锁相环的相位噪声分析
第2.6章 锁相环路的噪声性能

因此,本章节的分析方法称为环路在弱噪声作用下的线性分析。
3
2.6.1 输入加性噪声的特性
锁相环输入噪声常常是经过环路前的选择性回路才加到输入端的, 其选择性回路的带宽远小于中心频率,即 B f0 。
当噪声通过选择性回路,形成一个振幅和相位都作随机变化的高频 噪声。统计分析表明,这种噪声具有窄带高斯白噪声性质。
增大K 时,BL 随之也增大,很难满足多方面性能需求,故很少应用。
20
2.6.3 环路对输入噪声的线性过滤
(2)各种锁相环的相位噪声带宽 采用无源比例积分滤波器的二阶环噪声带宽为:
BL
n 8
1
2
n
K
2
当
K
n
时,近似为:
BL
n 8
N
t
由上式,得到下面的加性噪声输入时的环路相位模型 。
14
2.6.3 环路对输入噪声的线性过滤
(一)环路等效输入相位噪声
在弱噪声作用下,即相位差 e t 的均方根值 e 13o 时, 环路相
位误差 et 300 的概率近似为1,可将 sine e ,使方程线性化,
0 f B 2
9
2.6.2 输入加性噪声的环路相位模型
在已知环路输入噪声性质的基础上,可以获得环路的相位模型。 当有输入加性噪声时,加在环路输入端的电压是信号与噪声之和,即:
Vi t nt Vi sin0t 1t nc tcos0t ns tsin 0t
(2)各种锁相环的相位噪声带宽 采用不同滤波器的环路,其闭环频率响应不同,因此计算出的相
锁相环电路的设计及相位噪声分析

和响应速度之间折衷考虑,相位裕度越大,系统越稳定,但是响应速度变慢。
这里取相位裕度为60度。
同样的,这两个环路参数是估计出来的,在实际电路中仍然需要多次考虑。
最后根据上面的两个环路参数,利用第二章第六节的公式2-22到2-24可以计算出低通滤波器的电阻和电容的值大约为:R2=12K,C2=138PF,CI=1IPF。
根据以上估算的参数可以将锁相环系统的幅频和相频特性曲线画出,如图4.2所示。
图4-2PLL的幅频与相频特性曲线4.3锁相环系统级模型4.3.1Matlab构造数学模型Mauab是MathWorks公司开发的具有强大科学运算功能的数学工具,其中的软件包--Simulink是专门用于数学建模的工具。
通过建立锁相环系统的线性模型,如图4—3所示,分别建立环路中每个模块的传输函数,然后设置输入输出点。
该线性模型不仅可以分析系统的冲击响应和阶跃响应,还可以分析零极点与波特图。
冲击响应和阶越响应的模拟结果如图4-4所示,此模型可以很方便的修改参数,仿真速度非常快,模拟结果也非常直观,对于理解二阶系统的特性非常有帮助。
t№啦*血瞻呻目删e,ra口aap蝌m鼬rtrartim'哥缸眦h恤啪蚓of恤VCO图4-3Matlab建立PLL的线性模型图4—4PLL的阶跃响应与冲击响应4.3.2VerilogA构造行为级模型VerilogA语言是Verilog硬件描述语言的扩展,主要用来描述模拟系统的结构和行为,包括电子,机械,流体力学和热力学系统等㈣。
下面给出VerilogA描述锁相环的行为级模型,并应用Mica进行仿真。
首先,以电阻的行为级模型为例,简单的说明一下VerilogA语言的特点和应用。
、include“disciplines.”’’include“constants.h,’moduleres(a,b);inouta,b;electricala,b;parameterrealR21.O:analogbeginI(a,b)<+V(a,b)/R;//Altemative:V(a,b)<+I(a,b)4R;第五章锁相环电路设计及模拟第五章锁相环电路设计及模拟5.1整体设计本章主要是关于锁相环的晶体管级电路的设计,不但详细的分析了电路的结构,而且给出了模拟结构及相关的解释。
锁相频率源混频信号的相位噪声分析

锁相频率源混频信号的相位噪声分析为了研究锁相频率源的混频信号的相位噪声问题,本文将锁相源的相位噪声构成作为基础,构建起两路相关锁相源混频相位噪声近似数学模型,并开展了相关实验。
