容斥原理公式及运用
容斥原理的基本应用

容斥原理的基本应用什么是容斥原理容斥原理,又称为容错原理、排容原理,是组合数学中一种常用的计数原理。
容斥原理用于解决计数问题,特别是解决两个或多个集合的并、交、差等计数问题。
它通过将复杂的集合拆分成简单的部分,并根据不同情况逐步计算得到最终的结果。
容斥原理有助于简化计数问题的解决过程,使得问题的求解更加简洁明了。
容斥原理的应用场景容斥原理在组合数学、概率论、计算机科学等领域有广泛的应用。
它可以解决一些复杂的计数问题,包括排列组合问题、概率计算问题、鸽巢原理问题等。
容斥原理在解决这些问题时,可以极大地简化计算的复杂度,提高解题效率。
以下是容斥原理的基本应用场景:1.列表中元素的多重选择问题2.集合的并、交、差运算问题3.满足多个条件的计数问题4.重复计算问题容斥原理的基本原理容斥原理的基本原理可以通过一个简单的示例来说明。
假设有A、B两个集合,记其元素个数分别为|A|和|B|。
那么A和B的并集的元素个数可以通过以下公式计算得到:|A∪B| = |A| + |B| - |A∩B|其中,|A∩B|表示A和B集合的交集中的元素个数。
上述公式中的两次求并集都将交集的元素计算了两次,所以需要将交集的元素个数减去一次,以避免重复计算。
这就是容斥原理的基本思想。
容斥原理的基本应用举例列表中元素的多重选择问题假设有一个列表,其中有苹果、橙子、香蕉、草莓这四种水果。
现在需要从这个列表中选择1种、2种、3种甚至全部4种水果的可能性有多少种?根据容斥原理,我们可以通过以下步骤进行计算:1.计算只选择1种水果的情况,共有4种可能性。
2.计算只选择2种水果的情况,共有C(4,2) = 6种可能性。
3.计算只选择3种水果的情况,共有C(4,3) = 4种可能性。
4.计算选择全部4种水果的情况,共有1种可能性。
根据容斥原理,计算总的可能性的公式为:总可能性 = 只选择1种水果的数量 - 只选择2种水果的数量 + 只选择3种水果的数量 - 选择全部4种水果的数量带入上述计算结果,得到总可能性为4 - 6 + 4 - 1 = 1种。
容斥原理公式大全

容斥原理公式大全容斥原理是组合数学中的一种重要方法,常常用于求解集合的并、交、差等问题。
它的应用范围非常广泛,涉及到概率论、数论、组合数学等多个领域。
在实际问题中,我们经常需要利用容斥原理来解决一些复杂的计数问题。
下面,我们将介绍容斥原理的相关公式,希望能够对大家有所帮助。
1. 两个集合的容斥原理公式。
对于两个集合A和B,它们的元素个数分别为|A|和|B|,那么它们的并集元素个数为|A∪B|,则有:|A∪B| = |A| + |B| |A∩B|。
这个公式非常直观,它的意义在于,我们先把A和B的元素个数加起来,然后减去A和B的交集元素个数,这样得到的结果就是A和B的并集元素个数。
2. 三个集合的容斥原理公式。
对于三个集合A、B和C,它们的元素个数分别为|A|、|B|和|C|,那么它们的并集元素个数为|A∪B∪C|,则有:|A∪B∪C| = |A| + |B| + |C| |A∩B| |A∩C| |B∩C| + |A∩B∩C|。
这个公式是两个集合容斥原理的推广,它的推导过程可以通过画Venn图来理解。
在实际问题中,我们经常会遇到三个集合的容斥原理的应用,比如在概率论中的概率计算问题。
3. n个集合的容斥原理公式。
对于n个集合A1、A2、...An,它们的并集元素个数为|A1∪A2∪...∪An|,则有:|A1∪A2∪...∪An| = Σ|Ai| Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| ... + (-1)^(n-1)|A1∩A2∩...∩An|。
这个公式是容斥原理的一般形式,它适用于任意个集合的情况。
在实际问题中,当我们需要求解多个集合的并集元素个数时,可以利用这个公式来进行计算。
4. 容斥原理的应用举例。
下面通过一个具体的例子来说明容斥原理的应用。
假设有一个集合A,它包含了1到100之间所有能被2、3或5整除的整数,我们需要求集合A的元素个数。
这个问题可以通过容斥原理来解决。
首先,分别求出能被2、3和5整除的整数的个数,然后分别两两求交集的个数,最后再求三者的交集的个数,然后代入容斥原理的公式,即可得到集合A的元素个数。
三者容斥问题3个公式

