动态调整路径选择的蚁群优化算法

合集下载

蚁群算法在最优路径选择中的改进及应用

蚁群算法在最优路径选择中的改进及应用

c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。

智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。

路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。

最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。

近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。

A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。

随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。

蚁群算法路径优化算法

蚁群算法路径优化算法

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。

allowedk = C − tabuk表示蚂蚁k下一步允许选择的城市。

α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。

β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。

式中,dij表示相邻两个城市之间的距离。

(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。

(7)若集合C中元素(城市)未遍历完,即k<m,则跳转到第(4)步,否则执行第(8)步。

(8)根据公式更新每条路径上的信息量:τij(t + n) = (1 − ρ) * τij(t) + Δτij(t),(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。

蚁群算法的matlab源程序1.蚁群算法主程序:main.m%function [bestroute,routelength]=AntClccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endendMAXIT=10;%最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength %找到一条更好的路径:::routelength=lengthk;:::bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/lengthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]2.蚁群算法寻找路径程序:path.m% 某只蚂蚁找到的某条路径routek,lengthkfunction [routek,lengthk]=path(distance,tau,alpha,beta,Citystart)[m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率elsep=Citystart; % 外部给定确定起点 endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度 endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mifinroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose2(cp); % 根据转移概率确定下一个城市,% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度end蚁群算法仿真结果:其中左边是蚂蚁行走的最短路径,右边是最短路径的值的收敛情况。

蚁群优化算法

蚁群优化算法
规则虽然简单,但在地点数目增多后求解却极为复杂。以42个地点 为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之 大,几乎难以计算出来。 多年来全球数学家绞尽 脑汁,试图找到一个高 效的算法。 TSP问题在物流中的描 述是对应一个物流配送 公司,欲将n个客户的 订货沿最短路线全部送 到。如何确定最短路线。
第9章 智能优化方法
Contents
1 2
遗传算法
蚁群优化算法 粒子群优化算法
3
蚁群优化算法
先看1个最优化例子
“旅行商问题”(Travel Salesman Problem, TSP 问题)常被称为“旅行推销员问题”,是指一名推销员要 拜访多个地点时,如何找到在拜访每个地点一次后再回到 起点的最短路径。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。

蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。

1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。

蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。

通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。

2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。

2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。

较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。

2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。

通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。

2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。

信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。

蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。

2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。

信息素更新还包括信息素的挥发,以模拟现实中信息的流失。

3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。

3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。

在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。

例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。

3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。

蚁群算法在路径规划与优化中的应用

蚁群算法在路径规划与优化中的应用

蚁群算法在路径规划与优化中的应用第一章:引言在现实生活中,路径规划和优化一直是一个重要且具有挑战性的问题。

无论是城市道路的交通拥堵还是物流配送中心的最优路径选择,路径规划和优化能帮助我们节约时间和资源。

近年来,蚁群算法作为一种基于自然现象的模拟优化方法,已经被广泛应用于路径规划和优化问题中。

本文将重点介绍蚁群算法的原理和应用,以及其在路径规划与优化中的作用。

第二章:蚁群算法原理蚁群算法是由Marco Dorigo等人于1992年提出的一种模拟蚂蚁觅食行为的计算方法。

蚁群算法模拟了蚂蚁在寻找食物时的行为规律,其中包括信息素释放和信息素挥发等行为。

蚂蚁通过释放信息素,与其他蚂蚁进行信息交流,并根据信息素浓度来选择路径。

信息素会随着时间的推移而挥发,从而不断影响蚂蚁的行为选择。

通过这种方式,蚁群算法能够找到一条较优的路径。

蚁群算法的原理类似于人类社会中的群体智慧,即通过合作与信息交流来寻找最优解。

第三章:蚁群算法在路径规划中的应用蚁群算法在路径规划中的应用主要包括:城市道路交通规划、无人车路径规划和物流配送路径规划等。

例如,在城市道路交通规划中,蚁群算法可以帮助确定最佳的路网连接方式,以及解决交通拥堵问题。

在无人车路径规划中,蚁群算法可以根据交通流量和道路状况等因素,选择合适的行驶路径。

在物流配送路径规划中,蚁群算法可以帮助确定最优的配送路线,以减少成本和提高效率。

第四章:蚁群算法在路径优化中的应用蚁群算法在路径优化中的应用主要包括:路线优化、资源调度和路径搜索等。

例如,在路线优化中,蚁群算法可以帮助优化货车的行驶路线,以减少行驶距离和时间成本。

在资源调度中,蚁群算法可以帮助优化人员的分配和任务调度,以提高工作效率和资源利用率。

在路径搜索中,蚁群算法可以帮助找到最短路径或者最优解,以满足用户需求。

第五章:蚁群算法的优缺点蚁群算法作为一种模拟生物行为的优化算法,具有一些优点和缺点。

其优点包括:能够寻找复杂问题的较优解、容易实现和灵活性强。

动态优化方案

动态优化方案

动态优化方案动态优化方案是一种通过不断调整和改进策略,以满足不断变化的需求和目标的方法。

在各个领域中,动态优化方案都被广泛应用,如网络优化、生产优化、资源调度等。

本文将就动态优化方案的定义、种类以及应用领域进行探讨。

一、动态优化方案的定义动态优化方案是指在多变和不确定的环境中,通过实时的调整和改进策略,以最优的方式达到预期的目标。

与静态优化相比,动态优化方案更加灵活适应变化,并且更加实时。

二、动态优化方案的种类1. 遗传算法:遗传算法是一种模仿生物进化过程的优化算法,通过迭代和变异来寻找最优解。

在动态环境中,遗传算法能够适应变化并进行优化调整。

2. 粒子群算法:粒子群算法是一种模拟鸟群或鱼群行为的优化算法。

在动态环境下,粒子群算法通过不断地搜索和更新粒子位置,实现对优化目标的动态调整。

3. 蚁群算法:蚁群算法是一种模拟蚂蚁觅食行为的优化算法。

在动态环境下,蚁群算法通过模拟蚂蚁的信息交流和路径选择行为,实现对优化目标的实时调整。

4. 动态规划:动态规划是一种将问题分解为子问题,并通过保存子问题的最优解来求解全局最优解的方法。

在动态环境下,动态规划能够根据实时情况调整策略,实现对优化目标的动态优化。

三、动态优化方案的应用领域1. 网络优化:在网络领域中,动态优化方案可以应用于网络资源调度、服务质量优化等方面。

通过实时的优化调整,能够使网络资源得到最优的利用,并提高网络的性能和可靠性。

2. 生产优化:在生产领域中,动态优化方案可以应用于生产计划调度、运输路径规划等方面。

通过实时的优化调整,能够使生产过程更加高效,并降低生产成本。

3. 资源调度:在资源调度领域中,动态优化方案可以应用于物流管理、能源调度等方面。

通过实时的优化调整,能够使资源的利用率最大化,并提高资源的分配效率。

4. 市场分析:在市场领域中,动态优化方案可以应用于市场预测、投资策略等方面。

通过实时的优化调整,能够使投资决策更加科学,并降低风险。

基于蚁群优化算法的云数据库动态路径规划

S IHe g l n H n -i g’ a B a g y 。 TANG h n mi LI Ch a -ig AIGu n - i ・ Z e- n U u n l n
(c o l f o ue cec , migUnv ri f c nea dTeh oo y Na n 1 0 4Chn ) S h o mp trS i eNa n ies yo i c n cn lg , mig2 0 9 , ia oC n t S e
mia i n a g rt m a e r u n swh c a n r rt s s c s i t l g n o t g, v r l o t z t n, o u t z t l o ih b s d g o p a t ih h s ma y p i ii u h a n el e tr u i o e a l p i a i r b s — o o e i n mi o
( 南京 理工 大学 计算机 学 院 南京 2 0 9) ( 10 4 河南科 技大 学 电信学 院 洛 阳 410 ) 70 3。10 1。
摘 要 云计算是下一代 计算网络模 型的发展 趋势。云 中的存储 资源如何 快速 地路 由, 更是研 究的难点 。蚁群 算法
第3 7卷 第 5 期 21 0 0年 5月





Vo . 7 No 5 13 .
M a 01 y2 0
Co p t r c e c m u e S in e
基 于 蚁 群 优 化 算 法 的云 数 据 库 动 态 路 径 规 划
史 恒 亮L 白光 一 唐振 民 刘传领 。
关键词
蚁群优化算 法, 云计算 , 云数据库 , 动态路 径规 划