实验数据表明,模型仿真能够得到与实验一致的结果,可以在很大程度上降低相位噪声估值偏差。
标签:锁相频率源;混频信号;相位噪声1 相位噪声概述通常来讲,信号频率或者相位本身的短期性、随机性起伏是引发相位噪声的主要原因,理想的频率源信号得到的频谱近似直线,数学上一般用带有幅度的Delta函数表示。
而从实际测量的角度,频谱信号两侧可以看到宽度较大的连续分布谱,其形成的原因是热能与其他噪声源随机起伏对于频率信号的调整,这里的连续分布谱实际上就是相位噪声。
假定θ(t)表示噪声形成的调制信号,考虑到相位噪声同样属于较小的信号调制,满足θ(t)《1,可以将频率源信号表示为:(1)公式中,fc表示载波信号,对于公式进行相应的Fourier变换,可以得到(2)这里的S(f)表示S(t)的Fourier頻率谱,Sθ=F(θ(t)),表示相位与频率抖动的功率谱密度。
结合上述公式,参考相位噪声的内涵,可以通过分贝值的形式来对频率源相位噪声进行表示,有(3)公式中,=f-fc,该公式实际上是偏离载波位置1Hz带宽的相位噪声。
调制信号本身属于非平稳性的随机过程,而结合相应的文献研究以及工程实践,可以将其近似看做是平稳的高斯过程,能够得到近乎实际工程值的结果。
设相应的高斯过程θ(t)为N(0,),均值E=0,相位与频率会于载波信号附近抖动。
方差表示为相位噪声的功率,依照上述公式,可以得到相应的公式(4)2 锁相频率源相位噪声结构就目前而言,比较常见的锁相源一般都是有压控振荡器、鉴相器、环路滤波器以及分频器等构成,所有元器件的噪声都会影响最终输出频率的相位噪声,而其中最为关键,最不可避免的,是鉴相器鉴相基底倍频以及参考信号锁相倍频的恶化。
参考公式(4),可以将锁相源相位噪声表示为(5)在公式中,表示锁相源最终输出的相位噪声功率,和分别表示晶振锁相倍频恶化以及鉴相基底倍频恶化后的相位噪声功率,结合上述分析,参照公式(4)和公式(5),可以将相位噪声改写成分贝值的形式,得到锁相源相位噪声计算公式:(6)3 加入混频器后的相位噪声分析理想状态下,混频器的输出包含了两个输入信号的和频与差频,而实际上,混频器具备多个交调分量,不过和频与差频是主要分量。
锁相环相位噪声与环路带宽的关系分析

锁相环相位噪声与环路带宽的关系分析0 引言电荷泵锁相环是闭环系统,系统各个部分都是一个噪声源,各部分噪声的大小不仅与电路本身有关,而且还与环路带宽等因素有关。
因此,设计时必须分析其各频率范围内噪声源影响力的大小,权衡确定环路带宽与各噪声源的相互制约关系。
以下利用锁相环的等效噪声模型,重点分析电荷泵锁相环系统的相位噪声特性,得出系统噪声特性的分布特点以及与环路带宽的关系。
1 电荷泵锁相环的基本原理图1为电荷泵锁相环的示意图,主要由鉴相鉴频器(PFD)、电荷泵、滤波器、压控振荡器(VCO)、分频器等5部分组成,鉴相鉴频器主要用来检测输入信号x(t)与反馈信号xf(t)的频率、相位误差,并产生UP,DOWN信号控制电荷泵的开关。
电荷泵由两个对称的电流源和开关组成。
电荷泵的开关会对滤波器上的电容充放电,电流经过滤波器滤波后滤掉高频信号,在滤波器上产生能调整压控振荡器频率和相位的电压v(t)。
当v(t)上的电压被调整为一个合适的电压值时,xi(t)的频率和相位与x(t)的一致,系统最终处于平衡状态,从而实现对输入信号的跟踪。
2 电荷泵锁相环的噪声模型与相位噪声特性分析电荷泵锁相环的环路等效噪声模型可以用锁相环各子模块附加噪声源表示。
图2给出了带有无源滤波器锁相环噪声源模的型。
设fm为距离调制频率的偏移量,该图中主分频器、参考时钟分频器的均方噪声功率谱密度分别被表示为ψd(fm)和ψrcf(fm);鉴相鉴频器的相位噪声被表示为ψpd(fm);晶体振荡器的相位噪声被表示为ψx(fm);相位噪声源的单位是电荷泵的噪声被等价为电流源inp(fm)(单位:);滤波器的噪声被等价为电压源Vnf(fm)(单位:的自由振荡噪声被表示为环路输出信号的均方噪声功率谱密度被表示为它是闭环情况下所有噪声源影响的总和。
