浅析互通式立交匝道起终点平面接线设计

合集下载

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨公路互通式立交匝道是一种常见的交通路线设计,它能够有效地将不同的道路交汇处进行连接,为车辆提供便利的通行。

本文将就公路互通式立交匝道的路线设计进行探讨,包括设计原则、设计要点和案例分析。

一、设计原则1. 安全性原则公路互通式立交匝道设计的首要原则就是安全性。

设计者需要在保证交通畅通的基础上,最大限度地保障行车人员及行人的安全,避免交通事故的发生。

合理设置匝道长度和坡度,增设必要的隔离设施和交通标识,确保车辆行驶时能够保持稳定速度,避免追尾等事故的发生。

2. 通行效率原则公路互通式立交匝道的设计还需要考虑通行效率。

设计者需要根据交通流量的大小、车辆行驶速度等因素,科学合理地规划匝道长度、匝道弯道的半径等,以降低交通阻塞和拥堵的概率,提高匝道通行效率。

3. 融入周边环境原则公路互通式立交匝道的设计还需要与周边环境相融合。

在匝道的设计过程中,要充分考虑到周边的自然环境、建筑景观等因素,采用符合当地环境的设计理念和风格,使匝道与周边环境融为一体。

二、设计要点1. 匝道长度匝道长度的设计至关重要。

若匝道长度设置不当,容易造成交通事故的发生。

通常情况下,匝道的长度需要根据车辆行驶速度、交通流量等因素进行科学合理的规划。

较快车辆(如高速行驶车辆)需要更长的匝道,以确保车辆能够安全加速和减速。

2. 匝道坡度匝道坡度的设计也需要合理。

匝道坡度太陡会增加车辆制动难度,匝道坡度太缓则会影响车辆的加速效率。

设计者需要根据实际情况规划匝道的坡度,以确保车辆能够顺利加速和减速。

3. 匝道弯道设计匝道弯道的设计也是关键。

若弯道设计不当,车辆易发生侧滑或撞车等事故。

需要设计合适的匝道弯道半径和车辆行驶线路,使车辆在匝道内能够稳定行驶,提高通行安全性。

4. 交通标识和隔离设施在公路互通式立交匝道的设计中,还需要设置合适的交通标识和隔离设施,指导车辆行驶,确保车辆在匝道上行驶时能够做到有序、安全,避免发生事故。

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨公路互通式立交是一种常见的交通设施,能够实现不同道路之间的互通,有效缓解交通压力,提高道路通行效率。

而匝道路线设计是决定立交交通流畅和安全的重要因素之一。

本文将探讨公路互通式立交匝道路线设计的相关问题。

匝道长度的设计是关键。

匝道长度应根据路段交通流量和速度要求来确定。

对于高速公路入口匝道,长度应足够长以提供足够的加速距离,确保车辆能够顺利进入主线。

而对于出口匝道,长度应足够长以提供足够的减速距离,确保车辆能够安全地从主线驶出。

匝道的设计速度和主线速度也需协调一致,避免造成交通流的阻塞。

匝道与主线的连接方式也需要合理设计。

常见的连接方式有“直接连接”和“分离式连接”。

直接连接是指匝道与主线在同一平面上连接,适合高交通流量和高速度要求的场景。

而分离式连接则将匝道与主线进行物理分隔,适合低交通流量和低速度要求的场景。

在实际设计中,应根据具体情况选择合适的连接方式。

匝道和主线之间的转弯半径也需合理设计。

转弯半径过小会影响车辆的行驶稳定性,容易造成事故。

匝道和主线的转弯半径应满足安全要求,并兼顾车辆的转弯半径,确保车辆能够平稳转弯。

匝道的弯道坡度也需注意。

弯道坡度是指匝道纵向的坡度,用以补偿车辆转弯半径所需的高度。

弯道坡度应根据匝道长度和转弯半径来确定,以确保车辆能够平稳过渡。

公路互通式立交的匝道路线还需考虑行人和非机动车的通行。

匝道的设计应注意行人和非机动车通行的安全性和便捷性。

可设置人行天桥、地下通道或专用非机动车道等设施,确保行人和非机动车能够安全、便捷地通行。

公路互通式立交匝道路线设计需要考虑匝道长度、连接方式、转弯半径、弯道坡度以及行人和非机动车通行等因素。

科学合理的设计能够提高交通效率和安全性,为人们提供更便捷的交通出行。

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨公路互通式立交匝道是指在高速公路上的交叉点建立起相互联通的立交桥和匝道,以便车辆能够顺畅地进行转弯和换道。

