监测和控制土壤氡含量的方法,有助于评估土壤中氡的风险和制定相应的标准。

环境检测08环境中放射性物质监测

环境检测08环境中放射性物质监测
内分泌失调
长期接触放射性物质可能导致内分泌系统紊乱,影响 生理功能。
遗传损伤
放射性物质可能对生殖细胞产生影响,增加后代出生 缺陷和遗传疾病的风险。
04 环境中的放射性物质监测 方法
采样方法
01
02
03
固定源监测
在固定地点对环境中放射 性物质的长期监测,通常 设置在核设施周围、工业 区等高风险区域。
生物分析法
利用生物体对放射性物质的敏感反应,通过生物 体内的变化来间接评估环境中的放射性物质。
数据解读与报告
数据解读
将监测数据与参考值、历史数据等进行比较,判断环境中的放射性 物质是否超标,并分析其原因和潜在风险。
报告撰写
根据监测和分析结果,编写环境放射性物质监测报告,包括数据汇 总、分析结论、建议措施等。
高放射性水平区域可能增加居民患癌症等疾病的风险,因 此需要采取措施降低这些风险。
对未来工作的建议
加强监测网络建设
深入研究影响因素
建议增加环境放射性监测站点,提高监测 频次,以便更全面地了解放射性物质在环 境中的分布和变化趋势。
针对影响放射性水平的关键因素,开展深 入调查和研究,为制定有效的管理措施提 供科学依据。
核技术应用
核医学、放射性示踪、工业无损检测等应用 中产生的放射性废物。
核武器试验
核武器试验会产生大量的放射性物质,这些 物质会随着大气流动而扩散到环境中。
工业生产
某些工业生产过程中,如荧光物质、电子元 件等,会产生放射性废弃物。
03 放射性物质对环境和人类 的影响
对环境的直接影响
01
破坏生态系统
监测结果
监测数据显示,大部分地区的放 射性物质含量在正常范围内,但
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料仅供参考,不当之处,请联系改正。
• 土壤天然放射性水平的研究意义 • 土壤天然放射性水平研究概况 • 研究区域概况 • 土壤天然放射性研究指标 • 土壤中的各种放射性核素 • 实验材料与方法 • 土壤天然放射性核素水平 • 土壤中的等效镭浓度 • 土壤中的年有效剂量当量 • 土壤利用的辐射影响 • 天然放射性核素相关性分析 • 土壤天然放射性核素水平实验
资料仅供参考,不当之处,请联系改正。
• 在现代社会,核能己经成为世界上许多国家的主要能源之 一,同时核技术和放射性同位素在国防、工业、农业、医 疗、科研和医学等领域中的广泛应用,也不可避免地带来 了副作用—放射性污染,放射性这一“无形杀手”对生态 环境所带来的核辐射影响也越来越被重视。因此,世界上 发达国家对岩石和土壤中的天然放射性水平进行了大量的 调查与评价,而且建立起了完善的监测系统香港 等都不同程度地开展了这方面工作,并且建立了全国环境 天然放射性水平数据库。目前,我国环境放射性水平还于 研究阶段,还未出台与城市放射性评价相关的评价方法及 标准。
资料仅供参考,不当之处,请联系改正。
• 目前环境中的天然放射性核素主要有两类,第一类是宇生 放射性核素(eosmogenie:adionuelides),即通过外层空间 宇宙线的作用而不断形成的放射性核素,大约有20多种。 一类是陆生放射性核素(几 rrestrialradionuelides),即地球 开始形成时就出现的放射性核素,这主要包括母体是238u 的铀系,母体是235u的婀系以及母体是232Th的针系;而 在陆生放射性核素中与人类关系最为密切的是40K和87Rb, 这两个放射性核素在自然界的丰度比较稳定,半衰期较长, 强度极弱,只有采用极灵敏的检测技术才能发现,表1一3 为自然界中典型天然放射性核素的比活度。
资料仅供参考,不当之处,请联系改正。