一、容斥问题的3个公式容斥原理是指一种计数方法。
先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
1.两个集合的容斥原理:n(A∪B)=n(A)+n(B) -n(A∩B)2.三个集合的容斥原理:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|3.n个集合的容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。
二、容斥问题的应用:对于容斥问题,解题关键做到不重不漏,各个集合相加,理清各集合间的关系,扣掉重复补上遗漏的。
用于理解的主要方法是画文氏图,但考试中应尽量避免画图,这样速度偏慢些。
【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。
结论:三者容斥问题,画图之后可知,三个圆相交的地方有1层、2层、3层三种情况,当将三个集合相加的时候,2层和3层区域分别多计算一次和两次,故若想求全集,需要将重叠区域减掉,故三者容斥问题的公式为:A∪B∪C=A+B+C -A∩B-B∩C-C∩A+A∩B ∩C。
容斥原理的应用举例

容斥原理的应用举例什么是容斥原理容斥原理是概率论、组合数学中常用的一种计数方法,它用于求解多个事件的并或交的概率或数量。
容斥原理是以集合论为基础的一种推理思想,通过排除重复计数,从而得到准确的计数结果。
容斥原理的公式容斥原理的公式可以表示为:|A1 ∪ A2 ∪ ... ∪ An| = |A1| + |A2| + ... + |An| - |A1 ∩ A2| - |A1∩ A3| - ... - |An-1 ∩ An| + |A1 ∩ A2 ∩ A3| + ... + (-1)^(n-1) * |A1 ∩ A2 ∩ ... ∩ An|其中,|A1 ∪ A2 ∪ … ∪ An| 表示事件 A1、A2、…、An 的并的概率或数量,|A1| 表示事件 A1 的概率或数量,|A1 ∩ A2| 表示事件 A1 和 A2 的交的概率或数量,以此类推。
容斥原理的应用举例容斥原理在组合数学和概率论中有广泛的应用,下面举几个例子来说明容斥原理的具体应用。
例子1:求解有限集合的元素个数假设有三个集合 A、B、C,它们分别有 |A|、|B|、|C| 个元素,求这三个集合的并集的元素个数。
根据容斥原理的公式,有:|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |D|其中,|A ∩ B| 表示集合 A 和 B 的交的元素个数,以此类推。
例子2:求解排列组合中不满足条件的情况假设有两个集合 A 和 B,它们分别有 |A|、|B| 个元素,要求从 A 和 B 中选择指定数量的元素排列组合,但要满足某个特定的条件,那么可以使用容斥原理来计算不满足条件的情况。
Count = |A| * |B| - |A ∩ B|其中,|A ∩ B| 表示满足条件的情况。
例子3:求解事件的概率假设有三个事件 A、B、C,它们分别发生的概率分别为 P(A)、P(B)、P(C),求这三个事件的并的概率。
容斥问题应用题解题技巧及公式

