高三数学第二轮专题复习电子化讲义填空题第1~3章
高三数学第二轮复习专题3不等式

高三数学第二轮复习专题3不等式专题3 不等式江苏省震泽中学 王利平一、填空题例1 已知集合A =⎩⎨⎧⎭⎬⎫0,1,B =⎩⎨⎧⎭⎬⎫a 2,2a ,其中a ∈R.定义A ×B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },若集合A ×B 中的最大元素为2a +1,则a 的取值范围是________. 解析 A ×B ={a 2,2a ,a 2+1,2a +1}.由题意,得2a +1>a 2+1,解得0<a <2. 答案 (0,2)例2 .设123log2,ln 2,5a b c -===则c b a ,,三者的大小关系解析 a=3log 2=21log 3, b=In2=21log e,而22log3log 1e >>,所以a<b, c=125-=5,而2252log 4log 3>=>,所以c<a,综上c<a<b.答案c a b <<例3 .对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”.给出如下一种解法:解 由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1), 即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a+x +b x +c <0的解集为⎝ ⎛⎭⎪⎪⎫-1,-13∪⎝ ⎛⎭⎪⎪⎫12,1,则关于x 的不等式kxax +1+bx +1cx +1<0的解集为________.解析 不等式kx ax +1+bx +1cx +1<0可化为k1x+a +1x +b 1x +c<0,所以有1x ∈⎝ ⎛⎭⎪⎪⎫-1,-13∪⎝ ⎛⎭⎪⎪⎫12,1, 即x ∈(-3,-1)∪(1,2),从而不等式kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2). 答案 (-3,-1)∪(1,2) 例4 .设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于解析 由题意知,所求的||AB 的最小值,即为区域1Ω中的点到直线3490x y --=的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线3490x y --=的距离最小,故||AB 的最小值为|31419|245⨯-⨯-⨯=。
3(数形结合)高三数学第二轮专题复习课堂资料.doc

高三数学第二轮专题复习一数形结合思想一、例题解析[例1]若关于卅J方程F+2d + 3"0的两根都在-1和3之间,求R的取值范亂[分析]^f(x)= x2+2loc +3k,其图象与兀轴交点的横坐标就是方nj\x) = 0 的解,由)=/(兀)的图象可知,要使一根都在-1,3Z间,只需f(一1)>0,/⑶>0,/(丄)=:/(一灯<0同时成立,解得-1<£<0,故展(-1,0)2a[例2]解不等式Q X +2>X[解]法-、常规解'法:原不等式等价于(/山十2$0或(〃)严°°x + 2$0兀+2>0解(/),得0Wxv2;解(〃),得一2W兀<0综上可知,原不等式的解集为{兀|-2W兀v0或0^x<2} = {x\-2^x<2}法二、数形结合解法:令)[=5/兀+ 2, y2 = x f则不等式V^+2>^J解,就是使必=眉石的图象在力=兀的上方的那段对应的横坐标,如卞图,不等式的解集为{x\x A^x<x R} 而勺可由Vx + 2 = x,解得,x B =2, x A = -2,故不等式的解集为{兀|-2Wxv2}。
[例3]已知0VQV1,则方程d"=|10ga兀|的实根个数为()(A)1个(B)2个(C)3个(D)l个或2个或3个[分析]判断方程的根的个数就是判断图象尸亦与=|log“月的交点个数,画出两个函数图象,易知两图象只冇两个交点,故方程冇2个实根,选(B)。
[例4]如果实数心y满足匕-2)2 +),2=3,则丄的最大值为()X(硝(B)f (C)£(D 朋乙J 乙[分析]等式(X-2)2+.V2=3有明显的几何总义,它表坐标平而上的一个圆,圆心为(2, 0),半径r = V3,(如图),而丄=口则表示圆上的点(兀,刃与坐x x-0标原点(0, 0)的连线的斜率。
高三数学二轮复习 第二篇 第3课时填空题的解法课件 理

• 从历年高考成绩看,填空题得分率一直不 很高,因为填空题的结果必须是数值准确、 形式规范、表达式最简,稍有毛病,便是 零分.因此,解填空题要求在“快速、准 确”上下功夫,由于填空题不需要写出具 体的推理、计算过程,因此要想“快速” 解答填空题,则千万不可“小题大做”, 而要达到“准确”,则必须合理灵活地运 用恰当的方法,在“巧”字上下功夫.
a 的值为________.