这种设计能够有效减少交通堵塞和事故发生,提高交通效率和安全性。

在城市交通规划中,公路互通式立交匝道的设计是非常重要的一部分,下面我们将探讨一下关于公路互通式立交匝道路线设计的相关内容。

公路互通式立交匝道的路线设计需要考虑的因素有很多。

首先是交通量和车辆类型的考虑。

不同地区的交通量和车辆类型是不同的,有些地方可能主要是货车流量大,有些地方可能是客车和私家车流量多。

在设计公路互通式立交匝道的时候,需要根据具体地区的交通情况来确定车道的数量和宽度,以及匝道的弯道半径和坡度等。

这样才能够更好地适应现实的交通需求,提高交通的顺畅度和安全性。

公路互通式立交匝道的路线设计还需要考虑到地形和环境因素。

不同地区的地形和环境是不同的,有的地方可能是平原,有的地方可能是丘陵,有的地方可能是山区。

在不同的地形条件下,公路互通式立交匝道的设计也会有所不同。

比如在丘陵或者山区地区,可能需要设计更多的匝道和更长的匝道,以适应地形的起伏和曲折。

而在平原地区,可能可以设计更简洁的匝道和更直的匝道。

不同的环境条件也会影响到道路的建设和维护,比如在水土流失严重的地区可能需要加强路基和排水设施的设计,以保证道路的安全和稳定。

公路互通式立交匝道的路线设计还需要考虑到未来的发展和扩建。

城市的交通需求是不断变化的,而且未来的交通需求可能会更加复杂和多样化。

在设计公路互通式立交匝道的时候,需要考虑到未来的发展和扩建空间,留出足够的余地和空间,以应对未来的交通需求。

这样一来,可以避免以后的交通拥堵和道路改建成本的增加,提高道路的使用寿命和经济性。

公路互通式立交匝道的路线设计是一个复杂而又综合性很强的工程项目,需要综合考虑交通量、车辆类型、地形和环境等多种因素,才能够设计出符合实际需求的匝道路线。

只有充分考虑这些因素,才能够设计出更加安全、顺畅、经济和适用的公路互通式立交匝道路线。

浅谈互通式立交路线设计

浅谈互通式立交路线设计

浅谈互通式立交路线设计作者:万维来源:《城市建设理论研究》2013年第15期摘要:互通式立交是干线公路的衔接枢纽,正确把握互通式立交的设计要素,合理选择互通立交形式,准确运用技术指标,对保证互通式立交的行车安全、提升服务水平和降低工程造价等至关重要。

笔者结合自己多年的工作经验,对互通式立交路线设计中的若干问题进行论述。

关键词:互通式立交、变速车道、立交布局、平面线形设计中图分类号:S611 文献标识码:A 文章编号:一、引言在互通式立交的设计过程中,需积累更多的宝贵经验,同时分析已建成立交中存在的问题,吸取安全事故中的教训,进一步提升立交的设计水平。

加强互通式立交的设计研究,可以改善干线公路与其他公路的交通衔接,使得交通更加合理和科学,同时加强地区的经济往来。

二、互通式立交匝道设计线的确定连接互通式立交中相交道路并且供上下相交道路转弯车流行驶的连接道,称为匝道。

匝道的出入口处与高速公路连接的平顺性影响着车辆的安全行驶,也是高速公路互通式立交设计的难点和重点。

在设计中,匝道的设计线宜采用靠主线一侧的匝道行车道边线。

这样的处理,在以后的设计中能很好地使出入口匝道处路面与主线相衔接。

匝道路面的旋转也采用此线作旋转轴,不论出入口以后匝道路面的超高大于或小于主线路面超高(或路面横坡),都能容易地得到满足。

在单喇叭互通式立交中,匝道的设计线是采用环形曲线还是S型曲线非常重要。

不少设计中都以交通流量作为确定内环匝道布设的依据,即流量小的方向通过内环,流量大的通过外环的S 型匝道。

因此将出口匝道设置成S型曲线,而将环形曲线作为入口匝道。

其实另外一个考虑的因素也同样重要,即出口匝道的线形指标要高于入口匝道,一般情况下对于交通量小的匝道,采用环形匝道,无论是从交通容量上还是从行驶费用上都是妥当的;但内外环交通量相差不悬殊时,应充分重视出口匝道的重要性。

