牛顿第二定律瞬时问题分析

合集下载

牛顿第二定律瞬时性问题专题

牛顿第二定律瞬时性问题专题

牛顿第二定律在瞬时问题中的实例分析
自由落体运动
当物体仅受重力作用时,根据牛顿第二定律可以得出自由落体的加速度为9.8m/s²,进而分析自由落体的 运动规律。
弹性碰撞
当两个物体发生弹性碰撞时,根据牛顿第二定律可以计算出碰撞后的速度和方向。
牛顿第二定律在瞬时问题中的实践意义
工程应用
在机械工程、航空航天等领域中,牛顿第二定律被广泛应用于分析各种瞬时作用力和运 动状态变化的问题。
牛顿第二定律瞬时性问题是指物体在受到力的作用时,其加速度立即产生,而不需要经过一段时间的 延迟。这一特性在经典力学中得到了广泛的应用和认可。
牛顿第二定律瞬时性问题的研究涉及到物体运动状态的改变和力的作用方式,对于理解力学的基本原理 和解决实际问题具有重要的意义。
虽然牛顿第二定律瞬时性问题的理论已经相当成熟,但在实际应用中仍然存在一些挑战和限制,需要进 一步研究和探讨。
随着科学技术的发展,未来研究将更 加注重实验研究和观测技术的提升, 以实现更精确的瞬时测量和更深入的 物理机制探索。
跨学科合作将成为研究的重要方向, 通过与物理学、数学、工程学等领域 的交叉融合,拓展牛顿第二定律瞬时 性问题的研究领域和应用范围。
05 结论
CHAPTER
牛顿第二定律瞬时性问题的总结
牛顿第二定律适用于宏观低速的物体,即适用于速度远小于 光速的物体。
惯性参考系
牛顿第二定律只在惯性参考系中成立,即在不受外力作用的 参考系中成立。
02 瞬时性问题解析
CHAPTER
瞬时性问题的定义
瞬时性问题的定义
在牛顿第二定律中,瞬时性问题是指物体在受到力的作用后,其加速度立即产生 ,而不需要经过一段时间的延迟。
安全保障

专题10牛顿第二定律的瞬时性问题-2024年新高二物理暑假查漏补缺(全国通用)

专题10牛顿第二定律的瞬时性问题-2024年新高二物理暑假查漏补缺(全国通用)

专题10 牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,牛顿第二定律的瞬时性问题具体可简化为以下两种模型:1.轻绳、轻杆和接触面:不发生明显形变就能产生弹力,在瞬时性问题中其弹力可以突变.这类问题一般要结合物体在状态突变后的运动来分析状态突变瞬间的加速度,因为状态突变瞬间是状态突变之后运动的初状态。

时性问题中,弹簧的弹力瞬间突变为零。

1.如图所示,在图1、2、3中的小球a、b和c完全相同,轻弹簧S1和S2完全相同,连接的轻绳l1和l2也完全相同,通过轻弹簧或轻绳悬挂于固定点O,整个系统处于静止状态。

现将图1中的轻绳l1剪断、图2中的轻弹簧S1剪断、图3中的轻绳l2剪断,将图1中的小球a的加速度大小记为a1,将图2中的小球b的加速度大小记为a2,将图3中的小球c的加速度大小记为a3,重力加速度大小为g。

则在剪断瞬间()A.a1=3g,a2=2g,a3=g B.a1=2g,a2=2g,a3=0C.a1=2g,a2=g,a3=g D.a1=2g,a2=g,a3=0【答案】D【解析】图1中,对三个小球体整体分析有F1=3mg剪断图1中的轻绳l1时,弹簧S1不能发生突变,弹力与剪断前相同,对小球体a分析有F1−mg=ma1解得a1=2g剪断图2中的轻弹簧S1,弹簧弹力突变为0,对小球体b、c分析有2mg=2ma2解得a2=g此时轻绳l2弹力为0。

剪断图3中的轻绳l2时,弹簧S1不能发生突变,弹力与剪断前相同,即此时小球体c受力仍然平衡,图3中的小球c的加速度大小记为a3=0综合上述可知a1=2g,a2=g,a3=0故选D。

2.物块A1、A2的质量均为m,B1、B2的质量均为2m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接。

两个装置都放在水平的支托物M上,处于平衡状态,如图所示。

今突然迅速地撤去支托物M,在除去支托物的瞬间,A1、A2加速度分别为a1和a2,B1、B2的加速度分别为a1′和a2′,则()A.a1=0,a2=2g,a1′=0,a2′=2g B.a1=0,a2=2g,a1′=g,a2′=2gC.a1=g,a2=g,a1′=0,a2′=2g D.a1=g,a2=g,a1′=g,a2′=g【答案】C【解析】A1、A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受重力的作用,根据牛顿第二定律可知,它们的加速度a1=a2=g因为在除去支托物的瞬间,弹簧上的弹力不能突然消失(主要是弹簧不能突然恢复原长),所以B1的受力不变,加速度仍为零,即a1′=0而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力2mg和弹簧弹力2mg不变,加速度大小a2′=2g 综上分析,选项C正确,ABD错误。