解析:
ax-1 将 <0 转化为(x+1)(ax-1)<0,其解集 x+1 1 x=- 是方程 ax-1 2
1 是(-∞, -1)∪- ,+∞ 当且仅当 , 2
=0 的解,得 a=-2.
答案: -2
1 1.(2011· 安徽卷)函数 y= 2 的 定 义域 是 6-x-x ________.
an 已知数列{an}满足 a1=33,an+1-an=2n,则 的最 n 小值为________.
解析: 根据数列的递推关系式 an+1-an=2n,可利用 累加法求解其通项公式: an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =2[1+2+…+(n-1)]+33=n2-n+33 an 33 所以 = +n-1, n n
• 3.在相距2千米的A、B两点处测量目标点C, 若∠CAB=75°,∠CBA=60°,则A、C 两点之间的距离为________千米. • 解析: 如图所示正弦定理得 = , sin 60° sin 45° 2 3 ∴AC= · = 6. 2 2 2
答案: 6
• 解析: 初始值:k=2,执行“k=k+1” 得k=3,a=43=64,b=34=81,a>b不成 立; • k=4,a=44=256,b=44=256,a>b不成 立; • k=5,a=45=1 024,b=54=625,a>b成 立,此时输出k=5. • 答案: 5
直线与方程专题复习讲义 高三数学二轮专题复习

第三章 直线与方程(一)直线的倾斜角1.定义:在平面直角坐标系中,当直线与x 轴相交时,取x 轴非负半轴作为基准,把x 轴的正方向按逆时针旋转至与直线重合的最小角,叫做直线的倾斜角.当直线平行于 x 轴或与x 轴重合时,我们规定直线的倾斜角为0°.2. 范围: 0°≤α<180° 倾斜角[0°,180°) 二面角[0°,180°]线面角[0°,90°] 异面直线成角(0°,90°](二)直线的斜率1.定义:倾斜角α不是90°的直线,正切值叫做这条直线的斜率,直线的斜率常用k 表示,即k=tanα,当直线的倾斜角等于90°时,直线的斜率不存在.2.倾斜角α与斜率k 的范围之间的对应关系 (三)斜率公式经过两点P ₁(x ₁,y ₁),P ₂(x ₂,y ₂)的直线的斜率是: k =y 2−y1x 2−x 1注:(1)斜率公式适用范围x ₁≠ x ₂ (2)斜率公式变形. y₂−y₁=k (x₂−x₁)例1 (1)过 P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若 P 恰为线段AB 的中点,求直线l 的斜率和倾斜角.k =-1,α = 135°(2)若经过点A(1-t ,1+t)和点B(3,2t)的直线的倾斜角为钝角,求实数t 的取值范围.(-2,1)(3)若直线l 的倾斜角是连接(-3,5),(0,9)两点的直线倾斜角的2倍,则直线l 的斜率为 −247.k =tanα=43k ′=tan2α=−247(4)直线l 的方程为x+ycosθ+3=0(θ∈R),则倾斜角的范围为 [π4,3π4].tanα=−1cosθ∈(−∞,+∞)(5)已知两点A(2,3)和B(-1,2),过点 P(1,-1)的直线l 与线段AB 有交点,则直线l 斜率k 的取值范围为 (−∞,−32]U [4,+∞).名称 方程 适用条件 参数几何意义 斜截式 y=kx+b α≠90° k:斜率b :纵截距(可正,可负)点斜式y-y ₀=k(x-x ₀)α≠90°k:斜率 点(x ₀,y ₀)例2 (1)过P(-2,2)点引一条直线l,使其与两坐标轴围成的三角形的面积等于4,求直线 l的方程.解析{b−a=12abab=8或−8∴{a=2+2√3b=−2+2√3 j{a=−2−2√3b=2−2√3(2)直线l过点P(-2,3),且与x轴、y轴分别交于A、B两点,若 P恰为线段AB 的中点,求直线l的方程.3x-2y+12 = 0(3)若直线((2m²+m-3)x+(2-m)y=4m-1在 x轴上的截距为1,则实数 m是(D)A.1B.2C.−12 D.2 或−12(4)①在x轴,y轴上截距分别是-2,3的直线方程是3x-2y+6=0②求过点 P(2,3),并且在两轴上截距相等的直线方程y=32x或.x+y-5 =0例3 (1)直线l的方程为.Ax+By+C=0(A、B不同时为零),根据下列各位置特征,写出A,B,C应满足的关系:①l与两坐标轴都相交A≠0;B≠0 ;②l过原点 C=0 ;③l只与x轴相交 B=0 ;④l是y轴所在直线 B=0,C=0 ;⑤l在x,y轴上的截距互为相反数①C=0. A≠0,B≠0②C≠0且A= B≠0 .(2)①直线kx+y+1=0(k∈ R)恒过定点 (0,-1) .②直线kx+k+3k²x+k²y=0(k∈R)恒过定点 (-1,3) .(3)过点P(3,0)有一条直线l,它夹在两条直线l₁:2x−y−2=0与l₂:x+y+3=0之间的线段恰被点 P平分,求直线l的方程。
高三二轮复习电子讲义(立、解几、概率)

(一)...1...当.x .,.y.满足不等式组......2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩时.,.目标函数....k .=.3. x .-.2. y .的最大值为.....答案:...6...2...设.P.为圆..x .2.+.y .2.=.1.上的动点....,.则点..P .到直线...3 .x .-.4 .y .-.10=0....的距离的最小值为........______......_._... 答案:...1_..3...已知点...P .(.x,y)....是椭圆...191622=+y x 上任一点,则......x .+.y .的取值范围是........ 答案:...[.-5,...5]..4..抛物线....y .2 .= .4.x .关于直线....l:..y=..x.+2..对称的曲线方程是........_._._._.______........答.案5...把圆..1)2()3(22=-+-y x 沿.y.轴正方向平移......b .个单位后与.....y . = x .. + 1..相切,则....b .的值..为.____......答案:...6..关于曲线.....0992233=++-xy y x y x 有以下命题:......错误..!.曲线关于原点对称;.........错误..!.曲线..关于..y .轴对称...;.错误..!.曲线关于....x .轴对称...;.错误..!.曲线关于....y = x ...对称..;.错误..!.曲线关于....y = ..-.x .对称。
