高中数学 2.2.1双曲线及其标准方程 精品导学案(1)新人教A版选修1-1
高二数学2.2.1双曲线及其标准方程学案新人教A版选修1-1

a, b, c 的关系: a> 0, b> 0, c2= a2+b2.
? 思考:椭圆的标准方程和双曲线的标准方程有什么区别与联系?
答案: 答案略. , ?自测自评 x2 y2
1.双曲线 - = 1 的焦距是 ( D) 10 2
A. 3 2
B. 4 2
C. 3 3 D . 4 3
解析: c2= 10+ 2= 12 ,∴ c= 2 3,焦距 2c = 4 3. x2 y2
高中数学 2.2.1 双曲线及其标准方程学案
?基础梳理
1.平面内与两个定点 F1、 F2 的距离的差的绝对值是常数 ( 小于 | F1F2| 且大于 0) 的点的轨迹叫
做双曲线 ,这两个定点叫做 双曲线的焦点 ,两焦点间的距离叫做 双曲线的焦距 .
? 思考:在双曲线的定义中,为什么常数要大于
0 且小于 | F1F2|?
m2- 4< 0,
解析: 由题可知
∴- 2< m<- 1.
m+ 1< 0,
答案: ( - 2,- 1)
c5 4.在双曲线中, a= 2 ,且双曲线与椭圆
4x 2+ 9y2= 36 有公共焦点,求双曲线的方程.
解析: 把椭圆的方程写成标准方程
x2 y2 9 + 4 = 1,
∴椭圆的焦点坐标是 ( ± 5, 0) . ∵双曲线与椭圆有相同的焦点,
则由双曲线定义知 | r 1- r 2| = 2a= 4, ∴ ( r 1- r 2) 2= r 21+ r 22- 2r 1r 2=16. ①
又∵∠ F1MF2= 90°, ∴ r 21+ r 22= | F1F2| 2= 4c 2=52. ② ∴由①②得 r 1r 2= 18.
1 ∴ S△ F1MF2= 2r 1r 2= 9.
高中数学新课标人教A版选修1-1《2.2.1双曲线及其标准方程》教案

教
学
过
程
例5点 与定点 的距离和它到直线 的距离之比是常数 ,求点 的轨迹.
(教师分ቤተ መጻሕፍቲ ባይዱ——示范书写)
三、课堂练习:
①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴ 与 ⑵ 与 (学生口答,并说明原因)
②求适合下列条件的椭圆的标准方程.
⑴经过点
⑵长轴长是短轴长的 倍,且经过点
⑶焦距是 ,离心率等于
(学生演板,教师点评)
③作业: 第4题.
4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比 称为离心率.记 .
可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.
5.例题
例4求椭圆 的长轴和短轴的长,离心率,焦点和定点坐标.
提示:将一般方程化为标准方程.
(学生回答——老师书写)
练习:求椭圆 和椭圆 的长轴和短轴长,离心率,焦点坐标,定点坐标.
2.椭圆的标准方程.
二、讲授新课:
1.范围——变量 的取值范围,亦即曲线的取值范围:横坐标 ;纵坐标 .
方法:①观察图像法;②代数方法.
2.对称性——既是轴对称图形,关于 轴对称,也关于 轴对称;又是中心对称图形.
方法:①观察图像法;②定义法.
3.顶点:椭圆的长轴 ,椭圆的短轴 ,
椭圆与四个对称轴的交点叫做椭圆的顶点, .
上课时间
第 周星期第节
课型
课题
2.2椭圆的简单几何性质
教学目的
根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.
教学设想
教学重点:通过几何性质求椭圆方程并画图.