输出相位噪声功率谱密度可以表示为:式中:ψolp2(fm)为具有低通传输函数的噪声源功率谱密度;ψohp2(fm)为具有高通传输函数的噪声源功率谱密度。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践

锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、术语和缩略语表格 1 术语和缩略语二、问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。
图0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、解决思路相位噪声分析相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。
所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。
在实际运用中还礼滤波器的设计是非常重要的。
对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践

锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X 基站系统中800MHz 的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、 术语和缩略语表格 1 术语和缩略语 缩写全名 含义 CDMACode Division Multiple Access 码分多址 PLLPhase Locked Loop 锁相环 FSFrequency S ynthesizer 频率合成器 LPFLoop Filter 环路滤波器 VCO Voltage Control Oscillator压控振荡器 二、 问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD )、环路滤波器(LPF )和压控晶体振荡器(VCXO ),如图 0-1所示。
÷R 分频器VCO 参考频率鉴相器÷N 分频器LPF ΦK O θS K VCO )(S F rθ+iθ-e θ图 0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X 基站系统中800MHz 的FS 单板应用为背景,在CDMA 基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、 解决思路相位噪声分析相位噪声主要由VCO 、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
变频器锁相环技术

各部分的作用
▲晶振——提供参考频率 ▲ 鉴相器——是一个相位比较装置,用 来检测输入信号相位与反馈信号相位之间 的相位差。输出的误差信号是相差的函数。 ▲ 环路滤波—— 低通滤波器的作用,更 重要的是它对环路参数调整起差决定性的 作用。 ▲ VCO——它的振荡频锁定时间的考虑
环路的锁定时间主要由环路带宽决定,与环路带 宽成反比关系。
四.实际应用
如何设计好相位噪声
1、电源选择
选用线性电源
2、PCB板布局 3、减小干扰增加反相隔离度
干扰的会增加是环路输出相位产生随机的抖动。频率稳定度 变差;则输出信噪比下降,较强的干扰与噪声还会使环路发生 失锁的概率加大。
变频器的锁相环技术
提纲
一、锁相环的原理框图 二、锁相环的工作原理 三.相位噪声分析 四.实际应用
一、锁相环的原理框图
二、锁相环的工作原理
锁相环是由鉴相器、环路滤波器和压控振 荡器组成,鉴相器又称为相位比较器,它 的作用是检测输入信号和输出信号的相位 差,并将检测出的相位差信号转换成电压 信号输出,该误差电压信号通过环路滤波 器滤除高频分量和噪声后,输出低频信号 作为VCO 的控制信号。在控制电压 作用 下, VCO 输出信号 的频率发生变化并反 馈到鉴相器。由此可知,锁相环是一传递 相位的反馈系统。
谢谢!