1、互通式立交的匝道设计匝道设计按一个固定车速来控制整个匝道的设计指标,是不符合汽车行驶特性的,会导致匝道不能达到顺适、安全、经济和通畅的要求。

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨摘要:随着时代的进步,我国城市的规模和人口数量也在迅速增长,但同时也带来了严重的交通拥堵问题。

因此,政府采取了一系列措施来改善这一状况,其中最具代表性的便是采用互通式立交系统,以期达到减少交通拥堵的目的。

互通式立交的出现大大减少了道路拥堵,有效降低了事故发生的概率,受到了社会各界的广泛关注。

本文以一个具体的工程项目为例,深入探讨了互通式立交匝道的路线设计。

关键词:互通式立交匝道路线设计随着科技的发展,互通式立交桥已成为当今城市交通系统的重要组成部分,它不仅可以有效地减少车辆的数量,而且还能够有效地改善交通状况。

通过将道路与其它道路相交,互通式立交可以有效地减少车流量,提高出行效率。

同时,它也可以帮助管理和调节车流,并为城市的发展提供重要支持。

一、工程概况这篇文章以一条公路的互通式立交桥为研究对象,深入分析其中的问题。

这条公路宽为25.5米,其中的交叉道路宽为12米,G、H两匝道桥采用单箱双室截面,桥顶宽10.5米,底宽6.5米,梁高1.3米。

G与公路有12.18度的夹角,H与公路有42.54度的夹角。

二、互通式立交建设的条件随着城市化的不断深入,立体交叉路线的建设与运用,不仅有助于促进城市的交通便利性,也为当地的经济发展提供了强有力的支撑。

图1为四种匝道类型。

因此,在设计这些路线的过程中,应当综合考量城市总体规划、连霍高速公路的功能、标准,并充分认识到它们对于当地路网的重要性,从而确保它们符合以下两个条件:第一,技术选择因素,在构建立体交叉道路时,应该充分考虑到交叉口几期道路的交通情况,以便有效减轻当地交通压力,并有效防止交通拥堵的出现。

因此,在进行互通式立交的技术选择时,应该充分考虑这一点。

当铁路干线给城市带来不便时,为了解决这一问题,我们可以考虑建设多层次的立体交叉道路。

但是,在规划和施工的同时,也要根据当地的经济发展水平和地理环境,充分考虑到它们的实用价值,使其能够满足不同的需求。

浅析公路互通式立交设计

浅析公路互通式立交设计

交通科技与管理37规划与管理0 引言 在城市规划和公路路网规划中,交通状态分析是交通规划必不可少的一项重要内容。

由于道路的纵横交错而形成很多交叉口,在交叉口内交通流运动状态有直行、左转弯、右转弯三个行驶方向。

如果在同一平面上,各方向行驶的车辆便会相互交织,从而产生许多交织段和冲点,形成了非常复杂的交通状态,大大降低车速。

并使得路口的通行能力不足,难以保证交通安全,所以在交叉口中发生交通事故的比例非常高。

在交叉口内产生交通干扰的原因是由于出现了交通流线问的分流点、合流点和冲突点三类交通特征点,因此,将相交道路通过建造立体结构物设施来交叉是解决道路平面交叉的一种非常好的工程方法。

1 互通式立交的设计技术指标 立交在设计过程中必须先将设计指标确定好,设计指标确定好后,可以将其他参数也固定下来,从而便于进行设计。

(1)计算行车速度:主线公路采用100 km/h;相交公路采用50 km/h~60 km/h;而A匝道采用50 km/h~60 km/h,小环道采用30 km/h,其B、C、D匝道采用40 km/h。

详细的计算速度各人设计不同,要进行研究和分析才能确定的。

(2)桥上净空:机动车采用5.00 m,在设计过程中,设计的标高为路面标高,上下两线之间的高度应该加立交桥的上部结构的高度和下线的路面可能维修的高度,而不是5.00 m。

(3)路基及车道宽度:主线设计路面26 m宽,其中中央分隔带宽3 m,左侧路缘带宽0.75×2 m,行车道4×3.75 m,硬路肩2×2.50 m,土路肩2×0.75 m。

被交线(公路)设计路面12 m宽,其中行车道2×3.75 m,左右硬路肩2×1.50 m,土路肩2×0.75 m。

2 互通式立交的间距 《公路工程名词术语》对互通式立交的间距没有作明确的解释,按照目前国内的设计习惯,一般理解为互通式立交主线与被交公路(无被交公路时与主要匝道)交叉点之间的距离。

