数学建模课程设计

合集下载

数学建模教案设计

数学建模教案设计

数学建模教案设计一、教学内容本节课选自《数学建模》教材第四章第一节,详细内容为多变量线性规划及其应用。

主要包括多变量线性规划模型的建立、求解方法以及实际应用案例。

二、教学目标1. 理解多变量线性规划的概念,掌握其数学表达形式。

2. 学会使用单纯形法求解多变量线性规划问题。

3. 能够将实际问题抽象为多变量线性规划模型,并运用所学知识解决实际问题。

三、教学难点与重点教学难点:多变量线性规划模型的建立与求解。

教学重点:单纯形法的应用以及实际问题的建模。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:数学建模教材、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示一个实际生产问题,引导学生思考如何优化生产方案。

2. 知识讲解(15分钟)讲解多变量线性规划的基本概念、数学表达形式及求解方法。

3. 例题讲解(20分钟)通过一个具体例题,演示如何将实际问题抽象为多变量线性规划模型,并运用单纯形法求解。

4. 随堂练习(15分钟)学生独立完成一道类似例题的练习,教师巡回指导。

6. 课堂小结(5分钟)回顾本节课所学内容,强调重点、难点。

六、板书设计1. 多变量线性规划概念及数学表达形式2. 单纯形法求解步骤3. 实际问题建模过程4. 例题解答过程七、作业设计1. 作业题目:(1)求解下列多变量线性规划问题:max z = 2x1 + 3x2s.t. x1 + 2x2 ≤ 4x1 + x2 ≤ 3x1, x2 ≥ 0某工厂生产两种产品,产品A和产品B。

生产一个A产品需要2小时工时和3小时机器时,生产一个B产品需要1小时工时和2小时机器时。

工厂每天有8小时工时和12小时机器时可用,问如何安排生产计划,才能使每天生产的A产品和B产品总价值最大?答案:(1)max z = 4x1 = 2, x2 = 0(2)max z = 18x1 = 3, x2 = 2八、课后反思及拓展延伸1. 反思:本节课学生对多变量线性规划的建模和求解掌握程度,以及课堂互动情况。

什么是数学建模课程设计

什么是数学建模课程设计

什么是数学建模课程设计一、课程目标知识目标:1. 理解数学建模的基本概念,掌握数学建模的主要方法。

2. 学会运用数学知识解决实际问题,提高数学应用能力。

3. 了解数学建模在自然科学、社会科学等领域的应用,拓展知识视野。

技能目标:1. 培养学生运用数学语言进行逻辑推理和分析问题的能力。

2. 提高学生运用数学软件和工具进行数据分析和模型构建的技能。

3. 培养学生团队协作和沟通表达能力,提高解决问题的综合素质。

情感态度价值观目标:1. 培养学生对数学建模的兴趣和热情,激发学生主动探索的精神。

2. 培养学生面对复杂问题时,保持积极的心态,勇于克服困难。

3. 增强学生的创新意识,培养将数学知识应用于实际问题的责任感。

课程性质分析:本课程为选修课程,旨在提高学生的数学应用能力和综合素质。

通过数学建模的学习,使学生掌握运用数学知识解决实际问题的方法,培养创新意识和团队协作能力。

学生特点分析:本课程面向初中年级学生,学生在数学基础知识和逻辑思维能力方面有一定基础,但对数学建模的了解相对较少。

因此,课程设计需注重激发学生兴趣,引导学生主动参与。

教学要求:1. 注重理论与实践相结合,让学生在实际问题中感受数学建模的魅力。

2. 创设生动活泼的课堂氛围,鼓励学生提问、讨论,培养学生的创新思维。

3. 加强团队合作,提高学生沟通协作能力,使学生在合作中共同成长。

二、教学内容1. 数学建模基本概念:介绍数学建模的定义、意义和分类,使学生了解数学建模的广泛应用。

教材章节:第一章 数学建模简介2. 数学建模方法:讲解线性规划、非线性规划、整数规划等基本建模方法,以及差分方程、微分方程等在数学建模中的应用。

教材章节:第二章 数学建模方法3. 数据分析与处理:学习如何收集数据、整理数据、分析数据,掌握利用数学软件进行数据处理的方法。

教材章节:第三章 数据分析与处理4. 数学建模实例分析:分析实际案例,让学生了解数学建模在自然科学、社会科学等领域的具体应用。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案一、教学内容本节课选自《数学建模》教材第四章第二节,详细内容为多变量线性回归模型的构建与应用。

