2.8.16进制转换

合集下载

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换一.在计算机应用中,二进制使用后缀b表示;十进制使用后缀d表示八制使用后缀Q表示,十六制使用后缀H表示。

二.二进制,十六进制与十进制的计算转换1.二进制转换为十进制计算公式:二进制数据X位数字乘以2的X-1次方的积的总和例:b=( )d相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=1712.十六进制转换十进制计算公式:二进制数据X位数字乘以16的X-1次方的积的总和(与二进制转换十制进同理的,将底数换为16)注意:在十六进制中,10-15依次用A,B,C,D,E,F表示例:1F3E H=()d计算:1*16的3次方+15*16的2次方+3*16的1次方+14*16的0次方=1*4096+15*256+3*16+14=7998三.十进制与二进制,十六制的计算转换1.十进制转换为二进制十进制数据数字除以2的余数的逆序组合例:404d=( )b2|404余02|202余02|101余02|50余12|25余02|12余12|6余02|3余12|1计算结果便是:02.十进制转换十六进制。

与上面同理,注意的是10以上的数字用字母表示,除数是16十六进制与二进制的转换,建议通过十进制来进行中转。

带小数点的十进制转换为二进制时同理,小数店后的数位指数为负指数================================================================= =====================关于“进制之间的转换”问题的分析指导在计算机文化一书中,在其中一个章节里面详细介绍了进制之间的转换,而且在考试中进制转换也占了一定的比例,虽然分数不是很多,但是因为平时大家接触的不多,并且有点繁复,所以很多学员在做这种题目,要么选择猜答案,要么选择放弃。

笔者觉得只要掌握了方法,其实这些题目也很简单的,下面我就对进制的转换进行具体的分析和讲解,以供大家参考。

2,8,10,16进制相互转换

2,8,10,16进制相互转换

2,8,10,16进制相互转换进制转换1正数我们以(25.625)(⼗)为例讲解⼀下进制之间的转化问题。

⼗进制--->⼆进制对于整数部分,⽤被除数反复除以2,除第⼀次外,每次除以2均取前⼀次商的整数部分作被除数并依次记下每次的余数。

另外,所得到的商的最后⼀位余数是所求⼆进制数的最⾼位。

⼗进制转,N进制。

对于⼩数部分,采⽤连续乘以基数2,并依次取出的整数部分,直⾄结果的⼩数部分为0为⽌。

故该法称“乘基取整法”。

给你⼀个⼗进制,⽐如:6,如果将它转换成⼆进制数呢?10进制数转换成⼆进制数,这是⼀个连续除以2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?结合例⼦来说明。

⽐如要转换6为⼆进制数。

“把要转换的数,除以2,得到商和余数”。

那么:⼗转⼆⽰意图要转换的数是6,6 ÷ 2,得到商是3,余数是0。

“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。

那就:3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。

那就:1 ÷ 2, 得到商是0,余数是1“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成⼆进制,结果是110。

把上⾯的⼀段改成⽤表格来表⽰,则为:被除数计算过程商余数66/23033/21111/201(在计算机中,÷⽤/ 来表⽰)⼆进制数转换为⼗进制数⼆进制数第0位的权值是2的0次⽅,第1位的权值是2的1次⽅……所以,设有⼀个⼆进制数:0110 0100,转换为10进制为:下⾯是竖式:0110 0100 换算成⼗进制第0位0 * 20 = 0第1位0 * 21 = 0第2位1 * 22 = 4第3位0 * 23 = 0第4位0 * 24 = 0第5位1 * 25 = 32第6位1 * 26 = 64第7位0 * 27 = 0公式:第N位2(N)---------------------------36⽤横式计算为:0 * 20 + 0 * 21 + 1 * 22 + 0 * 23 + 0 * 24 + 1 * 25 + 1* 26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位:1 * 22 + 1 * 25 +1*26 = 10010进制数转换成8进制的⽅法,和转换为2进制的⽅法类似,唯⼀变化:除数由2变成8。

二进制八进制十进制十六进制之间的转换

二进制八进制十进制十六进制之间的转换

1、二、八、十六进制数转换为十进制数• 乘权求和例1 : (10101)2=1×2 4 + 0×23 +1×22 + 0×21 + 1×20 =(21)10例2: (3215)8= 3×83 + 2×82 + 1×81 + 5×80 =(1677)102、十进制数转换为二、八、十六进制数• 整数转换:除二(八或十六)反向取余⏹ 小数转换:乘二(八或十六)取整例:(0.625)10= (0.101)20 .625× 21 .250 高位 0. 25× 20. 500. 5× 21. 0 低位3、二进制数与八、十六进制数的转换⏹ ⑴二进制数与八进制数转换① 二进制数 → 八进制数:三位合一位例 将二进制数 1011010100 转换为八进制数1,011,010,100↓ ↓ ↓ ↓1 32 4∴ (1011010100)2=(1324)8② 八进制数 → 二进制数:一位变三位 例(12345)8=(001,010,011,100,101)2⏹ (2)二进制数与十六进制数转换① 二进制数 → 十六进制数:四位合一位(23)10= (10111)2 2┈┈1 2 ┈┈1 2 ┈┈1 2 ┈┈02 0 ┈┈1低位 高位 23 1152 1例:(23)10 → 二进制例将二进制数1011010100转换为十六进制数10, 1101, 0100↓↓↓2 D 4∴(1011010100)2=(2D4)16②十六进制数→二进制数:一位变四位例(AB01)16=(1010,1011,0000,0001)2。