蚁群算法在路径规划中的应用

蚁群算法在路径规划中的应用概述:在现实世界中,路径规划是一个非常重要的问题。

无论是导航系统、交通规划还是物流调度,都需要找到最优的路径来解决问题。

蚁群算法作为一种模拟蚂蚁寻找食物的行为的优化算法,被广泛应用于路径规划问题中。

本文将介绍蚁群算法的原理和几种常见的应用。

蚁群算法的原理:蚁群算法源于观察到蚂蚁在寻找食物时留下的信息素行为。

当蚁群中的一只蚂蚁找到食物之后,它会沿着返回的路径释放信息素。

这些信息素将吸引其他蚂蚁沿着该路径行动,随着时间的推移,更多的蚂蚁会选择这条路径,从而形成更强的信息素效应。

蚁群算法通过模拟这种信息素行为来找到最优解。

蚁群算法的应用:1. 路径规划:蚁群算法在路径规划中的应用是最常见的。

蚂蚁在搜索食物时,会选择性地释放信息素来引导其他蚂蚁寻路。

类似地,蚁群算法可以模拟蚂蚁行为来搜索最短路径或最优路径。

例如,在导航系统中,蚁群算法可以通过模拟蚂蚁在地图上搜索路径的行为,帮助用户找到最短路径。

2. 物流调度:物流调度是一个复杂的问题,涉及到多个因素,如货物的运输时间、成本、路径等。

蚁群算法可以应用于物流调度中,通过模拟蚂蚁在搜索食物的行为,帮助选择最优的路径和调度策略。

这可以有效减少成本,并提高物流的效率。

3. 机器人导航:在机器人导航中,蚁群算法可以帮助机器人找到最优的路径和规避障碍物。

类似于蚂蚁寻找食物的行为,机器人可以释放“信息素”来引导其他机器人选择合适的路径。

这种算法可以帮助机器人自主探索未知环境,并找到最短路径。

4. 电子游戏中的敌人行为:在电子游戏中,敌人的行为通常是通过编程来实现的。

蚁群算法可以用于模拟敌人的智能行为,使其更加具有逼真的表现。

通过使用蚁群算法,敌人可以模拟蚂蚁的寻找食物行为,从而更加灵活地寻找玩家并采取相应的行动。

总结:蚁群算法在路径规划中的应用能够有效解决复杂的问题,如寻找最短路径、物流调度、机器人导航和电子游戏的敌人行为。

通过模拟蚂蚁寻找食物的行为,蚁群算法可以帮助我们找到最优的解决方案。

蒙特卡洛树蚁群算法

蒙特卡洛树蚁群算法一、引言蒙特卡洛树蚁群算法(Monte Carlo Tree Ant Colony Algorithm)是一种基于蚁群算法和蒙特卡洛树搜索的优化算法。

