风冷却器的选型——散热计算
散热器选型-散热面积理论计算及风扇选择

散热器选型-散热面积理论计算及风扇选择散热器选型,散热面积理论计算及风扇选择。
散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。
Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。
(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。
散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。
设计散热系统时风扇选型的计算

足够的冷空气与散热片进行热交换,也会造成散热效果不好。
一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。
所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。
无论Intel 还是 AMD 的CPU 都已经到了与散热器不可分割、甚至丝毫也不能马虎的程度。
CPU 的风扇和散热片可以说是目前最实效、最方便、最常用的 CPU 降温的方法,因此选购一款好的 CPU 散热器是十分必要的。
根据空气散热三要素的原理,热源物体表面的面积、空气流动速度以及热源物体与外界的温差是影响散热速度的最重要因素,其实所有 CPU 散热器的设计也都是围绕更好地解决这三个问题而进行的。
下面就为大家介绍一些有关 CPU 散热器的性能参数,希望能对大家有所帮助。
风扇功率风扇功率是影响风扇散热效果的一个很重要的条件,功率越大通常风扇的风力也越强劲,散热的效果也越好。
而风扇的功率与转速又是直接联系在一起的,也就是说风扇的转速越高,风扇也就越强劲有力。
目前一般电脑市场上出售的都是直流12V 的,功率则从 0.x 瓦到 2.x 瓦不等,购买时需要根据你的 CPU 发热量来选择,理论上是功率略大一些的更好一些,不过,也不能片面地强调高功率,如果功率过大可能会加重计算机电源的工作负荷,从而对整体稳定性产生负面影响。
风扇口径该性能参数对风扇的出风量也有直接的影响。
在允许的范围之内,风扇的口径越大出风量也就越大,风力作用面也就越大。
通常在主机箱内预留位置是安装 8cm×8cm 的轴流风扇。
对于该指标,笔者认为应选择的风扇口径一定要与自己计算机中的机箱结构相协调,保证风扇不影响计算机其他设备的正常工作,以及保证计算机机箱中有足够的自由空间来方便拆卸其他配件。
浅谈散热器的选型与计算

浅谈散热器的选型与计算散热器是一种可以将机器或设备所产生的热量散发出去的装置,通常可以采用风冷或水冷的方式进行散热。
正确的散热器选型和计算对于保障机器设备正常的运行十分重要,下面将从散热器的类型、散热器的功率计算和散热器的选型几个方面进行简要的讲解。
1.散热器的类型根据散热器散发热量的方式不同,散热器可以分为风冷散热器和水冷散热器两类。
(1) 风冷散热器是指利用风扇将空气通过散热器的散热片,从而达到散热的目的。
风冷散热器主要适用于温度较低的场合,如一些家用电器、计算机主机等。
(2) 水冷散热器是指利用水的流动将热量传递到水中,再通过水冷却塔、冷却器等设备将热量散发出去。
相对于风冷散热器来说,水冷散热器散热效率更高,适用于需要处理大量热量的设备。
2.散热器的功率计算针对不同的机器或设备,散热器的需要的散热功率是不同的,下面将介绍散热功率的计算方法。
散热功率(P)= 机器或设备所产生的热量(Q) - 存储器等其他元件的散热功率(P1)- 机箱本身的散热功率(P2)其中,Q是机器产生的热量,可以根据机器的额定功率来计算。
P1是存储器、主板等其他元件产生的热量,可以查看相应的技术参数手册来确定。
P2是机箱本身产生的热量,可以根据机箱的材质和大小等因素来确定。
散热器的选型需要考虑多个方面因素:(1) 散热功率的大小;(2) 散热器的尺寸和重量是否与机器或设备的要求相符;(3) 散热器的材质和结构是否满足使用要求;在选择散热器的时候,可以根据机器或设备的具体要求以及相关的技术参数手册来确定合适的散热器。
同时,选型时还需要考虑到预算的问题,选择合适的散热器可以使设备保持正常运行。
总之,正确的散热器选型和计算是确保设备正常运行的重要环节,希望本文对您有所帮助。
散热器选型散热面积理论计算及风扇选择