牛顿第二定律的瞬时问题

牛顿第二定律的瞬时问题
1.轻绳:只能产生拉力,且方向一定沿着 绳子背离受力物体,不能承受压力。认为 绳子所受力多大,长度不变(只要不被拉 断);绳子的弹力可以发生突变——瞬时 产生,瞬时改变,瞬时消失。 2.轻杆:既能承受拉力,又可承受压力, 施力或受力方向不一定沿着杆的轴向;认 为杆既不可伸长,也不可缩短,杆的弹力 也可以发生突变。
例一:
(2010· 广东外国语学校模拟)在动摩擦因数μ=0.2的
水平面上有一个质量为m=1 kg的小球,小球与水平轻弹簧及 与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图3-
2-2所示.此时小球处于静止平衡状态,且水平面对小球的弹
力恰好为零,当剪断轻绳的瞬间,取g=10 m/s2.求: (1)此时轻弹簧的弹力大小; (2)小球的加速度大小和方向;
3、轻弹簧:既能承受拉力,又可承受压力,力 的方向沿弹簧的轴线;受力后发生较大形变,弹 簧的长度既可变长,又可变短,弹性限度内遵守 胡克定律;因形变较大ቤተ መጻሕፍቲ ባይዱ产生形变或使形变消失 都有一个过程,故弹簧的弹力不能发生突变,在 较短的时间内可认为弹力不变;当弹簧被剪断时, 弹力立即消失。
4、橡皮绳:只能承受拉力,不能承受压力,其 长度只能变长,不能变短,弹性限度内遵守胡克 定律;因形变较大,产生形变或使形变消失都有 一个过程,故橡皮条的弹力不能发生突变,在较 短的时间内可认为弹力不变;当橡皮条被剪断时, 弹力立即消失。
3.如图(1)所示,一质量为m的物体系于长度
分别为L1 、L2的两根细线上,L1的一端悬挂 在天花板上,与竖直方向夹角为θ ,L2水平 拉直,物体处于平衡状态。现将L2线剪断, 求剪断瞬时物体的加速度。
例三:如图3-2-8所示是两根轻弹簧与两个质量都为m 的小球连接成的系统,上面一根弹簧的上端固定在 天花板上,两小球之间还连接了一根不可伸长的细 线.该系统静止,细线受到的拉力大小等于4mg.在 剪断了两球之间的细线的瞬间,球A的加速度aA和球 B的加速度aB分别是 ( ) A.2g,竖直向下;2g,竖直向下 B.4g,竖直向上;4g,竖直向下 C.2g,竖直向上;2g,竖直向下 D.2g,竖直向下;4g,竖直向下

牛顿第二定律瞬时性问题

牛顿第二定律瞬时性问题

瞬时性问题的分析方法及注意事项(1)(1)分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析分析物体在某一时刻的瞬时加速度,关键是明确该时刻有没有力发生突变,分析物体的受力情况分析运运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型模型:特性特性 模型模型 受外力时的形的形变量变量 力能力能 否突变否突变 产生拉力产生拉力 或支持力或支持力 质量质量 内部内部弹力弹力轻绳微小不计可以只有拉力没有支持力支持力 不计不计 处处相等处处相等 橡皮绳 较大 不能只有拉力没有支持力支持力轻弹簧 较大 不能既可有拉力也可有支持力可有支持力 轻杆 微小不计 可以既可有拉力也可有支持力可有支持力(2)(2)在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:在求解瞬时性加速度问题时应注意:①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行①物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析受力分析和运动分析。