通过本节课的学习,使学生了解多变量线性回归模型的基本原理,掌握模型的建立、求解及分析步骤。

二、教学目标1. 知识与技能:掌握多变量线性回归模型的建立与求解方法,能够运用所学知识解决实际问题。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的数据分析、逻辑思维和团队协作能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极进取的精神。

三、教学难点与重点重点:多变量线性回归模型的建立与求解。

难点:模型的适用条件及其在实际问题中的应用。

四、教具与学具准备多媒体设备、黑板、粉笔、计算器、教材、《数学建模》学习指导书。

五、教学过程1. 导入(5分钟)利用多媒体展示实际案例,如房地产价格影响因素分析,引导学生思考如何运用数学知识解决此类问题。

2. 知识讲解(15分钟)(1)回顾一元线性回归模型,引导学生思考多变量线性回归模型的建立方法。

(2)介绍多变量线性回归模型的基本原理及其适用条件。

(3)讲解模型的建立、求解及分析步骤。

3. 例题讲解(20分钟)(1)给出一个实际案例,如多因素影响下的学绩分析。

(2)引导学生根据所学知识建立多变量线性回归模型,并求解。

(3)分析模型的拟合程度,讨论各因素对成绩的影响。

4. 随堂练习(10分钟)(1)发放练习题,要求学生独立完成。

(2)教师巡回指导,解答学生疑问。

5. 小组讨论(10分钟)(1)多变量线性回归模型在实际问题中的应用。

(2)如何判断模型的适用性。

(3)如何改进模型的拟合效果。

六、板书设计1. 多变量线性回归模型基本原理2. 建立与求解步骤3. 模型适用条件4. 实际案例:学绩分析七、作业设计1. 作业题目:根据教材第四章第二节课后习题,选取两道多变量线性回归模型的题目。

2. 答案:教材课后习题答案。

八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生掌握程度,教学难点是否讲解清楚。

数学建模活动教学设计完整版精品课件

数学建模活动教学设计完整版精品课件

数学建模活动教学设计完整版精品课件一、教学内容本节课选自《数学建模》教材第五章第三节“线性规划”,内容包括线性规划的基本概念、线性规划的数学模型、求解线性规划问题的图解法以及应用举例。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划的数学模型及其求解方法。

2. 能够运用图解法解决实际问题中的线性规划问题,提高问题分析和解决能力。

3. 培养学生的团队合作意识,提高沟通与交流能力。

三、教学难点与重点教学难点:线性规划问题的求解方法及实际应用。

教学重点:线性规划的基本概念、数学模型及图解法的运用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入:通过展示实际生活中的优化问题,如工厂生产安排、物流配送等,引出线性规划的概念。

2. 知识讲解:(1)线性规划的基本概念及数学模型。

(2)线性规划的图解法及求解步骤。

3. 例题讲解:以工厂生产问题为例,讲解线性规划模型的建立和求解过程。

4. 随堂练习:学生分组讨论,解决实际问题中的线性规划问题。

六、板书设计1. 线性规划2. 内容:(1)线性规划的基本概念(2)线性规划的数学模型(3)线性规划的图解法(4)实际应用举例七、作业设计1. 作业题目:max z = 2x + 3ys.t.x + y ≤ 42x + y ≤ 6x ≥ 0, y ≥ 0(2)讨论线性规划在实际问题中的应用。

2. 答案:(1)max z = 7x = 2, y = 3(2)见教材第五章第三节。

八、课后反思及拓展延伸1. 反思:本节课通过实际问题的引入,让学生了解了线性规划的基本概念和求解方法。

在例题讲解和随堂练习中,学生积极参与,提高了问题分析和解决能力。

2. 拓展延伸:(1)研究线性规划的其他求解方法,如单纯形法、内点法等。

(2)探讨线性规划在经济学、工程学等领域的应用。

(3)了解非线性规划的基本概念及其求解方法。

重点和难点解析1. 教学目标的设定2. 教学难点的把握3. 教学过程中的实践情景引入和例题讲解4. 作业设计中的题目难度和答案解析5. 课后反思及拓展延伸的深度和广度详细补充和说明:一、教学目标的设定教学目标应具有可衡量性、具体性和可实现性。