高中数学 2.2.1双曲线的及其标准方程教案 新人教版选修1-1

§2.2.1双曲线的及其标准方程【学情分析】:学生已经学过椭圆,了解椭圆的定义,经历了根据椭圆的特征,建立适当的坐标系,能较熟练求椭圆的方程,也了解椭圆的简单的几何性质并能解决与椭圆的几何性质有关的问题。
本节课将通过学生的自主探究、总结来进行教学。
【教学目标】:知识与技能1、使学生掌握双曲线的定义、标准方程2、掌握焦点、焦点位置、焦距与方程关系,会求双曲线的标准方程;过程与方法1、理解双曲线标准方程的推导过程;2、认识双曲线的变化规律及与其系数之间的关系;情感态度与价值观通过运用双曲线标准方程解决一些实际问题,使学生充分认识数学的价值,习惯用数学的眼光解决生活中的数学问题。
【教学重点】:双曲线的定义、标准方程【教学难点】:双曲线标准方程的推导过程【课前准备】:课件【教学过程设计】:练习与测试:1.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,求动圆圆心P 的轨迹。
分析:由题意,列出动圆圆心满足的几何条件,若能由此条判断出动点的轨迹是哪种曲线,则可直接求出其轨迹方程来内切时,定圆N 在动圆P 的内部,有|PC|=|PM|-4, 外切时,有|PC|=|PM|+4,故点P 的轨迹是双曲线x 24-y 212=1。
2.已知动圆P 与定圆C 1:(x +5)2+y 2=49,C 2:(x -5)2+y 2=1 都相切,求动圆圆心的轨迹的方程 分析:外切有|PC 1|=7+r, |PC 2|=1+r ,∴|PC 1|-|PC 2|=6,内切有|PC 1|=r -7, |PC 2|=r -1,∴|PC 2|-|PC 1|=6故点P 的轨迹是双曲线x 29-y 216=13.若R ∈k ,则“3>k ”是“方程13322=+--k y k x 表示双曲线”的( )(A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件.解析:应用直接推理和特值否定法.当k>3时,有k-3>0,k+3>0,所以方程 表示双曲线;当方程表示双曲线时,k=-4 是可以的,这不在k>3里.故应该选A .4.已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,则双曲线的标准方程是____________________.解:双曲线中心在原点,一个顶点的坐标为(3,0),则焦点在x 轴上,且a=3,焦距与虚轴长之比为5:4,即:5:4c b =,解得5,4c b ==,则双曲线的标准方程是221916x y -= 5.若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.1922=-y x6.已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥,2||||21=∙PF PF ,则该双曲线的方程是( )A .13222=-y x B .12322=-y x C .1422=-y x D .1422=-y x 答案:C7.“ab <0”是“曲线ax 2+by 2=1为双曲线”的 ( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 答案:C8.与双曲线162x -42y =1有公共焦点,且过点(32,2),求双曲线方程解:设双曲线方程为22a x -22by =1由题意易求c =25 又双曲线过点(32,2),∴22)23(a -24b =1又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8故所求双曲线的方程为122x -82y =1。
人教a版数学【选修1-1】2.2.1双曲线及其标准方程(含答案)

§2.2 双曲线2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为 __________________________________________.平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做________________,两焦点间的距离叫做________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________________,焦点F 1________,F 2__________.(3)双曲线中a 、b 、c 的关系是____________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a (a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b (ab <0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y 22=1题号 1 2 3 4 5 6 答案7.设F 1、F 2是双曲线 x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|=______.8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=______.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B (4,0)、C (-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升12.若点O 和点F(-2,0)分别为双曲线x 2a2-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞) 13.