传热学课后作业问题详解

合集下载

传热学-第五版-中建工-课后答案详解

传热学-第五版-中建工-课后答案详解

绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R Aλλ==2218.331012m --=⨯ 11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。

(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。

) 13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.92870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W ∙3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒iw f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k kk-∆=⨯%8583.56 1.7283.56-==% 因为:1211h h,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

传热学课后答案(完结版)

传热学课后答案(完结版)
2 2 1 1
2
tw2
3
tw1 tw 2 q2 1 2 3 1 2 3
再由:
tw1
λ
λ 3
tw2
q1
q2 0.2q1 ,有
tw1 tw 2 t t 0.2 w1 w 2 1 2 1 2 3 1 2 1 2 3
得:
3 43 (
'2 3 2 5 6 2 R 0.265m k / W 2 3 0.65 0.024
"
由计算可知,双 Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双 Low-e 膜双真 空玻璃的保温性能要优于中空玻璃。 3. 4.略 5 .
m2
(m 2 K )
、 h2 85W
(m 2 K )
、 t1 45 ℃
t2 500 ℃、 k ' h2 85W
求: k 、 、
(m 2 K )
、 1mm 、 398 W
(m K )
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即: k
tw1 t w 2 x
(设 tw1 tw 2 ) , 否则 t 与平壁 coust (即常物性假设)
其与平壁的材料无关的根本原因在 的材料有关 (2)由 4.略
q
dt dx
知,q 与平壁的材料即物性有关
5.解:
d 2 dt (r )0 dr dr r r1 , t tw1 (设tw1 t w 2 ) r r2 , t tw 2
绪论
思考题与习题( P89 )答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到:

传热学第五版课后习题答案(1)知识讲解

传热学第五版课后习题答案(1)知识讲解

传热学第五版课后习题答案(1)传热学习题_建工版V0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =︒及w1t 285C =︒ ,试求热流密度计热流量。

解:根据付立叶定律热流密度为:2w2w121t t 285150q gradt=-4530375(w/m )x x 0.2λλ⎛⎫--⎛⎫=-=-=- ⎪ ⎪-⎝⎭⎝⎭ 负号表示传热方向与x 轴的方向相反。

通过整个导热面的热流量为:q A 30375(32)182250(W)Φ=⋅=-⋅⨯=0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m ².k),热流密度q=5110w/ m ², 是确定管壁温度及热流量Ø。

解:热流量qA=q(dl)=5110(3.140.05 2.5) =2005.675(W)πΦ=⨯⨯ 又根据牛顿冷却公式wf hA t=h A(t t )qA Φ=∆⨯-=管内壁温度为:w f q 5110t t 85155(C)h 73=+=+=︒1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

解:(1)由附录7可知,在温度为20℃的情况下,λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K),λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢(2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为:膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K)=0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K)=0.0674+0.000215×20=0.0717 W/(m ·K);由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。

《传热学》第四版课后习题问题详解

《传热学》第四版课后习题问题详解

《传热学》第四版课后习题问题详解《传热学》第一章思考题1.试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。

2.以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。

试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。

③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。

3.导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。

这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4.当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。

试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

传热学第五版部分习题解答(5-7章)

传热学第五版部分习题解答(5-7章)

《传热学》第五版部分习题解答第五章5-13 解:本题应指出是何种流体外掠平板,设是水外掠平板。

由60=m t ℃,查附录3 饱和水的热物理性质表得:610478.0-⨯=v m 2/s ,99.2=r p561082.210478.015.09.0Re ⨯=⨯⨯=⋅=-∞v x u x 41.11015.0)1082.2(0.5Re 0.5321521=⨯⨯⨯⨯==---x xδ mm98.099.241.13131=⨯==--rt p δδ mm5-18 解:55230802=+=+=wf m t t t ℃ 由附录2 ,查得空气的热物性参数为:210865.2-⨯=λW/(m.K) 61046.18-⨯=v m 2/s , 697.0=r p5561051033.41046.188.010Re ⨯<⨯=⨯⨯=⋅=-∞v l u c 所以,此流动换热为层流换热。