数学建模课教案数学建模的基本步骤与方法

数学建模课教案数学建模的基本步骤与方法

数学建模课教案数学建模的基本步骤与方法一、教学内容本节课我们将学习《数学建模》的第一章“数学建模的基本步骤与方法”。

具体内容包括数学模型的构建、数学模型的求解、数学模型的检验和优化等。

二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本步骤。

2. 学会运用数学方法解决实际问题,培养解决问题的能力。

3. 培养学生的团队协作能力和创新精神。

三、教学难点与重点教学难点:数学模型的构建和求解。

教学重点:数学建模的基本步骤及方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:数学建模教材、计算器、草稿纸。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的数学问题,激发学生的兴趣,引入数学建模的概念。

2. 理论讲解(15分钟)讲解数学建模的基本步骤:问题分析、模型假设、模型建立、模型求解、模型检验和优化。

3. 例题讲解(20分钟)以一个简单的实际问题为例,带领学生逐步完成数学建模的过程。

4. 随堂练习(15分钟)学生分组讨论,针对给定的问题,完成数学建模的练习。

5. 小组展示与讨论(15分钟)6. 知识巩固(10分钟)六、板书设计1. 数学建模的基本步骤1.1 问题分析1.2 模型假设1.3 模型建立1.4 模型求解1.5 模型检验和优化2. 例题及解答七、作业设计1.1 问题:某城市现有两个供水厂,如何合理调配水源,使得居民用水成本最低?1.2 作业要求:列出模型的假设、建立模型、求解模型并检验。

2. 答案:见附件。

八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本步骤和方法掌握程度如何?哪些环节需要加强?2. 拓展延伸:引导学生关注社会热点问题,尝试用数学建模的方法解决实际问题。

重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点:数学模型的构建和求解4. 作业设计一、实践情景引入情景:某城市准备举办一场盛大的音乐会,门票分为三个档次:VIP、一等座和二等座。

数学建模教案设计

数学建模教案设计

数学建模教案设计第一章:数学建模概述1.1 数学建模的定义与意义1.2 数学建模的方法与步骤1.3 数学建模的应用领域1.4 数学建模的基本技能要求第二章:数学建模的基本技能2.1 数学符号与表达式的应用2.2 数学模型的构建与分析2.3 数学模型的求解与优化2.4 数学建模软件的使用技巧第三章:数学建模实例解析3.1 线性规划模型的构建与求解3.2 非线性规划模型的构建与求解3.3 微分方程模型的构建与求解3.4 差分方程模型的构建与求解第四章:数学建模竞赛与实践4.1 数学建模竞赛的类型与规则4.2 数学建模竞赛的准备与策略4.3 数学建模竞赛的案例分析4.4 数学建模实践项目的选择与实施第五章:数学建模在实际问题中的应用5.2 数学建模在工程学中的应用5.3 数学建模在生物学中的应用5.4 数学建模在社会科学中的应用第六章:数学建模的软件工具6.1 MATLAB 在数学建模中的应用6.2 Python 编程在数学建模中的应用6.3 R 语言在数学建模中的应用6.4 MAThematica 在数学建模中的应用第七章:数学建模的策略与技巧7.1 构建数学模型的策略7.2 模型求解的技巧与方法7.3 模型验证与误差分析7.4 模型优化与调整策略第八章:数学建模竞赛案例分析8.1 国内外数学建模竞赛经典案例8.2 数学建模竞赛案例的解析与评价8.3 数学建模竞赛案例的启示与建议8.4 数学建模竞赛案例的实践与反思第九章:数学建模在科研中的应用9.1 数学建模在自然科学中的应用9.2 数学建模在工程技术中的应用9.4 数学建模在跨学科研究中的应用第十章:数学建模的未来发展趋势10.1 数学建模与的融合10.2 大数据背景下的数学建模10.3 数学建模在生物信息学中的应用10.4 数学建模在其他领域的创新应用重点和难点解析一、数学建模的定义与意义重点:理解数学建模的概念,掌握数学建模在实际问题解决中的应用价值。