②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。

②加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。

【变式训练】1、如图所示,质量分别为m A 和 m B 两球用轻弹簧连接,两球用轻弹簧连接,A A 球用球用细线细线悬挂起来,两球均处于静止状态,如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少两球的瞬间加速度各是多少? ?2.如图所示,两小球悬挂在天花板上,.如图所示,两小球悬挂在天花板上,a a 、b 两小球用细线连接,上面是一轻质弹簧,两小球用细线连接,上面是一轻质弹簧,a a 、b 两球的质量分别为m,2m m,2m,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是,在细线烧断瞬间,两球的加速度分别是 ( )) A.0;g B.-g;g C-2g;g D2g;03.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、固定于杆上,小球处于静止状态.设拔去销钉M 瞬间.小球加速度的大小为12m/s 2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是瞬间,小球的加速度可能是((取g=10m/s 2)( ) A .22m/s 2,竖直向上,竖直向上 B .22m/s 2,竖直向下,竖直向下 C .2m/s 2,竖直向上,竖直向上图3-2-4A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM g D. a 1=g ,a 2=m +MMg 6、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为3030°的光滑木板°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(突然向下撤离的瞬间,小球的加速度为( ) A .0B .大小为,方向竖直向下,方向竖直向下C .大小为,方向水平向右,方向水平向右D .2m/s 2,竖直向下,竖直向下4、如图示,球A 、B 、C 质量分别为m 、2m 2m、、3m 3m,,A 与天花板间、与天花板间、B B 与C 之间用轻之间用轻弹簧弹簧相连,当该系统平衡后,突然将AB 间轻绳绕断,在绕断瞬间,间轻绳绕断,在绕断瞬间,A A 、B 、C 的加速度(以向下为正方向)分别为(的加速度(以向下为正方向)分别为( ) A .0、g 、g B .-.-5g 5g 5g、、2.5g 2.5g、、0 C .5g 5g、、2.5g 2.5g、、0 D .-.-g g 、2g 2g、、2g5、如图3-2-4所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。

牛顿第二定律瞬时性问题分析

牛顿第二定律瞬时性问题分析

牛顿第二定律瞬时性的“两种”模型牛顿第二定律的“五"性T“与F方向相同彳住与咧应同二时刻|瞬时性}TEfe产生就的原因/[s F、從对应同一个物体]计队只權统一使用SI制]T每一个力都可以产生各自的加颐牛顿第二定律的表达式为F= ma其核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化,具体可简化为以下两种典型的模型:(1)轻绳(或接触面)一一不发生明显形变就能产生弹力的物体,剪断(或脱离)后,不需要形变恢复时间,其弹力立即消失.当外界条件突然改变瞬间其弹力可以发生突然的改变,比如突然增大、减小、消失等等。

也就是可以发生突变。

⑵弹簧(或橡皮绳)一一两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间。

在两端的约束物仍然存在时,在瞬时性问题中,其弹力的大小往往可以看成保持不例题:1. 如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可忽略不计当悬线被烧断的瞬间,甲、乙的加速度数值应为()A.甲是0,乙是gB.甲是g,乙是g.C.甲是0,乙是0D.甲是2乙是g2若剪断弹簧瞬间呢?若弹簧和细绳互换位置如图,则悬线被烧断的瞬间乙的加速度数值应为()2、如图所示,轻弹簧上端与一质量为m的木块1相连,下端与另一质量为M的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a l、a2.重力加速度大小为g.则有(),A.a i = 0, a?= gB.a i= g, a2= gm+ MC・a i = 0, a2= M g.m+ M D・a i = g, a2=M g3、如图如图⑻ 所示,一质量为m的物体系于长度分别为L i、L2的两根细线上丄i的一端悬挂在天花板上,与竖直方向夹角为0丄2水平拉直,物体处于平衡状态(1)现将图⑻中L2线剪断,求剪断瞬间物体的加速度.(2)若将图(a)中的细线L i改为质量不计的轻弹簧而其余情况不变如图(b)所示,求剪断L2瞬间物体的加速度(1)gsi n 0 (2)gta n 0B 在水平拉力F 作用下,以加速度 af 故匀变速直线运动,某时刻突 然撤去拉力F ,此瞬时A 和 B 的加速度为 內和a 2,则( )••: A. a i = a 2= 0 B. a i = a , a 2= 0 八B FC. a i m i m i + m 2a, a 2 = m 2 m i + m 2a总结: m i D. a i = a ,a 2=— a m 2 特性 模型 受外力时 的形变量 轻绳 微小不计 橡皮绳 较大 轻弹簧 较大 轻杆 微小不计 力能 否突变 产生拉力 或支持力 可以 只有拉力 没有支持力 不能 只有拉力没 有支持力 不能 既可有 拉力也可 有支持力 可以 既可有 拉力也可 有支持力。

牛顿第二定律瞬时加速度问题

牛顿第二定律瞬时加速度问题

瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。

牛顿第二定律-瞬时性

牛顿第二定律-瞬时性

牛顿第二定律——瞬时性问题分析【思维提升】1.力和加速度的瞬时对应性是高考的重点。

物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然。

2.求解此类瞬时性问题,要注意以下四种理想模型的区别:【针对训练】1.如图所示,一木块在光滑水平面上受一恒力F 作用而运动,前方固定一个弹簧,当木块接触弹簧后( C ) A .将立即做变减速运动B .将立即做匀减速运动C .在一段时间内仍然做加速运动,速度继续增大D .当弹簧处于最大压缩量时,物体的加速度为零2.如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2。

重力加速度大小为g 。

则有( C )A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +MM gD .a 1=g ,a 2=m +MMg3.如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力的大小和小球A 的加速度大小分别为( A )A .2F 3,2F 3m +gB .F 3,2F 3m +gC .2F 3,F3m +gD .F 3,F3m+g4.物块A 1、A 2、B 1、B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连接。