环路滤波器(LPF)目前 主要采用的是三阶环路 滤波器。如右图所示:
三.相位噪声分析
1、噪声的分析 环路的带内相位噪声由鉴相器、分频器和晶振的噪声决定, 而带外相位噪声 主要由VCO决定。 环路带宽的选择对环路带内噪声的影响很大,若环路带 宽选得过窄,会增加锁定时间,环路带宽选得过宽就会 引起带外噪声的恶化,而且也不利于鉴相频率纹波的滤 除。
[锁相技术]第3章 环路噪声性能
![[锁相技术]第3章 环路噪声性能](https://img.taocdn.com/s3/m/3be6dd06360cba1aa911da6e.png)
4.采用无源比例积分滤波器的二阶环采用与有源比
例积分滤波器的二阶环相同的方法,可得
BL
n 8
[1
(2
n
K
)2 ]
(3-26)
当环路增益很高,即K>>ωn时,上式近似为
BL
n 8
(1
4 2 )
三、环路信噪比
在定义环路信噪比之前,先看看环路输入信噪比。 所谓输入信噪比(S/N)i,指的是输入信号载波功率U2i /2与通过环路前置带宽Bi的噪声功率NoBi之比,即
)L
(
S N
)i
Bi BL
(3-29)
(3-30) (3-31)
【计算举例】
在一部接收机的中频部分,使用了锁相环作载波提 取设备。已知接收机输入端等效噪声温度Teq=600K,输 入信号功率Ps=10-13mW。单边噪声功率谱密度No为
No=kTeq=138×10-23×600=8.3×10-21 W/Hz 式中k是波尔兹曼常数,也即No=8.3×10-18 mW/Hz
ui(t)=Uisinωot+θ1(t)
(3-1)
经环路前置带通滤波器的作用,n(t)为一个窄带白高 斯噪声电压,可表示为(见附录一)
n(t)=nc(t)cosωot-ns(t)sinωot
(3-2)
图3-1 有输入噪声时环路的基本组成
这样,加在环路输入端的电压是信号与噪声之和,即
ui(t)+n(t)=Uisinωot+θ1(t)+nc(t)cosωot-ns(t)sinωot 压控振荡器输出电压为
Kd
s
2s) H (s)ni (s)
(3-9) (3-10)
一、环路输出噪声相位方差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锁相环路相位噪声分析张文军 电信0802【摘要】本文对锁相电路的相位噪声进行了论述,并对其中各组成部件的相位噪声也做了较为详细的分析。
文中最后提出了改进锁相环相位噪声的办法. 【关键词】锁相环;相位噪声;分析 引言相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的影响很大,从频域看它分布的载波信号两旁按幂律谱分布。
用这种信号无论做发射激励信号,还是接收机本振信号以及各种频率基准,这些信号在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降.在通信系统中使环路信噪比下将,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。
接收机本振的相位噪声遇到强干扰信号时,会产生“倒混频”,使接收机有效噪声系数增加.随着电子技术的发展,对频率源的信号噪声要求越来越严格,因此低相位噪声在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器仪表等各种领域里都受到重视。
1 相位噪声概述相位噪声 ,就是指在系统内各种噪声作用下所表现的相位随机起伏,相位的随机起伏起必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度。
理想情况下,合成器的输出信号在频域中为根单一的谱线,而实际上任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带.由于相位噪声的存在,使波形发生畸变。
在频域中其输出信号的谱线就不再是一条单根的谱线,而是以调制边带的形式连续地分布在载波的两边,在主谱两边出现了一些附加的频谱,从而导致频谱的扩展,相位噪声的边带是双边的,是以0f 为中心对称的,但为了研究方便,一般只取一个边带。