数学建模教案设计经典

数学建模教案设计经典

数学建模教案设计经典一、教学内容本节课选自《数学建模》教材第二章“线性规划与应用”,内容包括线性规划的基本概念、线性规划的数学模型、图形解法以及实际应用案例。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划的数学模型。

2. 学会使用图形解法解决线性规划问题。

3. 能够运用线性规划知识解决实际问题,培养学生的数学建模能力。

三、教学难点与重点教学难点:线性规划的数学模型及图形解法。

教学重点:线性规划的基本概念、数学模型以及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 实践情景引入利用多媒体展示实际生活中的线性规划问题,如工厂生产计划、物流配送等,让学生了解线性规划的应用。

2. 知识讲解(1)讲解线性规划的基本概念,如线性约束条件、目标函数等。

(2)介绍线性规划的数学模型,包括标准形式、松弛形式等。

(3)讲解图形解法,引导学生学会使用直尺、圆规等工具解决线性规划问题。

3. 例题讲解选取经典例题,详细讲解解题步骤,包括建立数学模型、图形解法以及求解过程。

4. 随堂练习布置一些典型练习题,让学生独立完成,巩固所学知识。

5. 课堂小结六、板书设计1. 线性规划基本概念2. 线性规划的数学模型3. 图形解法4. 例题及解题步骤七、作业设计1. 作业题目:约束条件:目标函数:(2)某工厂生产两种产品,分别用A和B表示,其生产计划如下:约束条件:目标函数:2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念和图形解法掌握程度较高,但在建立数学模型方面存在一定困难,需要加强练习。

2. 拓展延伸:引导学生了解其他数学建模方法,如非线性规划、整数规划等,拓宽知识面。

同时,鼓励学生参加数学建模竞赛,提高实际操作能力。

重点和难点解析1. 线性规划的数学模型的建立2. 图形解法的具体操作步骤3. 实际问题转化为线性规划问题的方法4. 作业设计中的题目难度与答案解析一、线性规划的数学模型的建立1. 确定决策变量:根据实际问题,找出需要优化的变量。

《数学建模》课程教案

《数学建模》课程教案

《数学建模》课程教案教学文档一、教学内容本节课选自《数学建模》教材第四章:线性规划及其应用。

详细内容包括线性规划的基本概念、线性规划模型的建立、单纯形方法及其应用。

二、教学目标1. 理解线性规划的基本概念,掌握线性规划模型的建立方法。

2. 学会运用单纯形方法求解线性规划问题,并能将其应用于实际问题。

3. 培养学生的数学建模能力,提高解决实际问题的能力。

三、教学难点与重点难点:线性规划模型的建立、单纯形方法的运用。

重点:线性规划的基本概念、线性规划模型的求解。

四、教具与学具准备教具:黑板、粉笔、PPT课件。

学具:教材、笔记本、计算器。

五、教学过程1. 导入:通过一个实际情景,引出线性规划问题。

实践情景:某工厂生产两种产品,产品A和产品B。

生产每个产品A需要2小时工时和3平方米厂房面积,生产每个产品B需要4小时工时和1平方米厂房面积。

工厂每天有8小时工时和6平方米厂房面积可用。

如何分配生产时间和厂房面积,使得工厂每天的生产利润最大?2. 知识讲解:1) 线性规划的基本概念。

2) 线性规划模型的建立。

3) 单纯形方法及其应用。

3. 例题讲解:例题1:求解导入环节提出的实际线性规划问题。

例题2:求解一个标准形式的线性规划问题。

4. 随堂练习:让学生独立求解一个线性规划问题,并给出解答。

六、板书设计1. 线性规划基本概念2. 线性规划模型的建立3. 单纯形方法4. 例题解答七、作业设计1. 作业题目:习题4.1:求解线性规划问题。

习题4.2:应用单纯形方法求解实际问题。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对线性规划的基本概念和求解方法掌握程度,以及对实际问题的建模能力。