两个装置都放在水平的支托物上,处于平衡状态,如图所示。

今突然迅速地撤去支托物,让物块下落。

在除去支托物的瞬间,A 1、A 2受到的合力分别为f 1和f 2,B 1、B 2受到的合力分别为F 1和F 2。

则( B )A .f 1=0,f 2=2mg ,F 1=0,F 2=2mgB .f 1=mg ,f 2=mg ,F 1=0,F 2=2mgC .f 1=0,f 2=2mg ,F 1=mg ,F 2=mgD .f 1=mg ,f 2=mg ,F 1=mg ,F 2=mg5.如图所示一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体,质量为m 。

牛顿第二定律应用----瞬时性问题

牛顿第二定律应用----瞬时性问题

L1
θ
y
L1
θ
律得:物体的加速度 mgsinθ=ma .
θ a=gsinθ
a
x
mg
例2、若将图1(a)中的细线L1改为长度相同、质 量不计的轻弹簧,如图2(b)所示,其他条件不变 ,现将L2线剪断,求剪断瞬时物体的加速度。( 重力加速度为g) OL L1 θ 1 L2
图2(b)
解:剪断细线前, 小球所受mg和弹簧F的 合力与T等大反向,大小等于T=mgtanθ, 弹簧弹力F=mg/cosθ
答案、C
解析:如图,AB静止时,对AB
A B
x
kx-2mg=0
A B
F
y
受力F时,对AB有
K(x+y)-2mg-F=0
撤去力F时,AB受到的合 力为F,对AB有 F=2ma
对 A有 FN-mg=ma
解之得
FN=1.5N
2、如图4所示,A、B的质量分别为 mA=0.2kg , mB=0.4kg , 盘 C 的 质 量 mC=0.6kg,现悬挂于天花板O处,处于静 止状态.当用火柴烧断O处的细线瞬间,木 块A的加速度aA= ,木块B对盘C的压力 NBC= N.(取g=10m/s2) O
A
解:撤去木板C前, 对A、B球进行受力分析
kx m g ①
N kx 2m g ②
C
kx A
B
N
撤去木板C瞬时,A和B的重力及弹簧 的弹力不变 ,B物体受到的支持力突 然变为零,所以
kx mg aA 0 m 2mg aB 1.5 g 2m
F T m mg
θ
细线剪断瞬间,T立即消失,弹簧弹力不变, 仍为F=mg/cosθ,小球所受mg和F的合力不 变,仍为mgtanθ,加速度大小a=gtanθ,方 向水平向右,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时牛顿第二定律及瞬时问题分析
知识回顾:
一.牛顿第二定律:
1. 内容:__________________________________________________________________。

2. 公式:_________________;(因果关系和数量关系)
3. 理解:
①同单位制:国际单位制,1N:__________________________________________;
②矢量性:F、a是矢量,F合→ a;“=”体现数值和方向;
③瞬时性:瞬时对应关系,同时产生、同时变化、同时消失;
④相对性:适用于惯性参考系;
⑤同体性:a、F合、m对同一物体的;
⑥独立性:当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就
象其它力不存在一样,
4.适用范围:宏观、低速;
5. 解题步骤:
选对象→受力分析→运动过程及性质分析→建立坐标或取正方向→列方程(辅助方程或几何关系)→求解作答、分析结果。

二.瞬时问题分析:
物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,当合外力恒定时,加速度也恒定,合外力随时间变化时,
加速度也随时间改变,且瞬时力决定瞬时加速度,可见,确定瞬时加速度的关键是正
确确定瞬时作用力。

【例1】如图所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是[ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零
B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零
C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的
地方也是弹簧被压缩最大之处
D.接触后,小球速度最大的地方就是加速度等于零的地方
【例2】如图甲、乙所示,图中细线均不可伸长,物体均
处于平衡状态。

如果突然把两水平细线剪断,求剪断
瞬间小球A、B的加速度各是多少?(角已知)
【例3】如图所示,A、B、C、D、E、F六个小球分别用弹簧、
细绳和细杆联结,挂于水平天花板上,若某一瞬间同时在a、
b、c处将悬挂的细绳剪断,比较各球下落瞬间的加速度,下
列说法中正确的是()
A.所有小球都以g的加速度下落
B.A球的加速度为2g,B球的加速度为g
C.C、D、E、F球的加速度均为g
D.E球的加速度大于F球的加速度
【例4】如图,A、B用弹簧相连,m B=2m A,A、B与地面的动摩擦因数为μ,在外力F作用下,系统做匀速运动,求:撤去外
力的瞬间,A、B的加速度?
B
A
F。

相关文档
最新文档