二进制_八进制_十进制_十六进制之间的相互转换

二进制_八进制_十进制_十六进制之间的相互转换

二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。

二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。

下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位0 * 2^0 = 0第1位0 * 2^1 = 0第2位1 * 2^2 = 4第3位0 * 2^3 = 0第4位0 * 2^4 = 0第5位1 * 2^5 = 32第6位1 * 2^6 = 64第7位0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧在计算机科学和编程中,经常需要进行二进制、八进制和十六进制数
之间的转换。

这些转换的技巧可以帮助我们在不同进制之间快速转换数值。

下面是一些常用的技巧和方法:
一、二进制与八进制之间的转换:
二、二进制与十六进制之间的转换:
三、八进制与十六进制之间的转换:
1.从八进制到十六进制:先将八进制数转换为二进制数,然后将二进
制数转换为对应的十六进制数。

2.从十六进制到八进制:先将十六进制数转换为二进制数,然后将二
进制数转换为对应的八进制数。

上述方法是最基本也最直接的转换方法。

除了这些方法外,还有一些
进一步简化转换的技巧:
这些简化方法在转换大量数值时可以极大地提高转换速度和准确性。

总结起来,对于二进制、八进制和十六进制之间的转换,我们可以采
用分组的方式,将数值从一个进制转换到另一个进制。

同时,可以应用数
字与对应进制数的直接对应关系,将多位二进制数直接转换为对应的八进
制或十六进制数,以提高转换的速度和效率。

再者,熟悉几个特殊的数值
对应关系,也可以帮助在不同进制之间快速转换。

2、8、16、10进制转换

2、8、16、10进制转换

进制及进制间的互相转换二进制:数码(0、1)逢二进一十进制:数码(0、1、2、3、4、5、6、7、8、9)逢十进一八进制:数码:(0、1、2、3、4、5、6、7)逢八进一十六进制(0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F)逢十六进一各个进制之间对应关系:转换规则:任何进制转换成十进制:按权展开Exp(例子):(10110101)2=1*27+0*26+1*25+1*24+0*23+1*22+0*21+1*20=(181)10(367)8=3*82+6*81+7*80=(247)10十进制转二进制:除二取余法Exp:(25)10=(?)2思考题:1.你会八进制转十进制么?2.您能将十六进制数6A转换成十进制数么?3.既然上面的都会,那八转二,十六转二呢?有没有什么简便的方法呢?练习:(一位变多位,不足左边添零)1. (367)8=()22. (456)8=()23. (87)10=()24. (165)10=()25. (3E)16=( )26. (F6)16=( )2将以下二进制数转换成八进制(三位变一位,不足三位高位添零)10101001=1101011=将以下二进制转换成十六进制(四位变一位,不足四位高位添零)1001011101=101101100=1Byte(字节)=8bit(位)1KB=1024Byte1MB=1024KB1G=1024MB1T=1024G一个英文字母=1Byte(字节)一个汉字=2Byte(字节)请同学们打开电脑中已经存储的歌曲文件或电影文件,看看他们有多大。

一首歌的大小大约是3( )?一部高清电影的大小一般是1-3()?以上完成的同学请将该文档上传至教师机(专业+姓名)。

2进制、8进制、10进制以及16进制间的相互换算

2进制、8进制、10进制以及16进制间的相互换算

进位制转换目录进位制转换 (1)一:简述: (1)二:进制转换的理论 (4)1、二进制数、八进制、十六进制数转换为十进制数:用按权展开法 (4)2:十进制转化成R进制(除R取余法) (4)3:十六进制转化成二进制 (5)4:二进制转化成十六进制 (5)5:八进制转化成二进制 (5)6:二进制转化为八进制 (5)三:具体实现 (6)1:二进制转换成十进制 (6)2:十进制整理转换成二进制 (6)3:十进制小数转换成二进制小数 (7)4:十六进制转为二进制 (7)5:二进制数转为十六进制 (7)一:简述:一:简述:进位计数制:是人们利用符号来计数的方法。

一种进位计数制包含一组数码符号和两个基本因素。

(二进制B,Binary;八进制O原是字母O,Octal,避免与数字0混淆改用Q;十进制D,Decimal;十六进制H,Hexadecimal。

)(1)数码:用不同的数字符号来表示一种数制的数值,这些数字符号称为数码。

(2)基:数制所使用的数码个数称为基。

(3)权:某数制每一位所具有的值称为权。

表格1 BCD码(用四位权为8421—<即2^*次方>的二进制数来表示等值的一位十进制数)表格2制数的对应关系二:进制转换的理论1、二进制数、八进制、十六进制数转换为十进制数:用按权展开法把一个任意R进制数an an-1 ...a1a0 . a-1 a-2...a-m转换成十进制数,其十进制数值为每一位数字与其位权之积的和。

an×R n + an-1×R n-1 +…+ a1×R 1 + a0×R 0 + a-1 ×R-1+ a-2×R-2+ …+ a-m×R-m2:十进制转化成R进制(除R取余法)十进制数轮换成R进制数要分两个部分:①整数部分:除R取余数,直到商为0,得到的余数即为二进数各位的数码,余数从右到左排列(反序排列)。