容斥问题应用题解题技巧及公式容斥原理是一种组合数学中常用的计数方法,用于解决包含重叠部分的计数问题。
常见的应用有如下几种情况:
1.求集合的并:当求两个集合的并集大小时,可以使用容斥原理来避免重复计数。
公式为|A∪B| = |A| + |B| - |A∩B|,其中|A∪B|表示A和B的并集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∩B|表示A和B的交集大小。
2.求集合的交:当求两个集合的交集大小时,可以使用容斥原理来避免重复计数。
公式为|A∩B| = |A| + |B| - |A∪B|,其中|A∩B|表示A和B的交集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∪B|表示A和B的并集大小。
3.求不满足某个条件的情况:当求满足某个条件的情况时,可以使用容斥原理来求不满足该条件的情况。
假设有n个事件,A1到An,分别表示这些事件,那么不满足任何一个事件的情况数目为S =
∑|Ai| - ∑|Ai∩Aj| + ∑|Ai∩Aj∩Ak| - ... +/-
|A1∩A2∩...∩An|。
其中|Ai|表示事件Ai发生的情况数目,
|Ai∩Aj|表示事件Ai和Aj同时发生的情况数目,依此类推。
在应用容斥原理解题时,需要注意对问题进行合理的划分,避免出现重复计数或者漏计的情况。
同时,需要对问题进行适当的拓展和转化,以便更好地利用容斥原理解决更复杂的计数问题。
容斥原理在圆中的应用

容斥原理在圆中的应用1. 什么是容斥原理容斥原理是组合数学中的一种重要原理,用于解决集合的计数问题。
容斥原理提供了一种计算交集和并集的方法,可以帮助我们计算包含或排除某一组元素的集合的大小。
2. 容斥原理的公式容斥原理的公式可以表示为:n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C)其中,n(A)表示集合A的大小,n(A∩B)表示集合A和集合B的交集的大小,n(A∪B)表示集合A和集合B的并集的大小。
3. 容斥原理在圆中的应用容斥原理不仅可以应用于集合的计数问题,还可以应用于几何问题中。
下面以圆的问题为例,介绍容斥原理在圆中的应用。
3.1. 圆的面积假设有两个圆A和圆B,它们的半径分别为r₁和r₂。
那么圆A和圆B的交集部分所组成的面积,可以使用容斥原理进行计算。
n(A∩B) = π * min(r₁, r₂)²圆A和圆B的并集部分所组成的面积可以表示为:n(A∪B) = π * (r₁² + r₂²) - π * min(r₁, r₂)²根据容斥原理的公式,可以得到:n(A∪B) = n(A) + n(B) - n(A∩B)= π * r₁² + π * r₂² - π * min(r₁, r₂)²3.2. 圆的重叠次数假设有n个圆,它们的半径都相同,为r。
这n个圆两两之间都可能有重叠的部分,我们需要计算所有可能的重叠次数。
根据容斥原理,可以得到重叠一次、重叠两次、重叠三次…直至重叠n次的圆的个数。
以重叠一次为例,假设有k个圆重叠一次,那么根据容斥原理的公式,可以得到:n(重叠一次) = 从n个圆中选择k个圆* n(A∩B)= C(n, k) * π * r²其中,C(n, k)表示从n个元素中选择k个元素的组合数。
通过类似的方法,可以计算重叠两次、重叠三次…直至重叠n次的圆的个数。
容斥原理二集合公式