...其中..正确命题的序号是........____...._._.___...__..____...._... 答案..:.7...过点..(.2.,.-.2)..且与..x y 222-=1..有公共渐近线方程的双曲线方程为...............____...._.______......_.__....答案..:.8...在长方体....A .1.B .1.C .1.D.1.—.A .BC..D .中,..AB=2B .....B.1.,E..、.F .分别为...A .1.B .1.、.BB..1.中点,则....EF ..与DD...1.所成的角的正弦值是.........___..._.____..... . 答案..:.9...某地球仪上北纬.......30纬线的长度为......12πcm ,则该地球仪的表面积是...........____...._______.......答案..:.192π cm ..21.0...双曲线..... 2226y x -=.-.1.的两条渐近线的夹角是.......... 答案:...6.0.°(.二.). 1.有...1.元、..2.元、..5.元、..50..元、..10..0.元的人民币各一张........,.取其中的一张或几张,能组成............._._.________........_种不同的币值.......答案:...31.... 2..如图...,.用红、黄、绿、橙、蓝五种颜色给图中的四个方格涂色,每格涂一种颜色................................,.相邻格涂....不同颜色....,.问共有...______......___...种涂色方案?......解. 涂色的方法有三种情况:四个方格涂色互不相同,恰有一组对格颜色相同和两组对格.....................................颜色相同、共有.......120...+.120+....2.0=260.....种涂色方案..... 3..三人独立地破译一个密码............,.他们能单独译出的概率分别为.............,41,31,51假设他们破译密码是彼..........此独立的....,.则此密码被译出的概率是........... 答案..:.53 4..某篮球运动员在罚球线投中球的概率为..................32,在某次比赛中罚........3.球恰好命中.....2.球的概率为..... _.________........_._____.....__.._.。
2021-2022年高三数学第二轮专题复习填空题解答策略方法课堂资料

实用文档2021年高三数学第二轮专题复习填空题解答策略方法课堂资料一、基础知识整合数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题.填空题缺少选择支的信息,故解答题的求解思路可以原封不动地移植到填空题上.但填空题既不用说明理由,又无须书写过程,因而解选择题的有关策略、方法有时也适合于填空题.求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫.常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
下面以一些典型的问题为例,介绍解填空题的几种常用方法与技巧,从中体会到解题的要领:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
二、例题解析(一)直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果.[例1] 设(1)3,(1),a m i j b i m j =+-=+-其中为互相垂直的单位向量,又,则实数m = 。
[解](2)(4),(2).a b m i m j a b mi m j +=++--=-+∵, ∴,∴其中为互相垂直的单位向,∴.[例2] 已知函数在区间上为增函数,则实数a 的取值范围是 . [解],由复合函数的增减性可知,在上为增函数,∴,∴.[例3] 现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13长比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为 。
[解]由题设,此人猜中某一场的概率为,且猜中每场比赛结果的事件为相互独立事件,故某人全部猜中即获得特等奖的概率为. [例4] 已知si n θ+cos θ=,θ ∈(0,π),则cot θ 的值是 .[解]已知等式两边平方得si n θcos θ=-,解方程组得si n θ=,cos θ=,故答案为:-. [例5] 方程log(x +1)+log =5的解是 .[解]依题意得2log(x +1)+log(x +1)=5,即log(x +1)=2,解得x =3.(二)特殊化法:当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果.[例6] 已知(1-2x )=a +ax +ax +…+ax ,那么a +a +…+a = .[解]令x =1,则有(-1)=a +a +a +…+a =-1;令x =0,则有a =1,所以a +a +…+a =-1-1=-2.[例7] 在△A B C 中,角A 、B 、C 所对的边分别为a 、b 、c , 若a 、b 、c 成等差数列,则 。
2022年高考数学二轮复习教案:第二部分 专题一 选择、填空题常用的10种解法 Word版含答案
专题一 选择、填空题常用的10种解法 抓牢小题,保住基本分才能得高分________________________________________________________________________ 原则与策略:1.基本原则:小题不用大做.2.基本策略:充分利用题干和选项所供应的信息作出推断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排解后求解.解题时应认真审题、深化分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的挨次排列.2.留意基本学问、基本技能与思想方法的考查.3.解题方法机敏多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简洁地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要留意动点或圆锥曲线上的点所满足的条件,机敏利用相关的定义求解.如[本例]中依据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后依据椭圆定义求出其长轴长,最终就可依据离心率的定义求值. [技法体验]1.