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.2 双曲线2.2.1 双曲线及其标准方程答案知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4. ①又点(2,3)在双曲线上,∴22a 2-32b 2=1. ② 由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以 x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4, 又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27 =9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4),又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C=2R , 代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以 a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),∴ OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1 =43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3. OP →·FP →的取值范围为[3+23,+∞).]13.解 设双曲线的标准方程为x 2a 2-y 2b2=1, 且c =7,则a 2+b 2=7.① 由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
人教新课标版数学高二选修1-1导学案 双曲线及其标准方程

2.2.1双曲线及其标准方程【教学目标】1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生观看《2.2.1双曲线及其标准方程》课件“新课导入”部分,通过一首有趣而形象的诗歌及几幅美观的图片,引入本节课要学习的双曲线及其标准方程的知识.二、自主学习知识点一双曲线的定义(1)平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;(2)关于“小于|F1F2|”:①若将“小于|F1F2|”改为“等于|F1F2|”,其余条件不变,则动点轨迹是以F1,F2为端点的两条射线(包括端点);②若将“小于|F1F2|”改为“大于|F1F2|”,其余条件不变,则动点轨迹不存在;(3)若将“绝对值”去掉,其余条件不变,则动点的轨迹只有双曲线的一支;(4)若常数为零,其余条件不变,则点的轨迹是线段F1F2的中垂线.知识点二双曲线的标准方程(1)两种形式标准方程焦点所在的坐标轴x轴y轴标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a 、b 、c 的关系式a 2+b 2=c 2(2)如果含x 2项的系数为正数,那么焦点在x 轴上,如果含y 2项的系数是正数,那么焦点在y 轴上.对于双曲线,a 与b 无截然的大小关系,因而不能像椭圆那样,通过比较a 与b 的大小来确定其焦点位置.三、合作探究问题1 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?答案 如图,曲线上的点满足条件:|MF 1|-|MF 2|=常数;如果改变一下笔尖位置,使|MF 2|-|MF 1|=常数,可得到另一条曲线.问题2 双曲线的标准方程的推导过程是什么?答案 (1)建系:以直线F 1F 2为x 轴,F 1F 2的中点为原点建立平面直角坐标系. (2)设点:设M (x ,y )是双曲线上任意一点,且双曲线的焦点坐标为F 1(-c,0),F 2(c,0). (3)列式:由|MF 1|-|MF 2|=±2a , 可得x +c2+y 2-x -c 2+y 2=±2a .①(4)化简:移项,平方后可得(c 2-a 2)x 2-a 2y 2=a 2(c 2-a 2). 令c 2-a 2=b 2,得双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).② (5)验证:从上述过程可以看到,双曲线上任意一点的坐标都满足方程②;以方程②的解(x ,y )为坐标的点到双曲线两个焦点(-c,0),(c,0)的距离之差的绝对值为2a ,即以方程②的解为坐标的点都在双曲线上,这样,就把方程②叫做双曲线的标准方程.(此步骤可省略)问题3 双曲线中a ,b ,c 的关系如何?与椭圆中a 、b 、c 的关系有何不同? 答案 双曲线标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,即c 2=a 2+b 2,其中c >a ,c >b ,a 与b 的大小关系不确定;而在椭圆中b 2=a 2-c 2,即a 2=b 2+c 2,其中a >b >0,a >c ,c 与b 大小不确定.探究点1 双曲线定义的理解及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),在平面内满足下列条件的动点P 的轨迹中为双曲线的是( )A .|PF 1|-|PF 2|=±3B .|PF 1|-|PF 2|=±4C .|PF 1|-|PF 2|=±5D .|PF 1|2-|PF 2|2=±4(2)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________.答案 (1)A(2)x 2-y 28=1(x ≤-1)解析 (1)当|PF 1|-|PF 2|=±3时,||PF 1|-|PF 2||=3<|F 1F 2|=4,满足双曲线定义, P 点的轨迹是双曲线.