容斥原理二集合公式一、基本概念容斥原理是一种计数方法,用于解决多个集合的元素个数之和的问题。
假设有n个集合A1,A2,...,An,定义函数f(S)表示满足条件S的元素个数。
那么容斥原理的二集合公式可以表示为:f(A1∪A2) = f(A1) + f(A2) - f(A1∩A2)二、应用场景容斥原理广泛应用于概率论、组合数学和计算几何等领域,特别适用于求解满足多个条件的元素个数问题。
1. 求解不同条件下元素个数的问题容斥原理可以用来求解满足多个条件的元素个数问题。
例如,假设有一个集合S,它包含了所有既是A的子集又是B的子集的元素。
那么可以通过容斥原理计算出S的元素个数。
2. 求解排斥条件下元素个数的问题容斥原理还可以用来求解排斥条件下元素个数的问题。
例如,假设有一个集合S,它包含了所有既不是A的子集又不是B的子集的元素。
那么可以通过容斥原理计算出S的元素个数。
三、示例分析下面通过一个具体的示例来说明容斥原理的应用。
假设有一个由1到100的整数构成的集合S,现在要求满足以下条件的元素个数:1. 能被2整除的元素个数;2. 能被3整除的元素个数;3. 能被5整除的元素个数。
根据容斥原理的二集合公式,我们可以得到:f(S) = f(A) + f(B) + f(C) - f(A∩B) - f(A∩C) - f(B∩C) + f(A∩B∩C)其中,A表示满足条件1的元素,B表示满足条件2的元素,C表示满足条件3的元素。
根据条件,我们可以计算出:f(A) = 100 / 2 = 50f(B) = 100 / 3 = 33f(C) = 100 / 5 = 20f(A∩B) = 100 / (2*3) = 16f(A∩C) = 100 / (2*5) = 10f(B∩C) = 100 / (3*5) = 6f(A∩B∩C) = 100 / (2*3*5) = 3将这些值代入容斥原理的公式中,就可以求解出满足条件的元素个数。
第三章 容斥原理

对i=1,2,…,n,令
p1 = ∑ | Ai | ,
i =1 n
p2 = ∑∑ | Ai I A j | , L ,
i =1 j >i
n
pn =| A1 I A2 I L I An |,
q0 =| A1 I A2 I L I An |,
q1 = ∑ | A1 I A2 I L I Ai −1 I Ai I Ai +1 I L I An |,
如何通过Ai来 I Ai 或 I A 中元素的个数?
i
m
m
i =1
i =1
容斥原理: 容斥原理 ①S中均不具有性质P1, P2,…,Pm的元素个数为
m
IA
i =1
i
=| S | −∑ | Ai | + ∑ | Ai I A j | − ∑ | Ai I A j I Ak |
i =1 i≠ j i≠ j≠k
第三章 容斥原理及其应用
§3.1 容斥原理
容斥原理又称为排斥原理,它利用集合的基本运算 (交或并 交或并) 容斥原理 交或并 解决实际中的计数问题。 设S为一个有限集,A为其子集,则 |A|=|S|-|Ā|, 或 |Ā|=|S|-|A|。 若A1、A2为S的两个子集,则 |A1∪A2|=|A1|+|A2|-|A1∩A2|, |Ā1∩Ā2|=|S|- |A1|-|A2|+|A1∩A2|。 以上第二个公式的含义:先将所有元素容纳在内,再排斥掉 A1 和A2中元素,再重新容纳A1∩A2中元素。
恰好一门的教师数: q1=P1-2P2 + 3P3=4, 恰好教两门的老师数为: q2=P2-3P3=3。 例2 七人围圆桌就座,其中有三对夫妇,问 (1)所有夫妇均不相邻的坐法有多少种?(没有 男女相间的限制) (2)恰好有两对夫妇不相邻的坐法有多少种? (即恰有一对夫妇相邻的坐法)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理公式及运用
在计数时,必须注意无一重复,无一遗漏。
为了使重叠部分不被重复计算,研究出一种新的计数方法。
这种方法的基本思路就是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
一、容斥原理1:两个集合的容斥原理
如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既就是A类又就是B类的部分重复计算了一次,所以要减去。
如下图所示。
【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都就是满分,那么这个班至少有一门得满分的同学有多少人?
数学得满分人数→A,语文得满分人数→B,数学、语文都就是满分人数→A∩B,至少有一门得满分人数→A∪B。
A∪B=15+12-4=23,共有23人至少有一门得满分。
二、容斥原理2:三个集合的容斥原理
如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。
如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩
A+A∩B∩C。
即得到:
【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?
参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。
三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩
A=45-25-22-24+12+9+8=3人。