散热器选型散热面积理论计算及风扇选择散热器的目的是将设备产生的热量有效地传递到周围环境中去。
选择适当的散热器需要考虑到散热器的材料、面积和设计等因素。
首先,计算散热面积的理论值需要知道设备的功耗和散热器的材料热导率。
功耗是设备在运行时产生的热量,以单位为瓦(W)表示。
热导率是材料传导热量的能力,以单位为瓦特尔(W/m·K)表示。
常见散热器材料的热导率如下:铜:400W/m·K铝:200W/m·K钢铁:50W/m·K塑料:0.2W/m·K根据设备的功耗和材料的热导率,可以计算散热器的表面积。
散热面积理论值(A)=设备功耗/(散热器材料热导率×温度差)其中,功耗以瓦特(W)为单位,热导率以瓦特尔(W/m·K)为单位,温度差以摄氏度(℃)为单位。
例如,如果我们有一个设备的功耗是100W,使用铝散热器,温度差为50℃,那么散热面积的理论值为:A=100/(200×50)=0.010m2接下来,选择合适的散热器。
散热器的选择需要考虑到散热器表面积、设计和材料等因素。
散热器的表面积应大于等于散热面积的理论值。
同时,散热器的设计也影响了散热效果。
常见的散热器设计包括:片状散热器、塔式散热器和液冷散热器等。
不同的设计适用于不同的场景,需要根据具体的需求进行选择。
此外,散热器的材料也是选择散热器时需要考虑的重要因素。
铜和铝是常用的散热器材料,铜具有更高的热导率,但价格较高;铝的热导率较低,但价格较便宜。
根据具体的需求和预算,选择适合的材料。
最后,选择适当的风扇。
风扇的作用是强制空气流过散热器,帮助散热。
选择适当的风扇需要考虑到风扇的风量和噪音产生。
风量是风扇单位时间内产生的气流量,以立方米每小时(m3/h)表示。
通常情况下,风扇的风量应大于散热器需要的风量,以确保足够的气流流过散热器。
此外,风扇的噪音也需要考虑。
噪音是以分贝(dB)为单位表示的。
散热器选型,散热面积理论计算及风扇选择

散热器选型,散热面积理论计算及风扇选择。
散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。
Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。
(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。
散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。
冷却器的设计选型计算公式

冷却器的设计选型计算公式在工业生产中,冷却器是一种非常重要的设备,它可以将热量从一个地方传递到另一个地方,从而实现对工艺流体的冷却。
冷却器的设计选型是非常关键的一步,它需要考虑到流体的流速、温度、压力等因素,以确保冷却器能够正常工作并满足生产需求。
在进行冷却器的设计选型时,需要使用一些计算公式来进行计算,下面我们就来介绍一些常用的冷却器设计选型计算公式。
1. 冷却器的传热面积计算公式。
冷却器的传热面积是决定其传热效果的关键因素,传热面积的大小将直接影响到冷却器的工作效率。
传热面积的计算公式为:\[A = \dfrac{Q}{U \times \Delta T}\]其中,A为传热面积,Q为传热量,U为传热系数,ΔT为温度差。
传热量Q可以通过流体的流速、温度等参数来计算,传热系数U则需要根据冷却器的具体结构和材料来确定,温度差ΔT则是流体进出口温度的差值。
2. 冷却器的冷却水流量计算公式。
冷却器通常需要通过冷却水来进行散热,冷却水的流量大小将直接影响到冷却器的冷却效果。
冷却水流量的计算公式为:\[Q = mc\Delta T\]其中,Q为冷却水的流量,m为冷却水的质量流量,c为冷却水的比热容,ΔT 为冷却水的温度差。
冷却水的质量流量m可以通过冷却器的散热量和温度差来计算,冷却水的比热容c则是一个常数,温度差ΔT则是冷却水的进出口温度的差值。
3. 冷却器的压降计算公式。
冷却器在工作过程中会产生一定的压降,压降的大小将直接影响到冷却器的流体流速和流量。
压降的计算公式为:\[ΔP = f \dfrac{L}{D} \dfrac{ρV^2}{2}\]其中,ΔP为压降,f为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流体流速。
摩擦系数f可以通过流体的雷诺数来计算,管道长度L和直径D则是冷却器的结构参数,流体密度ρ和流速V则可以通过流体的物性参数和流量来计算。
4. 冷却器的热阻计算公式。
冷却器的热阻是决定其传热效果的另一个关键因素,热阻的大小将直接影响到冷却器的传热速率。
风冷散热的设计及计算