其定义为偏离载频1Hz 带宽内单边带相位噪声的功率与载频信号功率之比,它是偏离 载频的复氏频率m f 的函数 ,记为()m f ζ,单位为d B c / Hz ,即()010lg[/](1)m SSB f P P ζ=式中SSB P为偏离载频m f 处,1Hz 带宽内单边带噪声功率;0P 为载波信号功率.2 表征相位噪声物理量2.1即时相位抖动()t Φ()02cos()()t s s v t t t πωθφΦ=+++其中,0v是源的标称频率,常数.cos()s s w t θ+是()t Φ的周期性扰动,称为杂散,()t φ则是相位的随机扰动,称为相位噪声2。
2即时频率抖动()v t它是即时相位抖动的时间变化率()t φ和()v t 是相位抖动和频率抖动的绝对量。
在标称频率不同时,将不同频率源的相位或频率抖动的绝对量相比较,是没有意义的。
所以,下面介绍的归一化值,使用起来更为方便,从而得到广泛应用。
2.3即时相位抖动()x t0()()2t x t v φπ=上式的纲量为秒。
两个钟之间的时间差,就可以用()x t 来表示 2.4即为相对频率抖动()y t()()01()2t x t d d y t v dt dt ϕπ==()y t 是()v t 的归一化值,没有量纲。
在频率稳定度(相位噪声)的研究中,()y t 是使用最广泛的量.以下的有关讨论,无论是在频域还是时域,往往针对()y t 提出频率稳定度的表征,至今还没有被一致接受的定义。
IEEE 时间与频率委员会推荐的谱密度()y S f 以及Allan 方差2()y στ,实践中得到广泛的应用。
Allan 方差,所定义的实际上频率源频率的不稳定度,但习惯上还是称为稳定度.实验表明频率源的相位噪声可以用以下的数学模型来描述:22()y S f h f ααα=-=∑ 0h f f <<()0y S f =h f f <以上各项都正比于付氏频率的某次幂,因此称该模型所表征的噪声为幂律谱噪声2α=- ,频率随机游动噪声;1α=-,频率闪烁噪声;0α=,频率白噪声;1α=,相位闪烁噪声;2α=,相位白噪声。
3锁相环系统的相位噪声分析锁相环主要有分频器、鉴相器、振荡器等基本电路组成,他们都会不同程度地引入噪声到锁相环系统中。
早射干扰具有随机性,具体分析计算极其困难。
虽然我们可借助像AGINENT 的ADS 等仿真软件和MATHCAD等大型计算软件进行分析,但我们必须借助PLL 的线性相位模型开始研究(图2)其中F (s )为环路滤波器的传递函数;K Φ和vcoK 分别为鉴相器的鉴相灵敏度和压控振荡器的压控灵敏度上图的PLL 的相位噪声模型可得其前向增益和反向增益分别为()()vco s S K K F G sΦ=(3-1)1H N =(3—2)其中R 为分频器分频比。
()s F 为环路滤波器传递函数。
利用现代控制理论,可得出锁相环环路各部件的噪声源对环路噪声的贡献的传递函数。
下面以参考晶体为例,来推到上表给出的各类噪声源的传递函数为。
设()oi s θ为()ni s θ在PLL 输出端产生的相位噪声,令其他噪声源的输入为零,由表可得()()()()m oi VCO s oi s s K K F s R N s θθθΦ⎛⎫-= ⎪⎝⎭上式联合(3—1)和(3-2)式,经整理可得晶体噪声源对应的传递函数:()()()1()()1s oi ni s G s T s s R G θθ==+其他结果的推论类似,这里就不再推导。
从上表我们可以看出,鉴相器、N 分频器、R 分频器和参考晶体的噪声传递函数都有一个共同的因子()()1s s G G +.以上的噪声源统称为带内噪声.3 . 1 晶体振荡器的相位噪声晶体振荡器的相位噪声()i S Φ 对输出相位噪声 0()s Φ 的影响为()0()()()1s i s G s NM S G Φ=Φ+ (4)由式( 4 ) 中可以看出,晶振中心频率ω的相位噪声全部由环路输出,大于环路谐振频率n ω的相位噪声将被衰减。
由于分频次数N 与倍频次数M 受输出频率和跳频点数限制,故主要考虑()i S Φ 。