(2021·广州模拟)假如P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2022·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排解法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排解干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略.[例2] (2022·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排解法选择答案. 对于A ,取a =b =10,c =-110, 明显|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立.对于B ,取a 2=10,b =-10,c =0, 明显|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,明显|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排解法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排解干扰选项. [技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排解A ,D ;又f (12)=-cos 12<0,故排解C.综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最终的结果必定是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,明显,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A.答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2021·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( )A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a 为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3, 故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解. [技法体验]1.(2021·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,由于|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,由于点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后依据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等. [例4] (2021·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,由于焦点在y 轴上,故选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中已知椭圆的焦点所在坐标轴,设出标准方程,依据已知列方程求解. [技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D.答案:D 方法五 估值法估值法就是不需要计算出代数式的精确 数值,通过估量其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要具体的过程,因此可以猜想、合情推理、估算而获得,从而削减运算量.[例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);由于sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较简单的计算,节省时间,是发觉问题、争辩问题、解决问题的一种重要的运算方法.但要留意估算也要有依据,如[本例]是依据指数函数与对数函数的单调性估量每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较. [技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π12,π2 C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:由于函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,若取φ=π2,则2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝ ⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A.答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导冲突;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.明显两者冲突,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较便利.其关键是依据假设导出冲突——与已知条件、定义、公理、定理及明显的事实冲突或自相冲突.如[本例]中导出等式的冲突,从而说明假设错误,原命题正确. [技法体验]假如△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,则由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,明显该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D 方法七 换元法换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为生疏的形式,把简单的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换争辩对象,将问题移至新对象的学问背景中去争辩,从而使非标准型问题标准化、简单问题简洁化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×yx=2⎝ ⎛⎭⎪⎫当且仅当x 4y =yx ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要依据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其开放,通过构造基本不等式的形式求解最值. [技法体验]1.