(2)如图,设动圆M 与圆C 1及圆C 2分别外切于点A 和B ,根据两圆外切的条件 |MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=2,这表明动点M 与两定点C 2,C 1的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),其轨迹方程为x 2-y 28=1 (x ≤ -1).反思与感悟 双曲线定义的两种应用:(1)根据双曲线的定义判断动点轨迹时,一定要注意双曲线定义中的各个条件,不要一看到动点到两个定点的距离之差的绝对值是常数,就认为其轨迹是双曲线,还要看该常数是否小于两个已知定点之间的距离且大于零,否则就不是双曲线.(2)巧妙利用双曲线的定义求曲线的轨迹方程,可以使运算量大大减小,同时提高解题速度和质量.其基本步骤为:①寻求动点M 与定点F 1,F 2之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程. 探究点2 待定系数法求双曲线的标准方程例2 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解 (1)由已知可设所求双曲线方程为y 2a 2-x2b 2=1(a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9,∴双曲线的标准方程为y 216-x 29=1.(2)方法一 设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意易求得c =2 5.又双曲线过点(32,2),∴322a 2-4b2=1. 又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4,∴所求双曲线方程为x 212-y 28=1.反思与感悟 待定系数法求方程的步骤(1)定型:即确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式,①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0). ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程. 探究点3 双曲线定义的综合应用例3 已知A ,B 两地相距2000m ,在A 地听到炮弹爆炸声比在B 地晚4s ,且声速为340m/s ,求炮弹爆炸点的轨迹方程.解 如图,建立直角坐标系xOy ,使A ,B 两点在x 轴上,并且坐标原点O 与线段AB 的中点重合.设爆炸点P 的坐标为(x ,y ), 则|P A |-|PB |=340×4=1 360. 即2a =1 360,a =680. 又|AB |=2 000,所以2c =2 000,c =1 000,b 2=c 2-a 2=537 600. 因为|P A |-|PB |=340×4=1 360>0,所以x >0.因此炮弹爆炸点的轨迹(双曲线)的方程为x 2462 400-y 2537 600=1(x >0).反思与感悟 结合双曲线的定义,解决综合问题,诸如:实际应用题,焦点三角形问题等,要充分利用双曲线的定义、正弦定理、余弦定理等,利用化归思想,重点考查综合运用能力与求解能力.四、当堂测试1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A.x 216-y 29=1(x ≤-4) B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3) 答案 D解析 |PF 1|-|PF 2|=6<|F 1F 2|=10,根据双曲线的定义可得D 正确. 2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1答案 D解析 由于a >0,0<a 2<4,且4-a 2=a +2,所以可解得a =1,故选D. 3.若方程x 210-k +y 25-k =1表示双曲线,则k 的取值范围是( )A .(5,10)B .(-∞,5)C .(10,+∞)D .(-∞,5)∪(10,+∞) 答案 A解析 由题意得(10-k )(5-k )<0,解得5<k <10.4.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.答案 16解析 由已知条件知m +9=52,所以m =16.5.已知双曲线x 29-y 216=1上一点M 的横坐标为5,则点M 到左焦点的距离是________.答案343解析 由于双曲线x 29-y 216=1的右焦点为F (5,0),将x M =5,代入双曲线方程可得|y M |=163,即为点M 到右焦点 的距离,由双曲线的定义知M 到左焦点的距离为163+2×3=343.五、课堂小结本节课我们学习过哪些知识内容?(1)椭圆、双曲线的标准方程以及它们之间的区别与联系:程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.。
新人教A版数学选修1-1《2.2.1双曲线及其标准方程》导学案