它结合了蚁群算法的全局搜索能力和蒙特卡洛树搜索的局部搜索能力,能够在解决复杂问题时提供较好的性能和效果。

二、蚁群算法简介蚁群算法是一种模拟蚂蚁觅食行为的启发式优化算法。

蚂蚁在觅食过程中,通过释放信息素来引导其他蚂蚁选择路径,从而实现全局最优解的搜索。

蚁群算法在解决旅行商问题、资源调度、路径规划等优化问题中具有优秀的性能。

三、蒙特卡洛树搜索简介蒙特卡洛树搜索(Monte Carlo Tree Search,简称MCTS)是一种用于决策问题的搜索算法。

它通过不断模拟随机决策,并根据模拟结果调整决策策略,最终找到最优解。

蒙特卡洛树搜索在围棋、五子棋等复杂博弈游戏中取得了重大突破。

四、蒙特卡洛树蚁群算法原理蒙特卡洛树蚁群算法是将蚁群算法和蒙特卡洛树搜索相结合的一种优化算法。

它通过蚁群算法的全局搜索能力找到问题的大致解空间,然后利用蒙特卡洛树搜索的局部搜索能力进一步优化解空间,从而得到最优解。

蒙特卡洛树蚁群算法的具体步骤如下:1. 初始化蚁群:在解空间中随机生成一组蚂蚁,并将它们放置在解空间的不同位置。

2. 全局搜索:每只蚂蚁根据信息素和启发式信息选择下一步的移动方向,并更新信息素。

3. 局部搜索:根据蒙特卡洛树搜索的原理,在当前解空间中随机选择一个节点进行模拟,并评估模拟结果。

4. 更新解空间:根据模拟结果调整解空间,并更新信息素。

5. 重复步骤2~4,直到达到停止条件。

6. 输出最优解:根据信息素的浓度和解空间的评估结果,输出最优解。

五、蒙特卡洛树蚁群算法的应用蒙特卡洛树蚁群算法在许多领域具有广泛的应用,如路径规划、资源调度、智能交通等。

以路径规划为例,蒙特卡洛树蚁群算法可以在复杂的道路网络中找到最短路径,并考虑交通流量、拥堵等因素,从而提供更加准确和可靠的路径规划结果。

蚁群算法公式

蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。

这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。

它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。

蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。

由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。

蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。

蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。

在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。

蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 卷 第 l 6 7期
V 36 oL




Hale Waihona Puke 工程 21 0 0年 9月
Se e be pt m r 201 0
No 1 .7
C o put rEng n e i m e i e r ng
人 工智 能及 识别 技术 ・
文章编号:l 0 48 o0 7 _0一0 0 _ 2( 1) —0 l 3 o- 2 l 2
wh c i ba e n c n r s n e sfc to e h o o y n r e o i c e s h r b bi t f s l c i g s l t n c mpo e t ,p t h i e r e i h s s d o o ta t i t n i ai n t c n l g ,i o d r t n r a e t e p o a l y o e e tn o u i o i i o n n s a h c o c ul
1 概 述
蚁群算法…是 继模 拟退 火、遗传 算法 和人工神经 网路等 启 发式算法后的又一种应 用于 优化 问题 的算法 。该算法先后 成功应用于调度问题 、旅行商 问题( S ) T P 、网络路 由中。实验
结 果 表 明 , 群 算 法 具 有 很 强 的鲁 棒 性 和 搜 索 较 好 解 的特 点 。 蚁 但 蚁群 算 法 同时 也 存 在一 些缺 点 ,如 收 敛 速 度 慢 、 易 出 现 停 滞现象等 。 蚁 群 算 法在 构造 解 的过 程 中利 用随 机 选 择 策 略 ,这 种 选
AntCo o l ny Optm i a i nAl o ihm i z to g rt wih Pa h Cho c fDy m i a ii n t t i eo na cTr nsto
LI H ao bi H U i o- ng, U - n, X a bi ZH A O ido J - ng
o tmi ai , n a t o v r e c . pi zt on a d f s n e g n e c
[ ywod at oo yag rh p t h ieifr ainet p Ke r s n ln lo tm; ahc oc;no t nr y I c i m o o
文献 标识码: A
中图分类号: P8 TI
动 态调 整路 径 选择 的蚁 群 优化 算 法
刘好斌 ,胡小兵 ,赵 吉东
( 重庆大学数理学院, 重庆 404) 004
摘 要 :针对蚁群算法收敛 速度慢 和存在停滞现 象的缺点 ,提出对比度增强的路径 选择规 则以增 强其全 局搜索能 力,选择规则加强了对反
(co l f te t s Sin eCh n qn ies yC o g ig 0 0 4 S h o hmac & cec, o g igUnvri , h n qn 04 ) o Ma i t 4
[ s at Abt c]Ai n th i d atg f lw o vre c n tg ainp e o n no n c ln loi m, a h i l i it dcd r migateds v na eo o c n eg nea ds nt h n me o f t oo yag rh p t coc r e s nr u e , a s a o a t h eu o
馈信 息的利 用,f n i 快算法的收敛 速度,通过信息熵来动态控制对 比度增强的方 向,在避 免算法停 滞的同时加快 了算法 的收敛速度 。将改  ̄J 进后的蚁群优化算法与传统 的蚁群优化算法进行比较 , 仿真实验结果表明 , 改进算法具有较好的稳定性和全局优化性能 , 且收敛速度较快。 关键词 :蚁群算法 ;路径选择 ;信息熵
信息素的积 累和 更新来寻 求最优解 。蚂蚁在寻找食物 的过程
中通 过 信 息素 来 选 择 最 短 路 径 ,这 样 使 得 蚂 蚁 从 巢 穴 到食 物
源之间的路径越短 ,则其上 的信息素越多 ,后继蚂蚁选择 的
C ln p i z t nACO n mp o e oo y O t ai ( mi o )a d i r v d ACO. i lt n rs l h w ta te i r v d AC h se c l n tbl y p r r n e o lb l Smu a o e ut s o h t h mp o e O a x el t a it, e f ma c f o a i s e s i o g
s e g h ns t e u e f f e b c nd s e d c n e g n e pe d nf r to n r p s s d t y a c o to o di c i n f c n r s t n t e h s o e d a k a p e s up o v r e c s e I o ma i n e to y i u e o d n mi c n r l t r to o o ta t r e e h n e n ,wh c v d sa nai n o e a g rt m n p e p c n r e c . n a c me t i h a oi tg t ft l o h a d s e d u o ve g n e An e a o h i x mpl s g v n, e i i e whih i i l t d b sn a i t c s smu a e y u i g b sc An
相关文档
最新文档