(2022·成都模拟)若函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22.∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减,∴t =0时,y max =1.答案:1 方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立大事,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8]某学校为了争辩高中三个班级的数学学习状况,从三个班级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一班级的概率为________. 解析:记高一班级中抽取的班级为a 1,高二班级中抽取的班级为b 1,b 2, 高三班级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的全部可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一班级”为大事A ,则大事A 为抽取的两个班级来自同一班级. 由题意,两个班级来自同一班级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一班级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,肯定要精确 把握所求问题的对立大事.如[本例]中,“两个班级不来自同一班级”的对立大事是“两个班级来自同一班级”,而高一班级只有一个班级,所以两个班级来自同一班级的可能性仅限于来自于高二班级,或来自于高三班级,明显所包含基本大事的个数较少. [技法体验]1.(2022·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B. 答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,由于x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,明显函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分别参数法分别参数法是求解不等式有解、恒成立问题常用的方法,通过分别参数将问题转化为相应函数的最值或范围问题求解,从而避开对参数进行分类争辩的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要留意该种方法仅适用于分别参数后能够求解相应函数的最值或值域的状况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是________.解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分别参数法解决不等式恒成立问题或有解问题,关键在于精确 分别参数,然后将问题转化为参数与函数最值之间的大小关系.分别参数时要留意参数系数的符号是否会发生变化,假如参数的系数符号为负号,则分别参数时应留意不等号的变化,否则就会导致错解. [技法体验]1.(2022·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立, 即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,由于y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案:C2.(2022·湖南五校调研)方程log 12(a -2x)=2+x 有解,则a 的最小值为________.解析:若方程log 12(a -2x )=2+x 有解,则⎝ ⎛⎭⎪⎫122+x =a -2x有解,即14⎝ ⎛⎭⎪⎫12x +2x =a 有解,∵14⎝ ⎛⎭⎪⎫12x +2x ≥1,故a 的最小值为1. 答案:1 方法十 构造法构造法是指利用数学的基本思想,经过认真的观看,深化的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵格外丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点实行相应的解决方法,其基本的方法是借用一类问题的性质,来争辩另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等. [例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln mn,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.由于x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 由于f (n )<f (m ),所以n <m .故选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,依据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
高三数学二轮复习(详解题型+规范思路解答)智取填空题课件 理 新人教A版(1)
画出可行域(如图).设 x+2y=z,则 y=-12x+12z,可知
当直线 y=-12x+12z 经过点 A12,0,B(0,-1)时,z 分别取
到最大值和最小值,此时最大值 zmax=12,最小值 zmin=-2,
故取值范围是
2,12
.
[答案]
2,12
图像分析法实质上就是数形结合的思想方法在解决填 空题中的应用,利用图形的直观性并结合所学知识便可直接 得到相应的结论,这也是高考命题的热点.准确运用此类方 法的关键是正确把握各种式子与几何图形中的变量之间的 对应关系,利用几何图形中的相关结论求出结果.
[解析] ∵a1,a2,a5 成等比数列,∴a22=a1a5, ∴(1+d)2=1×(4d+1),∴d2-2d=0. ∵d≠0,∴d=2. ∴S8=8×1+8×2 7×2=64. [答案] 64
直接法是解决计算型填空题最常用的方法,在计算过 程中,我们要根据题目的要求灵活处理,多角度思考问题, 注意一些解题规律和解题技巧的灵活应用,将计算过程简 化从而得到结果,这是快速准确地求解填空题的关键.
uuur uuur ∵AP⊥BD,∴ AP·BD=0.
uuur uuur uuur uuur
uuur
又∵ AP·AB=| AP|| AB|cos ∠BAP=| AP|2,
uuur uuur uuur ∴ AP·AC =2| AP|2=2×9=18.