923.0101046.18105Re 65=⨯⨯⨯=⋅=-∞u v x c c m46.6)697.0()105(923.010865.2332.0332.03121523121Re =⨯⨯⨯⨯⨯==-r c x h p c c λW/(m 2.K)94.6)697.0()1033.4(8.010865.2332.0332.03121523121Re=⨯⨯⨯⨯⨯==-r lh p l λW/(m 2.K)88.1364.922=⨯==l h h W/(m 2.K)2.555)3080(18.088.13=-⨯⨯⨯=∆=Φt hA W5-23 解: (注意:本题可不做)参考课本p126页(15)到(5-33)式。

2t a by cy =-+;0,w y t t ==;220wd t dy ⎛⎫= ⎪⎝⎭;,t f y t t δ==得到w f w f tt t yt t θθδ-==-,代入速度场和该温度场于能量积分方程()0tf wd t u t t dy a dx y δ⎛⎫∂-= ⎪∂⎝⎭⎰,并且设t δςδ=,略去ς的高阶项,可以得到ς的表达式,进而得到t δ的表达式。

传热学课后习题解答(20190506)

传热学课后习题解答(20190506)

(1)当x= 3cm 时,
Re x

100 0.03 106 19.5
1.538105
0.87u Rex 0.2218
x 5.0 5 0.03 1.538105 1/2 0.383 Re x Pr1 3 t 0.429
w
(2)冬季时
tm

10
2
20
15
查空气的物性参数为
0.0255W /m k Pr 0.704
14.6110-6 m2 / s
1 1/ 288
15 273
Gr

gtH 3 2

2.49 1010
处于湍流区
hL

0.11
H
(Gr Pr)1/3
30 273
Gr

gtH 3 2

6.771 109
处于过渡区
hL

0.0292
H
(Gr Pr)0.39

2.646
Aht 43.26W
Q 43.62 243600 3769kJ
大空间自然对流 6-45
(1)夏季时
tm

35 2

25

30
查空气的物性参数为
Nux

hxl


9400.631
Stx

Nux Re x Pr
0.039
j Stx Pr 2/3 0.03
C f 2 j 0.06
第六章
• 相似理论 6-1
解:空气温度为20℃确定,υ1=15.06×10-6m2/s,Pr1=0.703,

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

《传热学》课后习题答案-第一章

《传热学》课后习题答案-第一章

传热学习题集第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。

答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。

联系是:在发生对流换热的同时必然伴生有导热。

导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。

2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。

试写出这三个公式并说明其中每一个符号及其意义。

答:① 傅立叶定律:,其中,-热流密度;-导热系数;-沿x方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。

② 牛顿冷却公式:,其中,-热流密度;-表面传热系数;-固体表面温度;-流体的温度。

③ 斯忒藩-玻耳兹曼定律:,其中,-热流密度;-斯忒藩-玻耳兹曼常数;-辐射物体的热力学温度。

3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。

这三个参数中,只有导热系数是物性参数,其它均与过程有关。

4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。

试分析引入传热方程式的工程实用意义。

答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。

5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。

而一旦壶内的水烧干后,水壶很快就烧坏。

试从传热学的观点分析这一现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。

试计算通过炉墙的热损失。

如果所燃用的煤的发热量是 2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式KW t A Q 2.7513.0)50520(2004.1=-⨯⨯=∆=δλ每天用煤d Kg /9.3101009.22.753600244=⨯⨯⨯1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式()fw t t rlh q -=π2所以 ()f w t t d qh -=π=49.33W/(m 2.k) 1-18 宇宙空间可近似地看成为0K 的真空空间。

一航天器在太空中飞行,其外表面平均温度为250℃,表面发射率为0.7,试计算航天器单位表面上的换热量。

解:4T q εσ==0.7155250)./(1067.54428=⨯⨯⨯-K m W W/2m 1-30 设图1-4所示壁面两侧分别维持在20℃及0℃,且高温侧受到流体的加热,)./(200,100,08.02101K m W h C t m f ===δ,过程是稳态的,试确定壁面材料的导热系数。

解:()()21111w w w f t t t t h q -=-=δλ()21111w w w f t t t t h --=∴δλ=64)./(K m W1-32 一玻璃窗,尺寸为60cm cm 30⨯,厚为4mm 。