晶体振荡器等效电路中的放大器固有噪声功率FKTB 经放大器后通过带宽为i B 的晶体滤波器与信号功率s P 一起加到输入端,0m 形成相位噪声,为放大器输出端的基底噪声,可写成010g gs FKTBL m L P = (5)3 。
2压控振荡器( VCO) 的相位噪声压控振荡器VCO) 的相位噪声对0()s Φ 的影响为()0()()()1s vco s G s s G Φ=Φ+ (6)()vco s Φ 0()s Φ 对的影响具有高通特性,低于的分量环路有很强的抑制作用,高于n ω的相位噪声分量将全部输出。
因此频率合成器远端的相位噪声主要决定()vco s Φ ,()vco s Φ 降低是降低频率合成器远端相位噪声的主要方法.3 。
3 环路滤波器的相位噪声影响相位噪声的另一个重要因素是环路滤波器.环路滤波器对最终性能有很大影响,这是因为它决定拐点频率( 在拐点频率处来自电路不同部分的噪声开始影响输出,如图所示)。
在环路带宽内,鉴相器强迫VCO 跟踪参考频率,将参考频率源的相位噪声带到VCO 上。
由于鉴相器噪声基底通常比参考频率源的相位噪声高,因此这一过程受到鉴相器噪声基底的支配。
由于补偿频率高于环路带宽,环路就不能很好的跟踪参考频率,总的相位噪声等于 V C O 的相位噪声,因此要将环路带宽设置在鉴相器噪声基底与VCO 自由振荡时相位噪声的交叉点上.过宽和过窄的环路带宽虽然对VCO 的相位噪声有一定的改善,但不能很好地提高PLL 的相位噪声性能。
图2 典型单环路合成器的噪声曲线3 。
4 鉴相器的相位噪声鉴相器的相位噪声对0()s Φ的影响为()0()1()1s nd s DG s NV G K Φ=+ ( 7 )由式( 7 ) 可以看出,对0()s Φ 也呈低通特性,对0()s Φ影响将很小。
另外,还可看出,应尽量提高鉴相灵敏度,使环路抑制能力增强,还应注意鉴相器输入电压也应足够大,使鉴相器二极管能工作在理想区域,以降低鉴相器的附加相噪。
3 。
5 电源引起的相位噪声电源引起的相位噪声主要来源于电源变压器及整流后的纹波电压,它们都通过某种方式对基准信号进行调制,尤其对晶振的调制,而形成相位噪声,这种噪声都属于近端干扰噪声,将由环路全部转移到输出端输出。
3 . 6 分析环路对带内噪声源呈低通过滤,故希望将环路带宽c f 越低越好;但环路对VCO 呈高通过滤,又希望环路带宽c f 越宽越好.为了兼顾这一对矛盾,能够将两种噪声都得到合理的抑制,可以选择环路带宽c f 在两噪声源谱密度线的交叉点附近总是比较接近于最佳状态的。
但考虑晶振噪声要恶化,20log()N R 所以实际带宽要略小一些.又前面方程可知,在环路带宽内VCO 的噪声贡献很小,而带内噪声源电压电源应乘以N ,那么噪声功率应于2N 成正比,因此通常会错误的认为相位噪声随20log()N 变化。
这个理论本身没有错但是它忽略了鉴相器噪声的影响。
鉴相器也是PLL 的一个重要的噪声源。
以一个数字三态鉴频鉴相器为例,在比较频率较高时输出的相位噪声就更大。
由此可以看出鉴相器的相位噪声影响与比较频率有关,且按10log()N 变化。
4 在实际工程中座地相位噪声的重要注意事项4 . 1 (晶振的相位噪声+倍频恶化的dB )要高于具体指标,频率高时倍频器次数减小有利于相位噪声的减小。
4 。
2 一般10KHZ 以下的相位噪声主要靠环路来改善VCO 环内的相位噪声,在设计环路滤波器和主干射频电路时,一定要采用小的封装电阻,另外在设计衰减电路时,尽量采用π型电路,不采用T 型电路,因此没在主干射频电路上增加一个电阻就带来一些相位噪声的恶化。
4 。
3 PLL是对电路很敏感的电路,所以在布板式电源要远离PLL主干路,注意滤波4 . 4混频电路、中频电炉对相位噪声的影响不大,但要注意信号的功率不要太小,保证有足够大的信噪比。
4 . 5高鉴相灵敏度有助于减小鉴相器与VCO之间电路噪声相位噪声的影响,调谐灵敏度低的VCO的相位噪声好于调谐灵敏度高的VCO的相位噪声。
因此应选用K较大的鉴相器,vcoK较小的VCO4 . 6VCO设计时应注意选用低闪烁噪声的震荡管和变容二极管,在保证工作带宽的同时尽量提高谐振回路的Q值。