法二:把平行四边形 ABCD 看成正方形,则 P 点 uuur uuur
解答填空题时,由于不反映过程,只要求结果,故对 正确性的要求比解答题更高、更严格.《考试大纲》中对 解答填空题提出的基本要求是“正确、合理、迅速”.为 此在解填空题时要做到:
快——运算要快,力戒小题大做; 稳——变形要稳,不可操之过急; 全——答案要全,力避残缺不齐; 活——解题要活,不要生搬硬套; 细——审题要细,不能粗心大意.
高三数学第二轮专题复习电子化讲义填空题第1~3章
x2 4 x 13 (x 2) )
9. 已知函数 y f (x) 是奇函数,当 x 0 时 , f (x) 3x 1 ,设 f ( x) 的反函数是 y=g(x),则 g(-
8)=
.
( -3 )
10.在函数 f (x) ax 2 bx c 中,若 a, b,c 成等比数列且 f (0) 4 ,则 f ( x) 有最 ______
作业 :
5n (n为偶数)
2
)
(5 n 1) 2( n为奇数)
2
1. 一张厚度为 0.1mm 的矩形纸,每次将此纸沿对边中点连线对折,一共折叠
20 次(假定这样的折
叠 是 可 以 完 成 的 ), 这 样 折 叠 后 纸 的 总 厚 度 h1 与 一 座 塔 的 高 度 h2 =100m 的 大 小 关 系
x
4 ,则在区间 [ 3, 1] 内 f ( x) 的最大值与最小值之
x
差等于 _______________
答: 1
ax
15、不等式
x1
答: 1 2
1 的解集是 { x | x
1或 x
2} ,则 a
_________。
填空题(集合、逻辑、函数、数列、导数)
复习目标:本专题主要为新颖填空题和导数部分,通过本专题的复习,旨在培养学生的阅读 能力、数形结合和运用数学知识解决实际问题的能力以及一些非常规问题的解法。 典型例题
( 4:1:( 2 ) )
3. 若 sn 是数列 a n 的前 n 项的和 , Sn n2 ,则 a 5 a6 a7 =
( 33 )
4. 设数列 an 的通项公式为 a n n2
n( n N ) 且 an 满足 a1 < a 2 < a 3 < … < a n < a n 1
高中数学二轮复习 填空题的解法 课件(全国通用)
题型聚焦 高考命题聚焦 方法思路概述
-3-
解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填 空题的常用方法有:直接法、数形结合法、特例法、等价转化法、 构造法、合情推理法等.
常用解法 一 二 三 四 解题策略小结
-4-
一、直接法 直接法就是从题干给出的条件出发,运用定义、定理、公式、性 质、法则等知识,通过变形、推理、计算等,直接得出结论. 例1(1)函数y=sin x- 3 cos x的图象可由函数y=sin x+ 3 cos x的 图象至少向右平移 个单位长度得到. (2)(2017江苏,2)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的 模是 .
.
(2)(2017 北京,理 13)能够说明“设 a,b,c 是任意实数,若 a>b>c, 则 a+b>c”是假命题的一组整数 a,b,c 的值依次为 .
常用解法 一 二 三 四 解题策略小结
-9-
答案:(1)2 (2)-1,-2,-3(答案不唯一)
解析:(1)由题意,可知������ + ������的值与点 P,Q 的位置无关,而当直线 BC 与直线 PQ 重合时,有 λ=μ=1,所以������ + ������=2.