冬天,室内及室外温度分别为20℃及-20℃,内表面的自然对流换热表面系数为W ,外表面强制对流换热表面系数为50)./(K m W 。

玻璃的导热系数)./(78.0K m W =λ。

试确定通过玻璃的热损失。

解:λδA Ah A h T ++∆=Φ2111=57.5W2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。

设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。

环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。

解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-12 在某一产品的制造过程中,厚为1.0mm 的基板上紧贴了一层透明的薄膜,其厚度为0.2mm 。

薄膜表面上有一股冷却气流流过,其温度为20℃,对流换热表面传热系数为40)./(2K m W 。

同时,有一股辐射能透过薄膜投射到薄膜与基板的结合面上,如附图所示。

基板的另一面维持在温度301=t ℃。

生成工艺要求薄膜与基板结合面的温度600=t ℃,试确定辐射热流密度q 应为多大?薄膜的导热系数)./(02.0K m W f =λ,基板的导热系数)./(06.0K m W s =λ。

投射到结合面上的辐射热流全部为结合面所吸收。

薄膜对60℃的热辐射是不透明的。

解:根据公式t K q ∆=得2/1800306006.0001.03060m W q =⨯=-=()23/8.114202.0102.040112060mW q =⨯+⨯-='-2/8.2942m W q q q Z ='+= 2-16 一根直径为3mm 的铜导线,每米长的电阻为2.22Ω⨯-310。

导线外包有厚为1mm 导热系数为0.15)./(K m W 的绝缘层。

限定绝缘层的最高温度为65℃,最低温度为0℃。

试确定在这种条件下导线中允许通过的最大电流。

解:根据题意有:()()W r r t t l q l Q 8.1195.1/5.2ln 06515.012)/ln()(221221=-⨯⨯=-==ππλλπR I 286.119=解得:A I 36.232=2-27 人的眼睛在完成生物功能过程中生成的热量要 通过角膜散到周围环境中,其散热条件与是否带有隐性眼镜片有关,如附图所示,设角膜及隐性镜片均呈球状,且两者间接触良好,无接触热阻。

角膜及镜片所张的中心角占了三分之一的球体。

试确定在下列条件下不戴镜片及戴镜片时通过角膜的散热量:1r =10mm ,2r =12.5mm ,3r =16.3mm ,fit =37℃200=f t ℃, i h =12W/(m2.K),0h =6W/(m2.K),1λ=0.35W/(m.K),2λ=0.8 W/(m.K)。

解:不戴镜片⎪⎪⎭⎫⎝⎛-++=211114111r r A h A h R o o i i πλ所以W R to 109.0=∆=Φ 有效热量Wo 0363.031=Φ=Φ戴镜片时⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-++=3222111141114111r r r r A h A h R o o i i πλπλ所以W R to 108.0=∆=Φ即散热量为Wo 036.031=Φ=Φ2-35 一圆筒体的内外半径分别为i r 及0r ,相应的壁温为i t 及0t ,其导热系数与温度关系可表示为)1()(0bt t +=λλ的形式,式中λ及t 均为局部值。

试导出计算单位长度上导热热流量的表达式及导热热阻的表达式。

2-39 试建立具有内热源()x Φ,变截面,变导热系数的一维稳态导热问题的温度场微分方程式(参考附图)。

解:一维代入微分方程式为2-55 用一柱体模拟汽轮机叶片的散热过程。

柱长9cm ,周界为7.6cm ,截面积为1.95cm 2,柱体的一端被冷却到350℃(见附图)。

815℃的高温燃气吹过该柱体,假设表面上各处的对流换热的表面传热系数是均匀的,并为28)./(2K m W 。

柱体导热系数=λ55)./(K m W ,肋端绝热。

试:计算该柱体中间截面上的平均温度及柱体中的最高温度;冷却介质所带走的热量。

解:(1)()09.14/==c A hp m λ 又肋片中的温度分布()[]()mh ch m x m ch -=0θθ51000-=-=∞t t θ℃所以中间温度x=H 时 221=θ℃因肋片截面温度沿高度方向逐步降低 所以当x=H 时θ最大()mH ch 0max θθ==265.6℃(2)热量由冷却介质带走()W mH th m hpx 7.6500===θφ2-67 对于矩形区域内的常物性,无内热源的导热问题,试分析在下列四种边界条件的组合下,导热物体为铜或钢时,物体中的温度分布是否一样: (1) 四边均为给定温度; (2) 四边中有一个边绝热,其余三个边均为给定温度; (3) 四边中有一个边为给定热流(不等于零),其余三个边中至少有一个边为给定温度; (4) 四边中有一个边为第三类边界条件。