②小数部分:乘R取整数,得到的整数即为二进数各位的数码,整数从左到右排列(顺序排列)。

二进制、 八进制、十进制和十六进制转化方法

二进制、 八进制、十进制和十六进制转化方法

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:下面是竖式:0110 0100 换算成十进制第0位 0 * 20 = 0,第1位 0 * 21 = 0,第2位 1 * 22 = 4,第3位 0 * 23 = 0,第4位 0 * 24 = 0,第5位 1 * 25 = 32,第6位 1 * 26 = 64,第7位 0 * 27 = 0 +--------------------------- 100,用横式计算为:0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100,0乘以多少都是0,所以我们也可以直接跳过值为0的位:1 * 22 + 1 * 23 + 1 * 25 +1 * 26 = 100八进制数转换为十进制数.八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:用竖式表示:1507换算成十进制。

第0位 7 * 80 = 7,第1位0 * 81 = 0 ,第2位 5 * 82 = 320 ,第3位 1 * 83 = 512 +--------------------------839,同样,我们也可以用横式直接计算:7 * 80 + 0 *81 + 5 * 82 + 1 * 83 = 839.结果是,八进制数 1507 转换成十进制数为 839.十六进制数转换成十进制数,2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?用竖式计算: 2AF5换算成10进制:第0位: 5 * 160 = 5,第1位: F * 161 = 240,第2位: A * 162 = 2560,第3位: 2 * 163 = 8192 + ----10997, 直接计算就是:5 * 160 + F * 161 + A * 162 +2 * 163 = 10997.(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是一千二百三十四?你尽可以给他这么一个算式:1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100.10进制数转换为2进制数.给你一个十进制,比如:6,如果将它转换成二进制数呢?10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?我们结合例子来说明。

比如要转换6为二进制数。

“把要转换的数,除以2,得到商和余数”。

那么:要转换的数是6, 6 ÷ 2,得到商是3,余数是0。

(不要告诉我你不会计算6÷3!).“将商继续除以2,直到商为0……”.现在商是3,还不是0,所以继续除以2。

那就: 3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。

那就: 1 ÷ 2, 得到商是0,余数是1(拿笔纸算一下,1÷2是不是商0余1!).“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。

把上面的一段改成用表格来表示,则为:常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。

说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。

10进制数转换为8、16进制数非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。

来看一个例子,如何将十进制数120转换成八进制数。

用表格表示:120转换为8进制,结果为:170。

非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。

同样是120,转换成16进制则为:120转换为16进制,结果为:78。

请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。

二、十六进制数互相转换.二进制和十六进制的互相转换比较重要。

不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

我们也一样,只要学完这一小节,就能做到。

首先我们来看一个二进制数:1111,它是多少呢?你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。

然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。

即,最高位的权值为23 = 8,然后依次是 22= 4,21=2, 20= 1。

记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

下面列出四位二进制数 xxxx 所有可能的值(中间略过部分),仅4位的2进制数快速计算方法十进制值十六进值1111 = 8 + 4 + 2 + 1 = 15 F1110 = 8 + 4 + 2 + 0 = 14 E1101 = 8 + 4 + 0 + 1 = 13 D1100 = 8 + 4 + 0 + 0 = 12 C1011 = 8 + 4 + 0 + 1 = 11 B1010 = 8 + 0 + 2 + 0 = 10 A1001 = 8 + 0 + 0 + 1 = 10 9....0001 = 0 + 0 + 0 + 1 = 1 10000 = 0 + 0 + 0 + 0 = 0 0二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

如(上行为二制数,下面为对应的十六进制):1111 1101 , 1010 0101 , 1001 1011F D , A 5 , 9 B 反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?先转换F:看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。

接着转换 D:看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。

所以,FD转换为二进制数,为:1111 1011,由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。

所以我们可以先除以16,得到16进制数:结果16进制为: 0x4D2.然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。

其中对映关系为:0100 – 4,1011 – D,0010 – 2.同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制.下面举例一个int类型的二进制数:01101101 11100101 10101111 00011011,我们按四位一组转换为16进制: 6D E5 AF 1B 。

另一个话题:原码、反码、补码。

我们已经知道计算机中,所有数据最终都是使用二进制数表达。

我们也已经学会如何将一个10进制数如何转换为二进制数。

不过,我们仍然没有学习一个负数如何用二进制表达。

比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:0000000000000000 00000000 00000101,5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?在计算机中,负数以其正值的补码形式表达。

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的原码。

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。

(1变0; 0变1)比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。

称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。

那么,补码为:11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011,所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。

转换为十六进制:0xFFFFFFFB。

再举一例,我们来看整数-1在计算机中如何表示。

相关文档
最新文档