• 在人类生存的环境中,时刻都在接受着各种天然辐射源的 照射,它们一部分来自于宇宙射线、土壤和建材中的天然 放射性核素(U系、Th系和40K等),即外照射源,而另外 一部分来自于人类吸入空气中(主要来自空气中的Rn)和食 入食物中的天然放射性核素,即内照射源。一般认为,放 射性危害人体健康的最重要途径是吸入,其次是外照射和 食入。近年来,随着全世界范围内原子能工业与核试验的 迅速发展,放射性废水和废渣通过地表径流等进入土壤, 从而造成土壤的放射性污染。土壤放射性污染是指人类活 动排放的放射性污染物进入土壤,使土壤的放射性水平高 于天然本底值或超过国家标准规定的剂量限值,给人类生 存带来了严重威胁的现象。因此,土壤中天然放射性核素 水平含量的调查是研究环境天然放射性水平的重要内容。
资料仅供参考,不当之处,请联系改正。
• 土壤是人类活动和赖以生存的基础,是几乎与空 气和水同样重要的基本的环境条件,但它通常不 像空气和水那样容易迁移,其构成状况在一定的 时间内是相对稳定的。因此调查土壤中天然放射 性核素的含量水平和分布,对及时发现和准确评 价环境放射性污染具有更为重要的现实意义。同 时,调查土壤中天然放射性核素含量和天然辐射本 底,可为评价核技术的应用、核动力的开发以及其 他资源和技术(如煤电站、地热和磷酸盐矿等)的 开发与利用对环境质量的影响提供对照基线,从而 为制定国家能源政策提供参考依据,也为辐射环境 研究提供背景值。
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
• 放射性核素广泛存在于土壤、建筑材料、生活用水及燃煤等天然环境之 • 中【’20一’23〕,而土壤作为环境中转移放射性污染物质的重要介质之一,研究土 • 壤放射性污染对保护环境和人体健康具有重要的现实意义。有关土壤中天然 • 放射性核素含量的调查资料,国外己有不少报道I’24”27],例如Karakelle等[’“8] • 以土耳其(Turkey)安纳托利亚(Anatolia)西部科贾埃利(Koeaeli)城市土 • 壤为对象,研究了放射性核素’3,es、2,su、40K、“26Ra以及2,ZTh的比活度; • NageswaraRao等[129]研究了拉贾斯坦(Rajasthan)三个区土壤样品中4oK、226Ra • 和232Th的比活度,得出该区域的空气吸收剂量为 6.7x105Gy爪,年有效剂量 • 为8,Zxlo’ sv;AI一Jundi等[‘30]研究了约旦首都安曼(Amman)到亚喀巴(Aqaba) • 高速公路旁土壤中天然放射性核素“38u、232Th和4OK的比活度,结果表明该 • 地区土壤的年有效剂量当量为40一 151Sv,平均值低于联合国原子辐射效应科 • 学委员会(UNSCEAR)所规定的全球范围内的放射性暴露水平;Hazama等 • [’川研究发现印度尼西亚境内“Lusl(Lumpu:mud一Sidoarjo)”泥火LlJ的土壤 • 第1章绪言 • 样品中放射性核素226Ra、井ZTh和“。K的比活度,并对其镭当量活动,外部 • 和内部的风险指数,以及年有效剂量当量进行了评价,认为其在可接受的限 • 度内。
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
• 1896年法国科学家贝克勒尔发现了放射性核素铀,人类开始真正认识 放射性物质,在随后几年中科学家又陆续发现了其他一些放射性核素。 全世界范围内对环境放射性的研究大致经历过两个阶段,第一个阶段 是从20世纪50年代开始一直到60年代末,第二个阶段从20世纪80年 代初开始一直延续至今。二十世纪70年代末80年代初全世界范围内发 生了数起核电站事故,例如1979年美国三哩岛核电站的一个反应堆 62t的堆芯熔化,逸出放射线物质,导致20万人撤离:1983年1月美国 俄克拉荷马州大雷核电站发生事故,核电站周围地区出现不同程度的 放射性污染。1986年4月前苏联的乌克兰共和国切尔诺贝利Chemobyl) 核电站第4号反应堆发生爆炸并引发大火,致使放射性尘降物进入空 气中,27万人因切尔诺贝利核泄漏事故患上癌症,其中致死9.3万人。 随着各国核电站的兴建,以及核电站发生事故现象的增多,人们对环 境放射性研究的兴趣又开始逐渐增加。
相关文档
最新文档