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨

公路互通式立交匝道路线设计的探讨【摘要】公路互通式立交匝道是现代城市交通规划中常见的重要组成部分。

本文从设计原则、立交匝道设计、公路互通式设计考虑因素、立交匝道路线选择和安全性设计等方面展开探讨。

设计原则包括提高通行效率、减少交通拥堵等;立交匝道设计应考虑路线流畅性和便捷性;公路互通式设计需考虑周边环境和城市发展规划等因素。

在立交匝道路线选择中,需要综合考虑交通组织、道路容量和接驳路线等因素;安全性设计是设计中不可忽视的重要环节,应充分考虑行车安全和交通流量控制等方面。

通过对这些内容的深入探讨,可以更好地理解公路互通式立交匝道路线设计的重要性和复杂性,为城市交通规划提供重要参考。

【关键词】引言、设计原则、立交匝道设计、公路互通式设计考虑因素、立交匝道路线选择、安全性设计、结论1. 引言1.1 引言公路互通式立交匝道是现代城市道路交通系统中常见的一种设计形式,其能有效地提高道路通行效率,减少交通拥堵。

在设计公路互通式立交匝道时,需要考虑多方面因素,包括交通流量、道路连接、安全性等。

本文将对公路互通式立交匝道路线设计进行探讨,以期为相关领域的研究和实践提供参考。

在公路互通式立交匝道的设计过程中,需要遵循一定的设计原则。

设计应充分考虑交通流量的变化和道路连接的需求,确保立交匝道的通行效率和连通性。

安全性是设计的重要考量因素,要保证匝道设计符合交通规范和安全标准,最大程度减少交通事故风险。

立交匝道的设计包括匝道长度、坡度、弯道半径等方面。

在公路互通式设计考虑因素中,需要综合考虑交通需求、土地利用、环境影响等多方面因素,提高匝道设计的综合效益和可持续性。

在选择立交匝道路线时,需要结合实际情况和技术要求,考虑交通流量、土地利用、环境保护等方面因素,选择最合适的路线方案。

安全性设计是公路互通式立交匝道设计中的重要环节,在设计过程中需要考虑交通流量、视线、标志标线等因素,确保匝道的安全性和顺畅性。

通过对公路互通式立交匝道路线设计的探讨,可以更好地了解其设计原则、设计要素和安全性设计,为今后的公路交通规划和设计提供参考依据。

浅析互通式立交匝道起终点平面接线设计

浅析互通式立交匝道起终点平面接线设计

浅析互通式立交匝道起终点平面接线设计摘要:互通式立交匝道起点平面线形设计尤为重要,尤其是对应主线上为缓和曲线时,在匝道起、终点设计中较为复杂。

规范中对此没有明确具体的规定,本文将通过设计实例,对此加以总结归纳,以供参考。

关键词:互通式立交;主线为缓和曲线;匝道起终点设计Abstract: Thehorizontal alignmentdesignoftheinterchangerampstarting pointis particularlyimportant, especiallywhenthetransition curvecorresponding to the main line, rampterminaldesign more complex.Thereisnoclear and specificprovisions of the specification,design examples, whichtobesummarizedfor reference.Key words: interchange;mainlinefor transition curve;rampterminaldesign1、前言互通立交是路网的一个重要组成部分,无论在高速公路还是在城市道路中都具有交通枢纽的作用,其中匝道就是相交道路的连接道,供车辆驶入驶出,其变速车道与主线部分相依,此部分的设计需要综合考虑主线线形,如果设置不当,很容易出现不顺适,造成该处行车不舒适,或者使车辆行驶条件恶化,存在交通安全隐患。

匝道起终点的接线设计,规范上要求变速车道全长范围内原则上采用与主线相同的线形(相同半径的圆弧或相同参数的回旋线),实际设计中,当匝道起终点对应主线线形为直线或者圆曲线时,较为容易;当主线对应处为缓和曲线时,设计时相对复杂,理论上应采用缓和曲线接线设计,但是由于主线上的缓和曲线曲率半径很大,所以为方便设计和施工,也可以采用圆曲线进行接线设计,本文就是针对这种情况进行总结分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析互通式立交匝道起终点平面接线设计
摘要:互通式立交匝道起点平面线形设计尤为重要,尤其是对应主线上为缓和曲线时,在匝道起、终点设计中较为复杂。