河北省唐山市开滦第二中学高中数学 2.2.1双曲线及其标准方程学案 新人教A 版选修1-1【学习目标】1.了解双曲线的定义、几何图形和标准方程的推导过程;2.掌握双曲线的标准方程;3.会利用双曲线的定义和标准方程解决简单的问题.【重点难点】双曲线定义及其标准方程【学习过程】一、问题情景导入:1.太空中飞过太阳系的彗星,其轨道就是双曲线,彗星从无穷处飞来,又飞到无穷远处,双曲线是不封闭的圆锥曲线,它不同于抛物线,也不是两个抛物线构成双曲线的两支,最明显的差别是双曲线有渐近线,而抛物线没有.初中学过的反比例函数图象是双曲线,它以坐标轴为渐近线.2.我们知道,与两个定点距离的和为非零常数(大于两个定点间的距离)的点的轨迹是椭圆,那么,与两个定点距离的差为非零常数的点的轨迹是什么?3.你能类比椭圆的标准方程的推导过程推导出双曲线的标准方程吗?二、自学探究:(阅读课本第45-47页,完成下面知识点的梳理)1.双曲线的定义:把平面内与两个定点21,F F 的距离的 等于常数(小于21F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线 ,两焦点间的距离叫做双曲线的 . 双曲线的定义用集合语言表示为{}21212,2F F a a MF MF M P <=-=思考:双曲线定义中212F F a <,如果212F F a =轨迹是什么图形呢?能否有212F F a <的轨迹图形呢? 2.焦点在x 轴上 焦点在y 轴上 图象 标准方程焦点坐标c b a ,,的关系思考:⑴方程13222=-y x 与13222=-x y 分别表示焦点在哪个坐标轴上的双曲线?焦点坐标分别是什么?⑵方程122=+ny m x ,当参数n m ,的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上的双曲线?三、例题演练:例 1.若一个动点()y x P ,到两个定点()()0,1,0,1B A -的距离之差的绝对值为定值()0≥a a 时,讨论点P 的轨迹.例 2.已知双曲线两个焦点分别为()()0,5,0,521F F -,双曲线上一点P 到21,F F 距离差的绝对值等于6,求双曲线的标准方程.变式:求适合下列条件的双曲线的标准方程:⑴5,4==c a ,焦点在x 轴上;⑵4=a ,经过点⎪⎪⎭⎫ ⎝⎛3104,1A ; ⑶求与双曲线141622=-y x 有共同的焦点,且过点()2,23的双曲线的标准方程.例3.在ABC ∆中,已知4=BC ,且A B C sin 21sin sin =-,求动点A 的轨迹方程.变式:已知定圆02410:221=+++x y x C ,定圆:C 091022=+-+x y x ,动圆C 与定圆21,C C 都外切,求动圆圆心C 的轨迹方程.【课堂小结与反思】【课后作业与练习】1.判断下列方程是否表示双曲线,若是,求出三量c b a ,,的值. ①12422=-y x ②12222=-y x ③12422-=-y x ④369422=-x y2.求a =4,b =3,焦点在x 轴上的双曲线的标准方程3.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程4.证明:椭圆22525922=+y x 与双曲线151522=-y x 的焦点相同5.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或237.椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 98.已知21,F F 是双曲线191622=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________9.设21,F F 是双曲线1422=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为( )A 1 B55 C 2 D 510.P 为双曲线)0,0(12222>>=-b a by a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是()A 内切B 外切C 外切或内切D 无公共点或相交。
高中数学 第二章 圆锥曲线与方程 2.2.2 双曲线的简单几何性质导学案 新人教A版选修1-1(2

河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第二章圆锥曲线与方程2.2.2 双曲线的简单几何性质导学案新人教A版选修1-1的全部内容。
双曲线的简单几何性质1.类比椭圆的性质,能根据双曲线的标准方程,讨论双曲线的几何性质.2.能运用双曲线的性质解决一些简单的问题.重点:双曲线的几何性质.难点:双曲线性质的应用,渐近线的理解.方法:合作探究一新知导学1。
在双曲线方程中,以-x、-y代替x、y方程不变,因此双曲线是以x轴、y轴为对称轴的__________图形;也是以原点为对称中心的__________图形,这个对称中心叫做__________ ________.2.双曲线与它的对称轴的两个交点叫做双曲线的____,双曲线错误!-错误!=1(a〉0,b>0)的顶点是________,这两个顶点之间的线段叫做双曲线的________,它的长等于__________.同时在另一条对称轴上作点B1(0,-b),B2(0,b),线段B1B2叫做双曲线的_________,它的长等于________,a、b分别是双曲线的__________和__________.3。
设P(x,y)是双曲线错误!-错误!=1(a>0,b>0)上一点,则x ,y .4.双曲线的半焦距c与实半轴长a的比值e叫做双曲线的_________,其取值范围是_____ .e越大,双曲线的张口越_________.5.双曲线错误!-错误!=1(a〉0,b〉0)位于第一象限部分上一点P(x,y)到直线y=错误!x的距离d=________________ (用x 表示),d随x的增大而__________.这表明,随着x的增大,点P到直线y=错误!x的距离越来越______,称直线y=错误!x为双曲线错误!-错误!=1的一条_________由对称性知,直线____________也是双曲线错误!-错误!=1的一条__________.课堂随笔:6.过双曲线实轴的两个端点与虚轴的两个端点分别作对称轴的平行线,它们围成一个矩形,其两条__________所在直线即为双曲线的渐近线.“渐近"两字的含义:当双曲线的各支向外延伸时,与这两条直线__________接近,接近的程度是无限的 7。
高中新课程数学(新课标人教A版)选修2-1《2.3.1 双曲线及其标准方程》导学案