又a2+a8=2a5,所以a2+a8=10. (1){-1,2} (2)10
解析
关闭
答案
常用解法 一 二 三 四 解题策略小结
-7-
二、特例法 当填空题已知条件中含有某些不确定的量,但填空题的结论唯一 或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化 的不定量选取一些符合条件的恰当特殊值进行处理,从而得出待求 的结论.这样可大大地简化推理、论证的过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空题(集合、逻辑、函数、数列)复习目标:本专题为常规题型,通过本专题的复习,旨在培养学生解答填空题的基本素养:审题要仔细,要求要看清,书写要规范,小题要小(巧)做。
一、典型例题例1.等差数列{}n a 的前3项和为21,其前6项和为24,则其首项1a 为 ;数列{︱n a ︳}的前9项和等于 . ( 9 ; 41 )例2.数列{}n a 的前n 项和225n S n n =++,则678a a a ++=_________________。
( 45 )例 3. 设x ,y ,z 为实数,2x ,3y ,4z 成等比数列,且x 1,y 1,z 1成等差数列,则x zz x +的值是 . (25 ) 例4. 在一次投篮练习中,小王连投两次,设命题p :“第一次投中”命题q :“第二次投中”。
试用p 、q 和联接词“或、且、非”表示命题“两次恰有一次投中”。
______________________( pq 或pq )例5.设函数)(x f =x x 22log )1(log 2-+,则)(x f 的定义域是 .;)(x f 的最小值是 .( {}0>x x ; 2 )例6.已知a >1,0<x <1,且)1(log x b a->1,那么b 的取值范围是 . (0 ,1)例7.设函数.)().0(1),0(121)(a a f x x x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . ( )1,(--∞ ) 例8.若函数)(x f y =的定义域为R ,且满足下列三个条件: (1) 对于任意的x ∈R ,都有)()4(x f x f =+;(2) 对于[]2,0内任意21,x x ,若21x x <,则有)21()(x f x f <; (3) 函数)(x f y =的图象关于y 轴对称,则)5.4(f ,),5.6(f )7(f 的大小顺序是()5.4(f 〈 )7(f 〈)5.6(f 〉例9.已知函数)(x f 与)(x g 的图象关于直线x y =对称,函数)(x h 的反函数是)2(-x g ,如果7)3(=f ,则)3(h 的值为 。
( 9 )例10.等差数列{}n a 的前项和为n S ,且824=-a a ,2653=+a a .记2nn S T n=,如果存在正整数M ,使得对一切正整数n ,M T n ≤都成立.则M 的最小值是 . ( 2 ) 作业:1.已知数列{}n a 的通项公式112n a n =-,则12320a a a a ++++=L _________________。
( 250 )2.若互不相等的实数a 、b 、c 成等差数列,a 、c 、b 成等比数列,则a :b :c =_________________。
( 4:1:(2-) )3. 若n s 是数列{}n a 的前n 项的和,2n S n =,则765a a a ++= ( 33 )4. 设数列{}n a 的通项公式为+=2n a n λ()n n *∈N 且{}n a 满足1a <2a <3a <…<n a <1+n a <…,则实数λ的取值范围是 . (λ>-3 )5.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为________________( 21 )6.已知{|1}A x x =<,2{|(2)20}B x x a x a =-++≤,且{|2}A B x x =≤U ,则a 的取值范围是_______________。
( (,1]-∞ )7.已知a >0,b >0,a 、b 的等差中项是21,且a a 1+=α,bb 1+=β则βα+的最小值是 . ( 5 ) 8.函数922--=x y (3-≤x )的反函数是 。
( 1342+--=x x y )2(≤x )9. 已知函数)(x f y =是奇函数,当0≥x 时, 13)(+=x x f ,设)(x f 的反函数是y =g(x ),则g(-8)= . ( -3 )10.在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______值(填“大”或“小”),且该值为______( 大 , -3 ) 王新敞备用题1、在项数为21n +的等差数列中,所有奇数项和为165,所有偶数项和为150,则n =___________ 答:102、等差数列的前15项的和为67-,前45项的和为405,则前30项的和为___________ 答:683、设等差数列{}n a 的公差为0d ≠,又1a 、2a 、9a 成等比数列,则1392410a a a a a a ++++=____________答:794、已知数列{}n a,)n a n +=∈N ,则在数列{}n a 的前30项中 ,最大项和最小项分别为_________ 答:10a ,9a 5、已知数列{}n a,)n a n +=∈N ,且数列{}n a 的前n 项和为9n s =,那么n 的值为__________ 答:996、等差数列{}n a 中,20S =180,则5101116a a a a +++=_______________。