规范中对此没有明确具体的规定,本文将通过设计实例,对此加以总结归纳,以供参考。

关键词:互通式立交;主线为缓和曲线;匝道起终点设计
Abstract: Thehorizontal alignmentdesignoftheinterchangerampstarting pointis particularlyimportant, especiallywhenthetransition curvecorresponding to the main line, rampterminaldesign more complex.Thereisnoclear and specificprovisions of the specification,design examples, whichtobesummarizedfor reference.
Key words: interchange;mainlinefor transition curve;rampterminaldesign
1、前言
互通立交是路网的一个重要组成部分,无论在高速公路还是在城市道路中都具有交通枢纽的作用,其中匝道就是相交道路的连接道,供车辆驶入驶出,其变速车道与主线部分相依,此部分的设计需要综合考虑主线线形,如果设置不当,很容易出现不顺适,造成该处行车不舒适,或者使车辆行驶条件恶化,存在交通安全隐患。

匝道起终点的接线设计,规范上要求变速车道全长范围内原则上采用与主线相同的线形(相同半径的圆弧或相同参数的回旋线),实际设计中,当匝道起终点对应主线线形为直线或者圆曲线时,较为容易;当主线对应处为缓和曲线时,设计时相对复杂,理论上应采用缓和曲线接线设计,但是由于主线上的缓和曲线曲率半径很大,所以为方便设计和施工,也可以采用圆曲线进行接线设计,本文就是针对这种情况进行总结分析。

2、匝道起点设计
以山东省某高速公路互通立交减速车道设计为例,该公路主线设计速度为120km/h,A匝道驶离主线,其中此处主线平面线形为A=775、Ls=280m的不完整缓和曲线(半径由4980m变化到1500m)。

确定起点位置
首先根据互通总体位置,确定A匝道设计起点(主线渐变段终点)的大约位置,在这个范围内由于主线是缓和曲线,其每一点的曲率半径都不同,故需要人为取其中一点作为设计起点,通常可取一个整桩号点,以方便计算、标注。

本工程中取A匝道设计起点A0为AK0+000=K42+798.784
计算起点曲率半径
根据公式:
此公式用于不完整缓和曲线的计算,其中A为该不完整缓和曲线参数,R大为大圆半径,R小为小圆半径,Ls为不完整缓和曲线的长度。

计算主线上K0点曲率半径:
=77521500/(7752 – 1500174.20)
=2655
则A0点曲率半径:RA=2655 – 11.6= 2643.4
其中11.6为A0K0 两点间的距离,由主线和匝道此处横断面计算所得。

最后结果取整得:RA= 2640m
减速车道线形设计
起点线形可采用两种:圆曲线、缓和曲线。

根据以上计算结果,A匝道由起点以1/25渐变率,做2640m的圆曲线为减速车道,长度以满足规范规定的最小减速车道为准。

根据以上计算结果,A匝道第一曲线单元为从R=2640~1500、A=775的缓和曲线,其最小长度应大于规定的减速车道长度,即满足减速车道内匝道与主线线形相同。

设计软件的使用
纬地软件的使用:
匝道起点第一单元使用圆曲线时:
先确定起点桩号,起点接线方式采用“文件控制2”,点取拖动的第一项,即固定起点桩号、方向,实时拖动起始圆弧长度,并绘制减速车道长度,保证减速车道长度大于145m即可。

匝道起点第一单元使用缓和曲线时:
先确定起点桩号,绘制辅助圆弧,使用纬地立交平面线形设计中的“拾取”命令,先拾取辅助圆弧,后接R=2640~1500、A=775的缓和曲线,长度取满足减速车道长度,最后再删除纬地平面数据中的第一曲线单元即可。

或者直接将主线缓和曲线通过到A0点偏移,再旋转1/25弧度,作为减速车道第一单元使用,然后使用纬地中的拾取功能,拾取为到纬地平面文件中,继续接线即可。

EICAD软件的使用
匝道起点的第一单元使用圆曲线时候:
使用EICAD中“直接式变速车道”命令,绘制减速车道,当拖动起点位置时,软件可以自动获得主线对应点的曲率半径。

所以,当使用EICAD时,不需要提前确定减速车道起点桩号,应首先确定第二个圆曲线的半径和大致位置,然后使用绘制减速车道命令,实际拖动,随着拖动位置的变化,右侧命令框内显示的减速车道长度、缓和曲线长度等随之变化,最后确定在合适的位置即可
匝道起点第一单元使用缓和曲线时:
先确定起点桩号,绘制辅助圆弧,使用EI软件中立交设计命令的积木法,绘制缓和曲线单元(R=2640~1500、A=775、长度取大于减速车道的长度),后进行接线设计,接线完成后删除第一段辅助的圆曲线,然后“桩号初始化”,再保存该平面文件。