解:(1一样,因为两种 情况下的数学描写中不出现材料物性值; (2)一样,理由同上;(3)不一样,在给定热流的边上,边界条件中出现固体导热系数; (4)不一样,在第三类边界条件的表达式中出现固体导热系数。

2-71 两块不同材料的平板组成如附图所示的大平板。

两板的面积分别为21,A A ,导热系数分别为21,λλ。

如果该大平板的两个表面分别维持在均匀的温度21,t t ,试导出通过该大平板的导热热量计算式。

解:222111/;/λδλδA R A R == 热阻是并联的,因此总热阻为`.22112121λλδA A R R R R R +=+=导热总热量:()()δλλ221112A A t t R t Q +-=∆= 2-78 为了估算人体的肌肉由于运动而引起的温升,可把肌肉看成是半径为2cm 的长圆柱体。

肌肉运动产生的热量相当于内热源,设3/5650m W =Φ。

肌肉表面维持在37℃。

过程处于稳态,试估算由于肌肉运动所造成的最大温升。

肌肉的导热系数为0.42)./(2K m W 。

解:如右图所示,一维稳态导热方程r dr dt r dr d dr dt r dr d r Φ-=⎪⎭⎫ ⎝⎛=Φ+⎪⎭⎫ ⎝⎛ λλ,01,212112ln 422c r c r t r c r dr dt c r dr dt r ++Φ-=+Φ-=+Φ-=λλλλλ ,,。

ww w t R c c R t t t R r c dr dt r +Φ=+Φ-====∴==λλ4400022221 ,,,;,,, ()wt r R R t r t +-Φ=Φ++Φ-=∴∞λλλ4442222 ,最大温度发生在r=0处,℃35.142.0402.05650422max 0=⨯⨯=Φ=∆=-λR t t t w 。

3-13 一块厚20mm 的钢板,加热到5000C 后置于200C 的空气中冷却。

设冷却过程中钢板两侧面的平均表面传热系数为)/(352K m W ⋅,钢板的导热系数为)/(452K m W ⋅,若扩散率为s m /10375.125-⨯。

试确定使钢板冷却到空气相差100C 时所需的时间。

解:由题意知1.00078.0<==δhABi故可采用集总参数法处理。

由平板两边对称受热,板内温度分布必以其中心对称,建立微分方程,引入过余温度,则得:⎪⎩⎪⎨⎧=-==+∞0)0(0θθθρτθt t hA d d cv 解之得:)ex p())/(ex p()ex p(0τλδατρλτρθθh A V c h cv hA -=-=-= s C 3633100=时,将数据代入得,当τθ=3-22 某一瞬间,一无内热源的无限大平板中的温度分布可以表示成t 1=c 1x 2+c 2的形式,其中c 1、c 2为已知的常数,试确定:(1) 此时刻在x=0的表面处的热流密度(2) 此时刻平板平均温度随时间的变化率,物性已知且为常数。

αδρλδττδρδλλλδδδ111001222)2(0)1(2C cA A C d dt A q d dtcA C dxdt qdxdt qxC dx dtx x x x x ==⨯-=-=-==-=======则由能量平衡:解:.80m in 10,100t C 2020cm ,333C C d ︒︒=︒=-∞内上升到温度在柱体中心的值,初温为、已知:一黄铜柱体,)./(4361.04.0109,4.0i 12,06.21.06001043.3,25.01002010080,/1043.33778440109c 52232025K m W R Bi h B R a F s m a v m ⋅=⨯====⨯⨯===--=⨯=⨯==--λτθθρλ查得图由附录得解:由附录3-41 一钢球直径为10cm ,初温为2500C ,后将其置于温度为100C 的油浴中。

相关文档
最新文档