§2.3.1 双曲线及其标准方程1.掌握双曲线的定义;2.掌握双曲线的标准方程.一、课前准备(预习教材理P 52~ P 55,文P 45~ P 48找出疑惑之处)复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.二、新课导学※ 学习探究问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?※ 典型例题例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .例2 已知,A B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340/m s ,求炮弹爆炸点的轨迹方程.变式:如果,A B 两处同时听到爆炸声,那么爆炸点在什么曲线上?为什么?小结:采用这种方法可以确定爆炸点的准确位置.※动手试试练1:求适合下列条件的双曲线的标准方程式:(1)焦点在x轴上,4a=,3b=;(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.练2.点,A B的坐标分别是(5,0)-,(5,0),直线AM,BM相交于点M,且它们斜率之积是49,试求点M的轨迹方程式,并由点M的轨迹方程判断轨迹的形状.三、总结提升※学习小结1 .双曲线的定义;2 .双曲线的标准方程.※知识拓展GPS(全球定位系统):双曲线的一个重要应用.在例2中,再增设一个观察点C,利用B,C两处测得的点P发出的信号的时间差,就可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定点P的准确位置.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是( ).A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线2.双曲线2255x ky +=的一个焦点是,那么实数k 的值为( ).A .25-B .25C .1-D .13.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).A. 5B. 13C.D.4.已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=则动点P 的轨迹方程为 .5.已知方程22121x y m m -=++表示双曲线,则m 的取值范围 .1. 求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上,a =(5,2)A -;(2)经过两点(7,A --,B .2.相距1400m ,A B 两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340/m s ,问炮弹爆炸点在怎样的曲线上,为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省邵阳市隆回县第二中学高中数学 2.2.1双曲线及其标准方程
(1)导学案 新人教A 版选修1-1
【学习目标】
1.掌握双曲线的定义;
2.掌握双曲线的标准方程.
【自主学习】(预习教材P45~ P47)
复习1:椭圆的定义是什么?椭圆的标准方程是什么?
复习2:在椭圆的标准方程22221x y a b +=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.
问题:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?
新知1:双曲线的定义:
平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .
反思:设常数为2a ,为什么2a <12F F ?
2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .
试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .
新知2:双曲线的标准方程:
22
222221,(0,0,)x y a b c a b a b
-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .
思考:若焦点在y 轴,标准方程又如何?
【合作探究】
例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝
对值等于6,求双曲线的标准方程.
变式:已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .
:【目标检测】
1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是 ( ).
A. 双曲线
B. 双曲线的一支
C. 两条射线
D. 一条射线
2.双曲线2255x ky +=的一个焦点是(6,0),那么实数k 的值为( ).
A .25-
B .25
C .1-
D .1
3.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).
A. 5
B. 13
C. 5
D. 13
4. 求适合下列条件的双曲线的标准方程式:
(1)焦点在x 轴上,4a =,3b =;
(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.
教师个人研修总结
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些我没学懂?
实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。