2. 拓展延伸:探讨线性规划的其他求解方法,如内点法、对偶问题等。

引导学生关注线性规划在实际问题中的应用,如物流、生产计划等。

重点和难点解析1. 线性规划模型的建立。

2. 单纯形方法的运用。

3. 例题讲解与随堂练习的设置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

营销生产策略的制定
姓名:xxxxxxx
时间:xxxxxxx
问题描述:
现有企业(甲)想在杭州市场上推销某种新产品A,请你用所学知识,根
据下设情形,分别为企业(甲)制定一个合理的营销生产策略。

1、假定杭州市场上还没有出现过产品A或类似的产品;
2、假定杭州市场上有类似的产品,且市场占有率已达到15%;
3、假定杭州市场上还没有产品A或类似的产品,但新产品A有一个服从均值为5(年)的寿命分布。

摘要:
在数学建模中,产品营销问题是一类常见的典型问题。

对于产品的销售情况
一般都用Logistic模型去描述,所以本实验都用了Logistic销售模型的建模思路。

Logistic回归模型,主要是用来对多因素影响的事件进行概率预测,它是普通多元线性回归模型的进一步扩展,Logistic模型是非线性模型。

对于题中的三种假定,结合微分方程基本理论对在杭州市场上推销的新产品A进行研究,并为企业(甲)制定一个合理的营销生产策略。

问题1:设定新产品A价格、质量以及销售人员的销售情况等其他影响新产品销售的外在因素是相对稳定,杭州市场对产品的需求量有限,产品的销售速度与销售量和剩余需求量的积成正比三个假设,建立了Logistic销售模型并求解。

得出结论,在销售量达到最大销售量的一半时,产品最为畅销。

问题2:设定类似产品A的销售速度与销售量和剩余需求量的积成正比,新产品A的需求量、类似产品的需求量、剩余需求量之和为总需求量,在假定一和假定二下,不考虑新产品A的使用寿命三个假设,不考虑消费者同时拥有新产品A 和其类似产品,建立了微分方程组销售模型并求解。

得出结论,问题2中的微分方程组的驻定解不稳定。

问题3:设定了新产品A服从均值为5(年)的指数寿命分布,其的报废量与新产品A的销售量成正比,新产品A报废后,人们仍愿意进行购买三个假设,参照Logistic销售模型,建立了微分方程销售模型并求解。

给出了最大需求量A及销售速度的曲线。

问题分析与解题思路
在杭州市场还没有出现过A产品或类似产品的条件下,A产品刚刚进入市场,人们对A产品不熟悉,A产品的销售速度较慢,但在逐渐的增加,人们对A产品的熟悉度增加,此时A产品的销售速度逐渐增快,当产品销售到一定数量时,人们就会停滞购买,A的销售速度减慢。

在杭州市场上有类似的产品,且市场占有率已达到15%的条件下,不考虑消费者同时拥有新产品A和其类似产品的情况,认为类似产品的市场占有率会影响新产品A的销售,且类似产品的销售模型与新产品A的销售模型相同。

在杭州市场上还没有出现过产品A或类似的产品时,考虑新产品A的寿命是有限的,即新产品A有一个服从均值为5(年)的寿命分布,新产品A的报废会使市场上的剩余销售量增加,所以,有理由认为新产品的销售速度不仅受销售量,剩余量的影响,还受到新产品A的寿命的影响。

解答过程与结果:
假设1
设A产品的需求量上限为M,x(t)表示在t时刻A产品的销售数量,则尚未购买的人数大约为M-x(t),另外,A的销售速度V与销售量x(t)和剩余需求量M-x(t)的积成正比,比例系数为k。

得到Logistic销售模型:
对(1)求解得:x=M
1+Ce−KMt
(C为任意常数)
取M=1,0x=0.01,k=1,用MATLAB求解得
x0=0.01;
t=0:10;
x=x0./(x0+(1-x0)*exp(-t));
plot(t,x)
销售数量--时间关系图
v0=0.01; t=0:10;
v=(v0*(1-v0)*exp(-t))./((v0+(1-v0)*exp(-t)).^2); plot(t,v)
销售速度---时间关系图
结论:由上面两图明显可以看到当销售数量达到最大销售数量一半时,销售速度最快,销量最好。