风冷散热的设计及计算风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
风冷却器的选型——散热计算

风冷却器的选型——散热计算计算出液压系统单位时间内的热损耗,即系统的发热功率Pv,然后结合你需要的油温期望值T1,对照风冷却器的当量冷却功率P1曲线图,选择与之匹与的型号。
这是普遍使用的计算方法。
必须注意,在测定系统单位时间内油的温升时,要区分是否有冷却器在工作,该文所指的工况是系统没有冷却器时油的温升。
计算公式:Pv=ρ油×V×C油×ΔT/H,式中:Pv:发热功率(W)ρ油:油的密度(常取0.85Kg/L)V:油的容积(L)C油:液压油的比热容,常取2.15Kj/Kg℃ΔT:一定时间内油的温升H:温升时间(s)例:某一液压系统(无冷却器的工况下)在10分钟内油温从30℃上升至45℃,液压油的容积为80L。
发热功率计算如下:Pv=0.85×80×2.15×(45-30)/(10×60)=3.655Kw已知环境温度T2=30℃,最佳油温期望值55℃,则当量冷却功率计算如下:P1= Pv×η/(T1 -T2),式中:P1:当量冷却功率(w/℃)η:安全系数,一般取1.1T1:油温期望值(℃)T2:环境温度(℃)故:P1=3.655×1.1/(55-30)=0.161Kw/℃=161 w/℃对应主泵流量,依据161 w/℃的当量冷却功率查曲线图,选取匹配的风冷却器。
最方便的另一种散热计算法,是发热功率估算法:一般取系统总功率的1/3~1/2作为冷却器的散热功率,若工况为长时间保压状态(如夹紧作业),则系数最大值推荐2/3。
网上转载:/blog/heyida88/article/b0-i13503614.html收藏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风冷却器的选型——散热计算
计算出液压系统单位时间内的热损耗,即系统的发热功率Pv,然后结合你需要的油温期望值T1,对照风冷却器的当量冷却功率P1曲线图,选择与之匹与的型号。
这是普遍使用的计算方法。
必须注意,在测定系统单位时间内油的温升时,要区分是否有冷却器在工作,该文所指的工况是系统没有冷却器时油的温升。
计算公式:Pv=ρ
油×V×C
油
×ΔT/H,式中:
Pv:发热功率(W)
ρ油:油的密度(常取0.85Kg/L)
V:油的容积(L)
C油:液压油的比热容,常取2.15Kj/Kg℃
ΔT:一定时间内油的温升
H:温升时间(s)
例:某一液压系统(无冷却器的工况下)在10分钟内油温从30℃上升至45℃,液压油的容积为80L。
发热功率计算如下:
Pv=0.85×80×2.15×(45-30)/(10×60)=3.655Kw
已知环境温度T2=30℃,最佳油温期望值55℃,则当量冷却功率计算如下:
P1= Pv×η/(T1 -T2),式中:
P1:当量冷却功率(w/℃)
η:安全系数,一般取1.1
T1:油温期望值(℃)
T2:环境温度(℃)
故:P1=3.655×1.1/(55-30)=0.161Kw/℃=161 w/℃
对应主泵流量,依据161 w/℃的当量冷却功率查曲线图,选取匹配的风冷却器。
最方便的另一种散热计算法,是发热功率估算法:一般取系统总功率的1/3~1/2作为冷却器的散热功率,若工况为长时间保压状态(如夹紧作业),则系数最大值推荐2/3。
网上转载:/blog/heyida88/article/b0-i13503614.html收藏。