3、匝道终点接线设计
以河北省某高速单喇叭互通的加速车道设计为例,该公路主线设计速度为120km/h,E匝道驶入主线,其中此处主线平面线形为A=734、Ls=245m的完整缓和曲线(由直线变化到半径2200m)。

确定终点位置
首先根据互通总体位置,确定E匝道终点接线的大约位置,在这个范围内由于主线是缓和曲线,其每一点的曲率半径都不同,故需要人为取其中一点作为设计起点,通常可取一个整桩号点,以方便计算、标注。

本工程中取E匝道终点接线点E0为EK0+554.047=K12+757.500。

计算接线点曲率半径
主线缓和曲线由无穷大变化为R=2200,为完整缓和曲线,满足缓和曲线计算公式:A2=R*Ls
得:==2668.56
则A0点曲率半径:RA=2668.56 – 15.75= 2652.81
其中15.75为A0K0 两点间的距离,由主线和匝道此处横断面计算所得。

最后结果取整得:RA= 2650m
终点接线线型设计
终点线形可采用两种:圆曲线、缓和曲线。

圆曲线接线
由E0点做与E0K0相切的R=2650m的圆弧,作为终点接线目标即可。

缓和曲线接线
由E0点做与E0点相切的由R=2650m开始渐变的缓和曲线,作为终点接线目标即可。

综上两种方法,不论终点接线是圆曲线还是缓和曲线接线,与一般设计方法不同点是:
确定终点接线点位置,并计算其曲率半径
采用与一般设计相反的接线方式,即先设计终点曲线单元和起点曲线单位,然后从两端向中间接线。

设计软件的使用
终点使用圆曲线接线:
由E0点做与E0K0相切的R=2650m的圆弧,裁切掉虚线部分(接线以外部分),余下的这段圆弧就是匝道最后一个曲线单元。

使用纬地软件辅助设计时,利用纬地“立交平面线形”设计中的“终点接线”,接到这个圆弧上后,裁切或延长圆弧以完整匝道。

其中,最后一段圆弧可根据长度使用积木法完成,还可以直接使用纬地中的”拾取”命令完成。

使用EICAD软件时,利用“立交设计”中的扩展模式,完成接线即可。

终点使用缓和曲线接线:
由E0点做与E0K0相切的R=2650m的圆弧,裁切后剩余虚线部分(接线以外部分),确定缓和曲线前一个单元圆曲线的半径,从圆弧端点E0点接缓和曲线,后接圆曲线,最后将圆曲线作为接线目标。

使用纬地软件设计时,可先将裁剪后的圆曲线拾取作为路线第一单位,然后使用积木法做出接线的圆曲线,再从匝道设计起点开始接线。

接线结束后,从匝道设计起点开始,根据已有数据参数,依次积木法输入后保存路线。

使用EICAD软件辅助设计时,使用立交设计中的积木法,从E0点开始做缓和曲线、圆曲线,然后由起点开始接线,接线结束后使用“桩号初始化”命令,再保存路线平面即可。

4、注意事项
起点对应主线是缓和曲线的匝道,均使用圆曲线作为平面第一个曲线单元进行设计,通常我们是根据渐变率、减速车道起点到主线的距离和第一曲线单元长度来控制减速车道长度,但此时主线上对应是缓和曲线,匝道与主线的距离是一直变化的,故按照一般参数值设计减速车道长度很难保证,我们可以通过调整渐变率和第一曲线单元长度来满足减速车道长度。

终点对应主线是缓和曲线的匝道,可使用圆曲线、缓和曲线作为平面最后一个单元进行接线设计,这里需要注意的是主线缓和曲线曲率变化的方向。

以匝道前进方向为正向,如果主线缓和曲线曲率在这个方向上是由小变大的,即主线是越来越靠近匝道的趋势,这时候就需要根据主线曲率变化率、终点位置,来确定接线是否合理,否则在主线缓和曲线段内,匝道的加速车道范围内部分宽度不够,不符合设计要求。

参考文献:
【1】JTG/T D20-2006.公路路线设计细则【S】.北京:中华人民共和国交通运输部发布,2006.
【2】乔翔,蔺惠茹.公路立交规划与设计实务【M】.北京:人民交通出版社,2001。

相关文档
最新文档