想要在杭州推销新产品A ,则初期应该小量生产并加广告宣传,当销售量处于最大需求量的20%-80%时,可以进行大批生产销售,超过80%时,则应当考虑转业。

假设2
用)(ty 表示时刻t 已售出的类似产品B 的数量,新产品A 的需求量与类似产品B 的需求量之和有一个上界M ,则尚未购买的人数大约为M -)(tx -)(ty 。

另外,类似产品B 的销售速度
dy dt
与销售量y(t)和剩余需求量M -x(t)-y(t)的积成正比,比例系数为p ,由题意知,t=0时刻,.即可得假定二下的如下微分方程销售模型:
(2) 上述为二阶非线性微分方程组令kM(1-x+y M
)x=0,且pM(1-x+y M
)y=0,得微分方程组(2)
的驻定解为:(0,0) ,(0,M),(M,0), (x i ,y i )且 x i +y i =M 。

[X,Y]=dsolve('Dx=x*(1-x -y)’,’Dy=y*(1-x -y)','x(0)=0.01','y(0)=0.15',‘t’) subplot(1,2,1) subplot(1,2,2)
运算结果:
X =1/(84*exp(-t)+16)
Y=(-84/(84*exp(-t)+16)^2*exp(-t)+1/(84*exp(-t)+16)-1/(84*exp(-t)+16)^2)*(84*exp(-t)+16) 结论:由于所有的驻定解均为不稳定的,即初值的微小误差会导致巨大损失。

因此,这样的特解不宜作为设计的依据。

所以,在此不给出企业(甲)在杭州市场上推销新产品A 的营销生产策略。

假设3
用z(t)表示时刻t 报废的新产品A 的数量,新产品A 的需求量有一个上界M ,则尚未购买的人数大约为M -x(t)-z(t).另外,新产品A 的报废量与新产品A 的已销售量成正比,比例系数为K,z(t)=Kx.由假设,新产品A 服从均值为5(年)的指数分布,故设使用寿命函数为f(t)= λe −λt ,由于E (t )=

=5, 由此可求得λ=0.2,则f(t)=0.2e −0.2t ,即单位时间内报废的新产品A
的数量为1-e −0.2t
,即k=1-e −0.2t 。

考虑此时新产品A 的销售速度
dy dt
仍旧与销售量x(t)
和剩余需求量M -x(t)-z(t)的积成正比,比例系数为q ,可得假定三下的如下微分方程销售模
型:
令w=x −1,得:
dw dt
=x −2dx dt
,代入(2)式,得到:dw dt
=-qMw+q(1-K), 将
k=1-e −0.2t 代入
dw dt
=-qMw+q(1-K)得:dw dt
=-qMw+q e −0.2t ,这是一阶线性微分方程,运用常数变易
法,求得它的通解为:w=C e −qMt +q qM−0.2
e −0.2t ,
即(1)的通解为:
代入初值x(0)=x 0,得: x=
qM−0.2
[(qM−0.2)x 0−q ]e −qMt +qe −0.2t
取M=1,q=1, x 0=0.1 用MATLAB 求得如下结果 x0=0.1; t=0:10;
x=0.8./((0.8*x0-1)*exp(-t)+exp(-0.2*t));
令A=
qM−0.2
q−q(1−e−0.2t)
,A代表了包含了新产品A会报废的因素下市场的需求量,A是
k=1-e−0.2t的函数。

x0=0.1;
t=0:10;
q=1;
x=((0.64*x0+0.8)*exp(-t)+0.16*exp(-0.2*t))./(((0.8*x0-1)*exp(-t)+exp(-0.2*t)).^2);
结论:如图能看出A产品在寿命初期销售量大,但随着寿命的增加,销售速度逐渐减慢
参考文献:
《竞争环境下的新产品市场扩散模型》曾勇二唐小我《新产品开发的质量与价格竞争策略研究》徐爱东龙勇《营销生产策略的制定》百度文库。

相关文档
最新文档