答:367、等差数列{}n a 中,1260600a a a +++=L ,公差2d =,则14758a a a a ++++=L _________________。
答:1608、设等差数列{}n a 的前n 项和为n S ,已知3a =12,120S >,130S <,则1S ,2S ,L ,12S 中,_________________最大。
答:6S9、关于数列有下面四个判断:①若a 、b 、c 、d 成等比数列,则a b +、b c +、c d +也成等比数列; ②若数列{}n a 既是等差数列,又是等比数列,则{}n a 是常数列;③若数列{}n a 的前n 项和为n S ,且1()n n S a a =-∈R ,则{}n a 为等差或等比数列; ④若数列{}n a 为等差数列,公差不为零,则数列{}n a 中不含有()m n a a m n =≠;其中正确判断的序号是_____________ 答:② ④10、设函数()f x 的定义域为D ,如果对于任意1x D ∈,存在唯一2x D ∈,使12()()2f x f x C+=(C 为常数)成立,则称()y f x =在D 的均值为C 。
给出下列四个函数:①3y x =②4sin y x =③lg y x =④2xy =,则满足在其定义域上均值为2的函数的序号是____________答:①③ 1132ax >+的解集为(4,)b ,则a =______ b =______ 答:18a =36b =12、设集合(3)2{5,log },{,}a A B a b +==,若2A B =I ,则A B =U ____________。
答:{5,1,2}13、若函数2()f x x bx c =++对任意实数t ,都有(3)(3)f t f t +=-。
则(0),(3),(4)f f f 的大小关系是______________ 答:(3)(4)(0)f f f <<14、已知偶函数()f x 在0x >时有4()f x x x=+,则在区间[3,1]--内()f x 的最大值与最小值之差等于_______________ 答:1 15、不等式11axx <-的解集是{|1x x <或2}x >,则a =_________。
答:12填空题(集合、逻辑、函数、数列、导数)复习目标:本专题主要为新颖填空题和导数部分,通过本专题的复习,旨在培养学生的阅读能力、数形结合和运用数学知识解决实际问题的能力以及一些非常规问题的解法。
典型例题例1.已知下列四个函数:(1)21x y -=; (2))2(log 21+=x y ; (3)211-+=x y ; (4)123+-=x y 其中图象不经过第一象限的函数有 (注:把你认为符合条件的函数的序号都填上)( (2),(3) )例 2.设集合(){}22,1,,M x y x y x R y R =+=∈∈,(){}2,0,,N x y x y x R y R =-=∈∈,则集合M N I 中元素的个数为 . ( 2 )例3.定义在R上的函数()f x 满足11()()222f x f x ++-=,则127()()()888f f f +++=L ____________。
( 7 ) 例4.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k = .( 41-)例5.给出下面四个命题:(1) 若2)1()(x x f -=,则)('x f )1(2x -=; (2) 函数)1lg()(2-=x x f 的值域为R ; (3) 数列n a a a a ,,,,32Λ一定为等比数列;(4) 两个非零向量),(),,(2211y x y x ==,若∥,则01221=-y x y x 其中正确的命题有 . ( (2),(4) ) 例6.曲线2313--=x y 在点(35,1--)处的切线的倾斜角是 . (43π) 例7.若函数)0(,1)1(3)(223>+--+=k k x k kx x f 的单调递减区间是(0 ,4),则k 的值是 . (31) 例8.设x ∈R ,[]x 表示不大于x 的最大整数,如[]3=π,[]22.1-=-,021=⎥⎦⎤⎢⎣⎡,则使[]312=-x 成立x 的取值范围是 . ( (]25--,[)52,⋃ ) 例9.已知1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 为各项都大于零的数列,命题①:1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 不是等比数列;命题②:81a a +<4a +5a 则命题②是命题①的 .条件。
( 充分不必要 )例10.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________ (3,⎪⎪⎩⎪⎪⎨⎧+-=为奇数)(为偶数)n n n nS n (22)15(25)作业:1. 一张厚度为0.1mm 的矩形纸,每次将此纸沿对边中点连线对折,一共折叠20次(假定这样的折叠是可以完成的),这样折叠后纸的总厚度1h 与一座塔的高度2h =100m 的大小关系为 . ( > )2.删去正整数数列1、2、3、4…中所有能被100整除的数的项,得到一个新数列,则这个新数列的第2005项是 . ( 2025 )3. 对任意实数x 、y ,定义运算x *y =ax +by +c xy ,其中a 、b 、c 为常实数,等号右边的运算是通常意义的加、乘运算。